
                                                                                                                                    

Exact solutions of unitarily invariant matrix models in zero dimensions 
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Explicit constructions of Green functions for U (N) invariant-matrix (/> 4 theories are given in zero 
space-time dimensions. The results are expressed in terms of a new class of orthogonal 
polynomials, which are orthogonal on the interval [ - 00,00] with respect to the weight function 
exp { - m 2¢J 2 - .4¢J 4 J . An explicit construction of the coefficients of these generalized Hermite 
polynomials is presented. We briefly discuss the "thermodynamic" limit N_ 00 of the 
corresponding one-dimensional statistical system of N classical particles with logarithmic pair 
interactions and subjected to an external anharmonic potential. 

PACS numbers: 02.1O.Sp 

1. INTRODUCTION 

Interest in unitarily invariant-matrix field theories 
based on some internal U (N) invariance has up to now main
ly been confined to the formal N-oo limit, in which only the 
planar sector is probed. Using an elegant steepest-descent 
technique, Brezin, Itzykson, Parisi and Zuber I managed to 
solve exactly, in theN-oo limit, the unitary-matrix (/> 4 the
ory in zero space-time dimensions. The same method has 
subsequently been applied to a host of other model field the
ories, such as zero-dimensional two-matrix models2 and 
two-dimensional U (N) lattice gauge theories.3 

Recently, U (N) matrix models forlargeN have received 
renewed attention. With the important discovery4 that the 
so-called quenched momentum prescription may represent a 
valid prescription even in the continuum, new possibilities 
for large-N theories have suddenly opened up. Perhaps a 
particularly interesting aspect is the hope it has given of ob
taining the hypothesized "master field" oflarge-N theories,5 

but many other interesting applications are clearly possible. 
Simultaneously with these developments in quenched 

field theories, the large-Nbehavior ofthe four-dimensional 
version of the U (N) matrix model we consider here (at nega
tive couplings to make it asymptotically free) was shown by 't 
Hooft to be "finite" in the sense that the perturbation expan
sion is Borel summable.6 This puts the planar approximation 
on a very solid theoretical foundation. 

Yet, we are not of course really interested in N = 00 

theories. Even though it may seem almost stupefyingly diffi
cult to extend in a simple and calculable way the quenched 
momentum prescription to the case of finite N, it is not alto
gether inconceivable that some of the lessons learned recent
ly for N = 00 theories may be carried over to the physical 
case of finite N. For this reason it is important to have avail
able a class of exactly soluble models on which to test the 
methods. Furthermore, with such exact solutions available 
one can directly see to what degree of approximation the 
N-oo limit makes sense. 

Apart from these considerations, the unitarily invariant 
matrix models in zero dimensions that we shall be concerned 
with in this paper have an interest in their own right. For 
example, the generating functional of this zero-dimensional 
theory can be used to directly obtain the weight factors of the 
perturbative expansions associated with the corresponding 

d-dimensional theory. (Loosely speaking, the weight factor 
gives the sum of all symmetry factors, color factors, etc. to 
each order in perturbation theory, i.e., the result one would 
obtain if one assigned the value 1 to each Feynman diagram.) 
These zero-dimensional matrix models are also of interest 
from the point of view of statistical mechanics. We shall 
show that one obtains directly the partition function of a 
one-dimensional statistical ensemble of N classical particles 
interacting through a logarithmic-pair potential, and sub
jected to an external anharmonic-oscillator potential. Tak
ing the limit in which the coupling to the external field ap
proaches zero, one obtains the partition function whose form 
was conjectured several years ago by Dyson.7 Keeping the 
coupling to the external potential nonzero, we can apply the 
steepest-descent model of Ref. 1 (now also treating the tem
perature as a dynamical variable) to obtain the exact parti
tion function in the "thermodynamic" limit N-oo. 

The paper is organized as follows. In Sec. 2 the Lagran
gian is defined, and we show how the vacuum-to-vacuum 
amplitude can be calculated exactly by relating it to the nor
malization factors of a set of orthogonal polynomials. From 
this we show how all relevant Green functions, as well as the 
generating functional itself, can be constructed. Section 3 is 
devoted to a discussion of the set of orthogonal polynomials 
needed to compute the vacuum-to-vacuum amplitude. We 
show how in this case the standard orthogonalization proce
dure reduces to a set of algebraic equations, which in tum 
make it possible to construct the coefficients of nth polyno
mial directly and without reference to the lower-order poly
nomials. The N- 00 "thermodynamic" limit of the corre
sponding statistical-mechanics system is calculated in Sec. 4. 
Finally, Sec. 5 contains a short summary. 

2. THE VACUUM·TO·VACUUM AMPLITUDE 

The theory we will be considering here is defined by a 
matrix field (/>ij(x) and its corresponding Euclidean Lagran
gian 

.!£' = Tr[ all (/>all (/> +] + m2 Tr[ (/>(/> +] +.4 Tr[((/>(/> +)2]. 
(2.1) 

Obviously, if (/>ij(x) belongs to the space of complex Hermi
tian matrices, the Lagrangian (2.1) will be globally invariant 
under the group U (N). It was this theory which was solved 
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exactly in zero dimensions for N- 00 in Ref. 1 by a steepest
descent method. We shall here give the solution for finite N. 

In zero space-time dimensions the propagators all be
come simple constants, and the kinetic term in the Lagran
gian drops out. The vacuum-to-vacuum amplitude 

(0+10-) = ZN(A) = J D<Pe- S
[<1>l, 

where S [<P] is the Euclidean action, 

S [<P] = JdDX 2'[<P(x)] 

becomes simply 

(2.2) 

(2.3) 

ZN(A) = JD<PeXp(-m2Tr[<p<P+]-ATr[(<p<P+)2]). 

(2.4) 

Here D<P represents the integration measure over complex 
Hermitian matrices. A more tractable representation of the 
path integral (2.4) is obtained in a standard manner by dia
gonalization <Pij and the inclusion of the corresponding "Ja
cobian".7.8 The result is (apart from an overall unitary 
group-volume factor which is irrelevant for our purpose) 

ZN(A) = f: 00 iiildtP{~(tPi - tPye-m'~4>T-n4>t, (2.5) 

in which equation the N integration variables tPi are the 
eigenvalues of the field <P ij' 

First note that ZN(A ) can be solved by an exact cluster 
decomposition in which one assigns (1 - Fij) to the ijth link 
and a factor tP ;(i - I) to the ith vertex. We have introduced the 
link variables 

Fij f~ - 2/;j' (2.6) 

where thef's are simply given by the ratio of the eigenvalues, 
/;j = tPJtPj' However, such a graphical solution becomes ex
tremely tedious for moderately large values of N. 

The clue to a simpler solution, which will be useful for 
all values of N, lies in noting that the factor IIj<j(tPi - tPj)2 
appearing in Eq. (2.5) is the square of the Vandermonde de
terminant 

(2.7) 

tPf- 1 tP~-1 tPZ- I 

A brute-force solution can now be obtained by simply 
expanding the determinant (2.7) out in rows and columns. 
Upon squaring the result, obviously only even powers of the 
tPi'S will contribute to the integral (2.5). One can therefore 
group the answer into blocks of tPi-products, each tPi appear
ing with only even powers, and such that the sum of the 
exponents equal N (N - 1). There are [(N 12]W such blocks if 
N is even, and [((N + 1)12)!((N - 1)12)!] blocks if N is odd. 
Each block appears with a multiplicity given by standard 
combinatorics, and there is finally an overall factor of N! due 
to the permutation symmetry. This brute-force method also 
becomes quite tedious for moderately large values of N, al
though it is probably easier than the cluster decomposition 
method. 

Instead, we shall present a solution which makes use of 
a fundamental property of the Vandermonde determinant of 
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Eq. (2.7), namely its invariance under the replacement of its 
lower (N - 1) rows by arbitrary (N - l)th-order polynomi
als in the tPi 's, provided we choose to normalize our polyno
mials such that the coefficient of the highest power is unity: 

Po(tPd PO(tP2)",PO(tPN) 

D(tPW .. ,tPN) = PMI) PM2) .. ·PI(tPN) (2.8) 

PN-I(tPd PN-dtP2) .. ·PN- I (tPN) 

According to our normalization condition PO(tPi) = 1, 
PMi) = tPi + const, and so on. Note that Eq. (2.8) is exact 
for any arbitrary choice of the (N - 1) polynomials 
PMi )'''''PN - I (tPi)' In particular, we can choose these poly
nomials such that they are orthogonal on the interval 
[ - 00,00] with respect to the weight function 

W(tPi)=e-m'4>T-A4>~. (2.9) 

With this particular choice of the polynomials Pn (tPi) all 
crossed terms in the square of the Vandermonde determi
nant vanish upon integration, and one is left with the simple 
result 

N-I 

ZN(A)=N! II (PiIPi ), (2.10) 
;=0 

where we have introduced the notation 

(2.11) 

The orthogonality condition requires this inner product to 
be proportional to {j ij' We shall return to the question of how 
to construct the polynomials Pn(tPi) in the next section. 

Having calculated with vacuum-to-vacuum amplitUde 
in the form ofEq. (2.10), it is now trivial to obtain any Green 
functions. For example, for the 2-point function 

(Tr<P 2) = SD<P Tr[ <P 2]exp{ - m2 Tr[ <P 2] - A Tr[ <P 4lJ 
SD<P exp{ - m2 Tr[tP 2] - A Tr[ <P4]) 

(2.12) 

one has 

(2.13) 

with ZN(A ) given explicitly by Eq. (2.10). Similarly, all other 
U (N) invariant-vacuum expectation values can be generated 
fromZN(A ) by differentiations with respect to m2

• This gives 
the implicit construction of the generating functional of 
U (N) invariants. 

3. THE POLYNOMIALS Pn(tP) 
In the previous section we expressed the vacuum-to

vacuum amplitude ZN(A) as the product of the normaliza
tion factors of the polynomials P n (tP;). In this section we shall 
construct these polynomials, and their normalization fac
tors, explicitly. 

First, let us define 

Ip(a)=Joo dxe- ax'-px
4

=! ~ea'/8PKI/4(~)' 
-00 ~ p ~ 

(3.1) 

where Kv is a modified Bessel function of the second kind. 
We thus have 
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(
1 a ) a

3/2 
a'IBf3 , (a

2
) 

Ip(a)= 2a + 4{3 If3(a)+ 8{33/2 e K1I4 8{3 , 

the prime denoting differentiation with respect to the argu
ment. Exploiting the differential equation for Bessel func
tions, we find the useful result 

It + 21(a) = (a/2/3 )It + ll(a) + (2n + 1/{3 )1 (nl(a), (3.2) 

which gives us the explicit expression 

I(nl( ) _ (- l)"r(n + !) ea2/Bf3W (~) 
f3 a - 2n{3 n12a 1/ 2 - n12. - 1/4 8/3 . 

(3.3) 

Here W represents the irregular Whittaker function, and 
!-L.V 

r is the standard gamma function. (Our conventions follow 
those of Ref. 9.) From the explicit representation (3.1) it is 
clear that W _ n12. _ 114 always can be represented in terms of 
Kl/4 and its first derivative, or in terms of Kl/4 and K5/4' or 
Kl/4 and K3/4· 

We write the polynomials 
n 

Pn (x) = LPnj(a,/3 )xj, 
j~O 

Pnn = I, Pnj = ° for n - j odd, 

f~ "" dx Pn(x)P m(x)e-ax2-f3x· =An(a,{3)8mn· (3.4) 

The coefficients Pnj(a,/3) can be determined, for instance, by 
the usual Gram-Schmidt orthogonalization procedure. We 
note, however, that starting with Po(x) = 1 (Pl(x) = x) for n 
even (odd), the condition of orthogonality with respect to x 2

, 

x\,..(x3,x5, ... ) can be represented by differentiations with re
spect to a. Thus we get a set of algebraic equations, 

~ M(nl p(nl = I(nl 
L /-LV v v' 

where /-L, Y = 1,,..,[n/2], and 

I ~nl = lip + [n - 1)I2 J(a), 

M (n l _ !!-'+v+en -21() _ {OfOrneven 
!-LV - I f3 a, en - 1 for n odd 

p(nl = (_ lliL+ [n12J -lp 
J.l I n,/-L + en' 

(3.5) 

(3.6) 

Here [y] stands for the integral part ofy. From Eq. (3.5) we 
immediately have the coefficients Pnj (a,/3) for any given n, 

(3.7) 

The normalization factor An (a,/3) then follows from 

An = (PnIPn) = i PnjPnd _ly+kI2I~+kI21(a),(3.8) 
j.k~O 

and the polynomials Pn (x) are now completely determined. 
We list the coefficients of some of the lowest-order polyno
mials in Table I. 

The polynomials Pn (x) provide the natural generaliza
tion of Hermite polynomials, to which they reduce as /3-0, 

Pn(x)-(2,Ja) -nHn(jax) as /3-0, (3.9) 

as can also be checked explicitly from Table 1. 

4. THE CONNECTION TO STATISTICAL MECHANICS 

The vacuum-to-vacuum amplitude ZN(A) ofEq. (2.5) 
can, as mentioned in the introduction, be given the interpre
tation of the partition function of a particular one-dimen
sional gas, which we shall now describe. 

First note that we can add to the exponent in Eq. (2.5) a 
term 

N p 2 

H kin = L -'-
i~l 2mi 

(4.1) 

and integrate all Pi'S from - 00 to + 00. These are all sim
ple Gaussian integrals which will add an overall factor to 
ZN(A). We can interpret this modified vacuum-to-vacuum 
amplitude as the partition function for a classical one-di
mensional gas of N particles having phase-space coordinates 
(P i ,</> J It follows from Eq. (2.5) thatthese N particles interact 
with an external potential Vex! given by 

N N 

Vex! = m 2 L </> 7 + A L </> ;, (4.2) 
i= I i= 1 

and have a logarithmic pair interaction, 

(4.3) 

TABLE I.The coefficientsPn} [from Eq. (3.4)] of the polynomials Pn (x) for low values of n. Note that by definitionpnn = I. Higher-order coefficients can be 
computed by the method outlined in Sec. 3. 

~ 
0 

2 

3 

4 

5 

1635 

0 2 

0 
/p(a) 

/p(a) 

0 
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3 

o 

Ip(a) 

/p(a) 

o 

4 

I p(al' - / p'(a)/ pia) 

/ p(a)2 - / p(a)lp(a) 

o 

/ p(a)1 pia) - / p'(a)/p(a) 

/ p(a)2 - / p(a)/p(a) 

o 

5 

o 

I p'(af - /~J(a)1 pia) 

I p(a)2 - / p'(a)/ pia) 

o 

I p'(a)1 pia) _/~J(a)1 pia) 

/ p(a)2 -I p'(a)/ pia) 

o 
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The matrix eigenvalues fiJi' in suitable units, simply play the 
role of position coordinates of the N particles. 

If we let both m 2 -0 and ,1,-0, such that the coupling to 
the external potential vanishes, then ZN(A. ) reduces to the 
form of the famous conjecture of Dyson.7 This original con
jecture of Dyson was shortly afterwards given a beautiful 
proof by Wilson. 10 

Note that if we keep the external potential (4.2), ZN(A. ) 
will, once the parameters m and It have been chosen, only 
produce the partition function for the one-dimensional gas 
at fixed temperature T. To find the full partition function we 
must allow the pair interaction Vpair to depend on an overall 
constant which can be chosen independently of m and A.. We 
will call this coupling constant CT: 

Vpair~ - CTL InlfiJi -fiJj I. (4.4) 
i#J 

The equivalent problem for A. = ° was studied years ago by 
Mehta and Dyson.7 They conjectured the solution for the 
partition function ZN for all N. This conjecture has, to our 
knowledge, never been proved. We shall here study the gen
eralized problem in which A. :;60, in the thermodynamic limit 
N~oo. Wishing to retain as N~oo a smooth limit for the 
partition function, we are allowed to rescale the parameters 
appropriately. In particular, we will choose to rescale A.~A. / 

N and let fiJi--JN fiJ (UN), as in Ref. 1. The matrix eigenval
ues fiJi then become continuous variables on the interval 
[0,1]. The parameters m and CT are left untouched. It is, as we 
shall see shortly, this particular rescaling which will yield an 
appropriate N~oo limit. 

Now, as N~oo the steepest-descent appproximation 
becomes exact, and the solution to our partition function will 
follow completely analogous to the treatment in Ref. 1. Here 
we just briefly recall the argument in order to define our 
notation. 

The steepest-descent solution selects the stationary 
point 

m2fiJi + 2 ~ fiJ i = CTL 1 (4.5) 
N i#J fiJi -fiJj 

Rearranging the sum over eigenvalues such that the sum 
becomes ordered we can, in the limit N~ 00, tum the sum 
into an integral. After the rescaling mentioned above we 
therefore obtain 

m2fiJ (x) + UfiJ (X)3 = CTf dy, (4.6) 
fiJ(x) -fiJ(y) 

where I, as usual, denotes the principal value of the integral. 
If we introduce the N~ 00 density of eigenvalues 

p(fiJ ) = dx/ dfiJ normalized on a finite interval 2A such that 

f~,/fiJP(fiJ) = 1, (4.7) 

then Eq. (4.5), with a simple change of variables, becomes 

m2 fiJ + UfiJ 3 = CTJA dp pip) . (4.8) 
-A fiJ-p 

This integral equation can be solved by the method of 
Ref. 1, and the solution is 

p(fiJ) = _1 [(m2fiJ+UfiJ3+A.A2fiJ)~A2 -1], 
~CT fiJ2 

(4.9) 
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subject to the constraint 

3A.A 4 + 2m2A 2 - 4CT = 0 (4.10) 

and defined for fiJE[ - A,A]. We note that we cannot now 
t~ke the cutoff A to infinity, since in fact A is fixed by equa
tlOn (4.10). This implies that in fact the whole system is only 
in eqUilibrium when confined to the interval [ - A,A ]. The 
size of the system depends on CT such that A -0 as CT-o. The 
fact that the system becomes restricted to a finite interval is a 
property which holds for any analytic choice of the external 
potential Vext(fiJ) with a nontrivial N~oo limit. 

The saddle-point solution itself can now be determined 
immediately. Writing the partition function 

ZN(A.) = e- N'HI13, (4.11) 

it follows that 

H il - = dx[m2fiJ (xf +A.fiJ (X)4] 
f3 0 

- CT f fdX dy InlfiJ (x) -fiJ (Y)I 

= f~,/fiJ p(fiJ Hm 2fiJ 2 + A.fiJ 4] 

- CT f~ Af~'/p dfiJ p(fiJ )p1p)lnlfiJ - pl· (4.12) 

We can use the saddle-point equation (4.8) to rewrite 
this as 

H (A Ii = Jo dfiJ p(fiJ Hm 2fiJ 2 + A.fiJ 4 - 2CT In fiJ ], (4.13) 

which, upon insertingp(fiJ) from Eq. (4.9) becomes 

_= _ _ A 4 + __ A 6 +_/1,_A 8 H 1 [ m
4 

5A.m 2 9' 2 ] 

f3 CT 16 32 128 

+ ~2 A2(~-ln( ~ ))+ 3: A4(!-ln(~)). 
(4.14) 

and the full partition function [Eq. (4.11)] is then known. A 
and the pair coupling CT are of course related through the 
constraint (4.10). 

5. SUMMARY 

In this note we have shown that the zero-dimensional 
<p 4 Hermitian-matrix model, which previously was solved 
by a saddle-point technique in the large N limit, in fact can be 
solved exactly for all N. We have given the explicit form of 
the vacuum-to-vacuum amplitude and shown how to con
struct all Green functions of the theory. To do this, a set of 
orthogonal polynomials, which provide a natural general
ization of Hermite polynomials, was introduced. All rel
evant quantities can be expressed in terms of the normaliza
tion constants of these polynomials. We note that this 
method of solution is completely general for matrix models, 
and can be applied to other effective Lagrangian methods as 
well. We showed that the analog of this zero-dimensional 
matrix model in statistical mechanics is a (1 + 1 )-dimension
al system of N classical particles with logarithmic-pair inter
actions and subjected to an external anharmonic-oscillator 
potential. The partition function for this system was com
puted in the "thermodynamic" limit N~oo. 
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Dynamical group of microscopic collective states. III. Coherent state 
representations in d dimensions 
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The present series of papers deals with various realizations of the dynamical group Yfi c (2d,R ) of 
microscopic collective states for an A nucleon system in d ( = 1,2, or 3) dimensions, when these 
collective states are assumed to be invariant under the orthogonal group O(n) associated with the 
n = A-I relative Jacobi vectors. In this paper, we further study the Barut-Girardello 
representation proposed in the first two papers of the present series to show that it may be 
reformulated in terms of some coherent states by generalizing to Yfi c (2d,R ) a class of Sp(2,R ) 
coherent states introduced by Barut and Girardello. For such purpose, our starting point is 
another coherent state representation, namely the Perelomov one, previously considered by 
Kramer. We also propose a third, new class of coherent states leading to Holstein-Primakoff 
representation in a straightforward way. We review various properties ofthese three classes of 
coherent states, such as their reproducing kernel and measure explicit forms, their generating 
function properties, and the representations they lead to for both the collective states and their 
dynamical group. 

PACS numbers: 02.20. + b, 21.60.Fw 

1. INTRODUCTION 

In various recent works,I-3 the microscopic collective 
states of an A nucleon system are discussed in terms of the 
orthogonal group O(n) associated with the n = A-I rela
tive Jacobi vectors of the system. These states are assumed to 
transform under a definite O(n) irreducible representation 
(IR) (,1,)"1,:03)' which can be derived from shell model consid
erations. It is actually obtained by filling compactly with the 
A nucleons all the single-particle states in an oscillator well 
up to a given level and by considering the most symmetrical 
IR [,1,1,1,:03] ofU(3) in the last unfilled level. 

Although complete sets of states are now available for 
the general case wherein A I' ,1,2' and ,1,3 are not all equal,3.4 
many works have been devoted up to now to the simpler case 
of the O(n) scalar IR for which A I = ,1,2 = ,1,3 = 0. 1

•
5

-
8 Strict

ly speaking, the scalar case only applies to s-shell nuclei. Its 
consideration interest, however, goes much beyond this very 
restricted class of nuclei. With slight modifications (actually 
by replacing n by n + U in all the formulas), the results for 
the scalar case can indeed be extended to the case where 
A I = ,1,2 = ,1,3 = A 'fO, corresponding to closed-shell nuclei. 
Moreover, the detailed study of the scalar case may provide 
us with some useful hints to deal with the more complicated 
case of open-shell nuclei, for which A I' ,1,2' and ,1,3 are not all 
equal. 

The purpose of the present series of papers is to study 
various realizations of the dynamical group of microscopic 
collective states in the scalar case. The analysis is carried out 
in a d-dimensional space. The physical relevant case of 
course corresponds to d = 3, but it is also useful to consider 
simplified models for which d = 1 or 2. 

·1 Maitre de recherches F.N.R.S. 

In the first paper7 (henceforth referred to as I), we did 
show that in d dimensions the dynamical group of micro
scopic collective states is the restriction yo ftc (2d,R ) to the 
collective subspace of a real symplectic group in 2d dimen
sions yo ft(2d,R ). We then introduced two new realizations of 
yo ftc(2d,R ), that we studied in detail only in the one-dimen
sional case. The first one corresponds to a representation of 
collective states in the O(n) invariant subspace of a Barg
mann Hilbert space: this is the Barut-Girardello (BG) repre
sentation (improperly called Barut representation in Paper 
I), wherein the collective states are represented by analytic 
functions in v = d (d + 1)/2 complex variables W ij = Wji , 

i,j = l, ... ,d. It was shown in Paper I that in one dimension, 
the BG representation can be formulated in terms of a class 
of coherent states (CS), introduced by Barut and Girardell09 

for the Sp(2,R ) group. The second realization of yo ftc (2d,R ) 
proposed in I is the so-called generalized Holstein-Prima
koff (HP) representation,1O wherein the yo ftc (2d,R ) genera
tors are expressed in terms of v boson creation operators and 
the corresponding annihilation operators. 

Boson representations of yo ftc (2d,R ) for d> I were 
studied in the second paper of the present series (henceforth, 
referred to as 11).8 We did show there that the BG representa
tion is equivalent to a generalized Dyson representation II of 
yo ftc (2d,R ), and we explicitly obtained the HP representa
tion in d dimensions. 

In the present paper, we would like to complete our 
analysis as outlined in I by generalizing the Barut-Girar
dello coherent states (BGCS) to d dimensions where d> I, 
and by showing that they lead to BG representation in a 
straightforward way. For such purpose, it is convenient to 
use a different approach from that adopted in I for the one
dimensional case. Our present starting point is the Perelo
mov coherent state (PCS) representationl2 of yo ftc(2d,R ) as 
considered by Kramer,6 whose main properties are reviewed 
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in Sec. 2. In Sec. 3, the BGCS of yo fie (2d,R ) are defined, 
their representation in the PCS basis obtained, and some of 
their properties listed. In Sec. 4, the overlap of two BGCS is 
calculated to derive explicit expressions ofBGCS. A conven
ient procedure to determine the measure for BGCS is de
scribed and applied to the two-dimensional case in Sec. 5. In 
Sec. 6, a third class of CS leading to HP representation is 
introduced. Finally, Sec. 7 contains some concluding re
marks. 

2. PERELOMOV COHERENT STATE REPRESENTATION 

In Paper I, it was shown that under the assumption that 
the collective states are scalar under 0 (n), they belong to a 
single IR «(n/2)d) of an yo fi(2d,R ) group, whose generators 
are defined by 

n 

9ij = 9]; = I 1]is 1]js' 1 <J<J<d , (2.Ia) 
s= 1 

n 

9ij = 9 ji = I SisSjS, I <i<J<d , (2.Ib) 
s= 1 

and 

n 
~ ij = Cd'ij + 2" Oij , 

n 

Cd'ij = L 1]isSjS' i,j = I, ... ,d . 
s= 1 

(2.Ic) 
Here 1]is and 5is, i = 1, ... , d, s = 1, ... , n, respectively, denote 
the boson creation and annihilation operators associated 
with the relative Jacobi coordinates Xis' i = 1, ... , d, s = 1, ... , 
n = A-I. The dynamical group of collective states is then 
the restriction yo fie (2d,R ) of Y fi(2d,R ) to this single IR. 

According to Perelomov, 12 generalized CS of 
Y fie (2d,R ) based on the lowest weight state of the IR 
(nI2)d), i.e., the boson vacuum state 10), can be defined by 
the following relation 

lu) = exp(! tr u* 9 t )IO) , (2.2) 

where 9 t is the d Xd matrix of the 9ij generators intro
duced in Sec. 2 of Paper II, u is some d X d symmetrical 
complex matrix, and u* 9 t denotes usual matrix multiplica
tion. Since these states were already considered in Ref. 6, we 
shall merely list their main properties. 

One leading property of PCS is that they form an over
complete, nonorthogonal family of states. The overlap of 
two PCS, characterized by some parameters u and u', respec
tively, is given by 

(u'Iu) = [det(I - u'u*)] -n/2, (2.3) 

where I denotes the d X d unit matrix. The completeness of 
the set is expressed by the unity resolution relation within the 
representation space of «(n/2)d), 

f dO{u)Iu)(ui =Ie· (2.4) 

Here the measure dO{u) is given by 

dO{u) = f(u,u*)du du* , 

where 

f(u,u*) = A (det(I _ UU*W/2 - d - 1 , 

1639 

du du* = II d Re uij dIm uij , 
i<j 
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(2.5) 

(2.6) 

(2.7) 

and the parameter space is the origin-centered unit ball. In 
Eq. (2.6), A is a normalization constant, determined by the 
condition 

J dO{u) = 1. (2.8) 

Consequently to the unity resolution relation, we may use 
PCS as a (continuous) basis of the collective subspace. 

In Eqs. (8.6) and (8.10) of Paper I, we defined, up to 
some normalization constant, discrete basis states of the col-
lective subspace I¢JN N N ), where Nii = 0,1, ... , for 

11 12··· dd 'J 

1 <i<J<d, hereafter quoted as IN) for short, with N repre-
senting the whole set of quantum numbers NII,N12, ... ,Ndd' It 
will prove convenient to choose their normalization in such a 
way that 

IA.N N .N
dd

) = IN) 'f' 11 12' 

= II (Nij!)-1/2[(I + Oij)- 1/29ij tvlO). (2.9) 
i<j 

In the following, we shall call them oscillator basis states. As 
is well known, they do not form an orthogonal set. With the 
normalization chosen in Eq. (2.9), they are neither normal
ized to unity. 

The usefulness of PCS for practical purposes mainly 
stems from the fact that they are generating functions for the 
oscillator basis states. By expanding the exponential in Eq. 
(2.2), we indeed obtain 

lu) = IFN(u*)IN), (2.10) 
N 

where the summation over NII,NI2, ... ,Ndd runs over all non
negative integers, and 

i<j 

Since PCS form a basis of the collective subspace, they 
can be used to get a representation of the collective states and 
of their dynamical group, where any collective state I"') is 
represented by an analytic function 

A 

¢(u) = (uI"') (2.12) 

in the v complex variables uij = uji' 1 <i<J<d. In particular, 
the oscillator basis states are represented by the functions 

... 
¢N(U) = (ulN) = IFN,(U)MN',N' (2.13) 

N' 

where 

MN',N = (N'IN) (2.14) 

is an element of the oscillator basis overlap matrix M. The 
presence of the latter in Eq. (2.13) makes Perelomov repre
sentation of collective states quite complica!ed. We shall not 

therefore derive an explicit expression for ¢N (u). 
The Perelomov representation of any operator X is a 

differential operator Xc with respect to the uij variables, de
fined by the following relation: 

(2.15) 

where I"') is any collective state. For instance, it is shown in 
Appendix A that the Perelomov representation of the 
yo fie (2d,R ) generators is given by 
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A A ~ 

gct = ['G'C+(n-d-l)I]u=u['G'C+ nI] , (2. 16a) 

gc =.du , (2.16b) 

A A n A 

iffc = 'G'c + 2 I, 'G'c = u.du , (2.16c) 

where we use the matrix notation introduced in Sec. 2 of 
Paper II, and.d U is defined by 

'J 

a 
.d =(1 +(} .. )-. (2.17) 

U'J lJ a Uij 

It is important to note that the operators (2.16) are first-order 
differential operators and therefore provide us with a quite 
convenient realization of the Y,hc (2d,R ) generators. 

3. BARUT -GIRARDELLO COHERENT STATE 
REPRESENTATION 

An alternative definition of generalized coherent states, 
only valid for noncom pact groups, was proposed by Barut 
and Girardell09 for SO(2, 1) and its locally isomorphic 
groups SU(l,l), SL(2,R), and Sp(2,R), and used in I in con
nection with the BG representation of collective states in one 
dimension. The present section purpose is to extend to d 
dimensions the definition of such coherent states and to 
study some of their properties. 

According to Ref. 9, and Eq. (6.6) in Paper I, the BG 
coherent states of Y,hc(2,R ) are the eigenstates of the opera
tor gil = g belonging to the collective subspace. To any 
complex number w, there corresponds (up to some normali
zation factor) one and only one BG coherent state Iw) whose 
eigenvalue is w*, 

glw) = w*lw). (3.1) 

It is therefore opportune to question whether in d dimen
sions it is possible to find common eigenstates Iw) of the set of 
commuting operators g ij' 1 <J<J<d, corresponding to some 
complex eigenvalues wt( = wj\'), 

g ijlw) = wtlw). (3.2) 

Here w denotes, as usual, the symmetrical complex d X d 
matrix whose elements are wij' 

To answer this question, let us calculate the scalar pro
duct of both sides ofEq. (3.2) with a PCS lu), 

(ulg ij Iw) = wt(ulw). (3.3) 

From Eqs. (2.15) and (2.16b), we obtain the following result: 

.:lUI{ (ulw) = wt(ulw). (3.4) 

When i andj run from 1 tod, Eq. (3.4) gives risetoa system of 
v independent first-order partial differential equations for 
(ulw), whose solution is given by 

(ulw) = G (w*)exp(~ tr uw*) , (3.5) 

where G (w*) is an arbitrary function of w*. Let us fix the 
normalization of Iw) in such a way that 

(Olw) = 1 . (3.6) 

Since the PCS 10), whose parameters are all equal to zero, 
reduces to the vacuum state 10), Eq. (3.6) imposes that 

G(w*) = 1, (3.7) 

so that Eq. (3.5) becomes 
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(ulw) = exp(~ tr uw*) . (3.8) 

We have therefore proved that for any complex values 
of the set of parameters wij = wj ;, the system of equations 
(3.2) has [up to some normalization factor we choose in ac
cordance with Eq. (3.6)] one and only one solution to be 
written as 

Iw) = J du(u)exp(~ tr uw*)lu) (3.9) 

in the PCS basis. The collection of states Iw) will be called the 
BGCS of YA(2d,R). Note the slight change of our nota
tions with respect to I as a round bracket is now used instead 
of an angular one for the BGCS to distinguish them from the 
PCS corresponding to the same set of parameters. 

Let us now review some properties of the BGCS in d 
dimensions. In I, we established [cf. Eq. (8.19) in Paper I] 
that in the BG representation the oscillator basis states (2.9) 
are represented by the analytic functions 

in the complex collective variables 

" w'j == L ZisZjs , (3.11) 
5=1 

defined in terms of the Bargmann representation Zis of the 
boson creation operators 'T};s' On the other hand, if we take 
the scalar product of the oscillator basis states (2.9) with 
BGCS and use the definition (3.2) of the latter, as well as the 
Hermiticity property (g ij)t = gij, we obtain for (wiN) the 
same expression as the right-hand side ofEq. (3.10). We 
therefore conclude that the BG representation of the oscilla
tor basis states may be regarded as their scalar product with 
the BGCS, 

~N(W) = (wiN) . (3.12) 

Hence, the BG representation of any collective state is given 
by 

¢(w) = (wit/') . (3.13) 

We have simultaneously proved that the set of complex pa
rameters w, used in Eq. (3.2), has a well-defined meaning in 
Bargmann space, as shown in Eq. (3.11). Note incidentally 
that the above considerations justify a posteriori the notation 
(wit/') somewhat loosely used in II to denote the BG repre
sentation ¢(w) of It/') [see, e.g., Eqs. (2.4) and (2.5) in Paper 
II]. 

By using the definition of BG representation given in I, 
it is now trivial to show that the BGCS give rise to a unity 
resolution relation in the collective subspace and therefore 
form a continuous basis of the latter. Since the BG space.7 c 

is the O(n) invariant subspace of Bargmann space.7, the 
scalar product of two oscillator basis states IN) and IN') can 
be calculated by taking the scalar product in Bargmann 
space of their BG representations ~N (w) and ~N' (w), 

Here dll(Z;s) is the usual Bargmann measure l3 

dll(Z;s) = 1T-
I exp( - z;sz~)d Re Z;s dIm Z;s . 

J, Deenen and C. Quesne 

(3.15) 

1640 



                                                                                                                                    

By integrating over the dn - v noncollective variables, 
which together with the v collective variables wij form a set 
equivalent to the dn complex variables Zis' we can, in princi
ple, express (N' IN) as an integral over the wij variables only, 

(3.16) 

with some measure 

do-(w) = f(w,w*)dw dw*, 

dwdw* = IT dRewij dIm wij' 
i<J 

(3.17) 

directly deriving from Bargmann one. Since Eq. (3.16) is val
id for any Nand N', we obtain from Eq. (3.12) the sought for 
unity resolution relation 

J do-(w)lw)(wl = Ie , (3.18) 

where the integration is carried out over the whole complex 
plane for each variable wij' Eq. (3.18) implies that for any two 
collective states 11,6 ) and Itf) 

(1,6 Itf) = J do-(w)(¢ Iw)(wltf) = J do-(w)[~ (w))*¢(w). 

(3.19) 

As it was already noted in I for d = I, the above-mentioned 
procedure to determine the weight functionf(w, w*) would be 
quite inconvenient in practice. In Sec. 5, we shall present an 
alternative method and apply it to the two-dimensional case. 

Since the BG representation considered in I and II actu
ally coincides with BGCS representation, we may apply to 
the latter all the results previously derived for the former. 
Let us denote by XC the BGCS representation of an operator 
X, so that 

(3.20) 

for any collective state I tf). From Eq. (2.11) in II, the repre
sentation of the Y,hc (2d,R ) generators is given by 

fPct = w, (3.2Ia) 

fPC =.:1 .. ['G'c + (n - d - 1)1] = [0'c + nl].:1,. , 

(3.2Ib) 

ffC = 'G'c + (nI2)I , 'G'c = w.:1,. , (3.2Ic) 

where .:1 W is defined by 
'1 

.:1 Wij = (I + Oij)aa . 
wij 

(3.22) 

When comparing Eq. (3.21) with the PCS representa
tion given in Eq. (2.16), we note some striking similarities. In 
a way we may consider that one goes from the former to the 
latter by replacing wand.:1 .. by.:1u and u, respectively, and 
by interchanging fPt with fP. However, these similarities 
are misleading. As a matter of fact, there is one essential 
difference between both representations of Y,hc (2d,R ), 
which turns out to have far-reaching consequences for the 
determination of the measure: namely the Y,hc (2d,R ) gen
erators are represented in BGCS representation by second
order differential operators instead offirst-order ones in PCS 
representation. 
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An important leftover question is the determination of 
the BGCS explicit form in terms of the fPt generators, i.e., 
the analog ofEq. (2.2) for the PCS. Since this is a rather hard 
problem, we postpone its solution to the next section. 

We conclude the present section by studying the prop
erties of BGCS as generating functions. As noted in the pre
vious section, the oscillator basis (2.9) is not orthogonal; 
hence we may consider its dual basis whose elements (for 
which we use a round bracket instead of an angular one) are 
defined by the following relation: 

IN) = I IN')(M-1)N',N , (3.23) 
N' 

in terms of the inverse M - 1 of the oscillator basis overlap 
matrix M. At this point, it is worth noting that since 

(3,24) 

the infinite-dimensional matrix M is block diagonal, and the 
submatrices on the diagonal are finite-dimensional; its in
verse M- 1 is therefore well defined. The oscillator basis and 
its dual one form a biorthogonal system, i.e., 

(N'IN) = ON'.N , (3,25) 

and give rise to the following unity resolution relation: 

I IN)(NI = Ie . (3.26) 
N 

As a consequence, the BGCS can be written as 

Iw) = I IN)(Nlw) . (3.27) 
N 

By using Eqs. (3.10) and (3.12), the latter expression becomes 

[w) = IFN(W*)[N), (3.28) 
N 

whereFN (w*) is defined by an equation similar to Eq. (2.11). 
We therefore conclude that the BGCS are generating func
tions for the dual basis states, with the same expansion coef
ficients as those appearing in the expansion (2.10) of the PCS 
in terms of the oscillator basis states. 

4. EXPLICIT FORM OF BARUT -GIRARDELLO 
COHERENT STATES 

In the present section, we wish to determine the func
tion K in the fPij generators giving rise to a BGCS [w) when 
applied to the vacuum state. Since this function also depends 
upon the eigenvalues wt of fP ij parametrizing the BGCS, we 
may write 

Iw) = K(fPt,w*)IO) . (4.1) 

To start with, we note that the overlap or reproducing 
kernel of two BGCS is given by the following relation: 

(w'lw) = (w'IK (fPt,w*)IO) = K (fPct,w*)(w'IO), (4.2) 

which becomes 

(w'lw) =K(w',w*), (4.3) 

when using Eqs. (3.6) and (3.2la). From Eqs. (4.1) and (4.3), it 
is then clear that the determination of the BGCS explicit 
form and the calculation of their overlap are equivalent 
problems. The latter is however easier to solve since it only 
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requires the determination of an ordinary function K (w', w*) 
instead of an operator function K (£Ct,w*) as it is the case for 
the former. 

The function K (w',w*J construction is based upon the 
Hermiticity properties of the .Y /t(2d,R ) generators 

~ij = ~J, 

£C ij = (£Cij)t , 

which imply that 

(w'l~ ijlw) = (Wl~jilw')*, 

and 

(4.4a) 

(4.4b) 

(4.5a) 

(4.5b) 

By using Eqs. (3.20) and (3.21), Eqs. (4.5a) and (4.5b), respec
tively, become 

(w'..1 w' )ijK (w',w*) = (w*..1 w.)jiK (w',w*), (4.6a) 

{..1 w ' [w'..1 w ' + (n - d - 1)1]}yK(w',w*) = wtK(w',w*), 

(4.6b) 

and represent two systems of d 2 first-order and d (d + 1 )/2 
second-order partial differential equations to be satisfied by 
K (w', w*). We shall proceed to show that among the solutions 
of Eq. (4.6), there is one and only one function, analytic in 
both w' and w*, and normalized in accordance with Eq. (3.6), 
i.e., satisfying the conditions 

K(O,w*) =K(w',O) = 1. (4.7) 

This unique function will therefore be the function K (w', w*) 
we are looking for. 

Starting with Eq. (4.6a), we shall proceed to prove that 
its general solution is an arbitrary function in the d indepen
dent invariants of the d X d matrix 

W=w'w* . (4.8) 

The demonstration of this property is sketched below, addi
tional details being given in Appendix B. It is essentially 
based upon two changes of variables. Owing to the symme
try of w' and w*, K is a function in d (d + 1) independent 
variables that we can take as wij and wt, i <J. We first replace 
the latter by the d 2 variables Wij' i,j = 1, ... , d, and the d 
variables 

Xi = W;i + wt, i = 1, ... ,d. (4.9) 

In the new variables, Eq. (4.6a) can be written as 

[~( Wik a~k - Wkj a~ki) 
+ 2w' ~ - 2w~ ~]K (W,X) = 0 , (4.10) 

lj ax. lj ax. 
J J 

where wij and wt are some functions ofW and X which could 
in principle be obtained by inverting Eqs. (4.8) and (4.9). 

By linearly combining thed 2 equations (4.10), it is possi
ble to get d very simple equations. Let us indeed multiply Eq. 
(4.10) by (wm)ji' where wm denotes the mth power ofthe W 
matrix for some fixed m value belonging to the set 
0, 1, ... ,d - 1, and let us sum the result over i andj. In this 
way, we obtain the following d equations: 
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I [(WmW')ii - (w*wm);; ]~K(W,X) = 0, 
i aXi 

m=O,I, ... ,d-l, 

whose solution is given by 

~K(W,X)=O, i= 1, ... ,d. ax; 

(4.11) 

(4.12) 

Hence, K only depends upon the W matrix. Eq. (4.10) now 
reduces to 

I(Wik-a_-Wkj_a_)K(W)=O, (4.l3) 
k a~k aWki 

where we only have d (d - 1) independent equations when i 
andj run from 1 to d. Let us therefore, restrict ourselves to 
the d (d - 1) equations for which i#j. 

We then replace the d 2 variables W ij by some new varia
bles Tij, defined by 

T;; = tr Wi , (4.14a) 

Tij = Wij, i=f.j. (4. 14b) 

In the variables Tij' Eq. (4.l3) can be rewritten in the follow
ing form 

[ I (Wik ~- Wkj~) 
k #iJ a~k aTki 

+ (Wu - Wii ) a~ ]K(T) = 0, i#j, (4.15) 
jl 

which can be shown to be equivalent to 

~K(T)=O, i#j. 
aTij 

(4.16) 

In conclusion, the general solution of Eq. (4.6a) is an arbi
trary function in TIl"'" Tdd , which are a set of d independent 
invariants of the W matrix. We shall henceforth denote the 
latter by ti,i = 1, ... ,d. 

Let us now turn to the solution ofEq. (4.6b), which can 
be rewritten as 

[w'..1 w' [w'..1 w ' + (n - d - 1)1] JijK(tl, ... ,td ) 

= WijK(tl, ... ,td ), (4.17) 

where W now appears on the right-hand side instead ofw*. 
In the solution ofEq. (4.17), it is advantageous to choose for 
the invariants of W the traces of the compound matrices 
W(J),14 

t; = tr Wlil. i = 1, ... ,d, (4.18) 

instead of the traces of the powers Wi, as it was done in Eq. 
(4.14a). In the following, we shall use the fact thattl, ... ,td , as 
defined in Eq. (4.18), are the coefficients of the characteristic 
polynomialofW, 

d 

det(W - A I) = 2: td _ k ( - A )k , (4.19) 
k=O 

where we set to = 1. For d = 1,2, and 3, they are given by 

and 

tl =trW= W, 

t I = tr W, t2 = det W , 

t I = tr W, t2 = tr W(2) = HI tr W)2 - tr W2] , 

(4.20a) 

(4.20b) 

t3 = det W , (4.20c) 
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respectively. 
We are interested in those solutions K(tl, ... ,td ) ofEq. 

(4.17) which are analytic in all the variables wi; and wt. Since 
the matrix elements Wij are linear functions in each one of 
the wi;'s and wt's, and the same is true for the invariants ti 
with respect to each one of the Wij's, it is clear that the func
tionsK (tl, ... ,td ) must also be analytic in tl,. .. ,td • Let us there
fore expand K in powers of the latter as follows: 

K (t I,···,td ) = L am,m, ... md [iI t ~;] . (4.21) 
mlmZ ... md I-I 

It remains to determine the constants am,m, ... md so that Eqs. 
(4.7) and (4.17) are satisfied. The former simply imposes that 

a oo ... o = 1 . (4.22) 

Let us now introduce Eq. (4.21) into Eq. (4.17). To write 
the detailed expression of the latter, we have to know the 
action of the operators (w'Li"')ij and (w'Li ... w'Li"')ij upon the 
invariants t;. Straightforward differentiations lead to the fol
lowing relations: 

and 

(w'Li"')ij tr W = 2Wij , 

(w'Li"")ij tr WZ) = 2 [ Wij tr W - (WZ)ij] , (4.23) 

(w'Li"')ij det W = 2bij det W , 

(w'Li,...w'Li"")ij trW=2(d+ l)Wij' 

(w'Li ... w'Li,... J,.] tr W(Z) = 2d [ W,-] tr W - (WZ)ij ] , (4.24) 

(w'Li,... w'Li"')ij det W = 4bij det W . 

In the one-dimensional case, Eq. (4.17) becomes 

L 2m(2m + n - 2)amt';" = L amt';"+ I. (4.25) 
m m 

By equating equal powers of tl on both sides, we obtain a 
recursion relation for am' whose solution, normalized ac
cording to Eq. (4.22), is given by 

am = [22mm!(n/2)m] -I, (4.26) 

where (n/2)m = n/2(n/2 + 1) ... (n/2 + m - 1) is Pochham
mer's symbol. Hence the reproducing kernel is equal to the 
following expression: 

K(W) = L [22mm!(n/2)m ]-lwm=oFI(~; ~, 
m 2 4) 

(4.27) 

which coincides with Eq. (5.19b) in I. 
In the two-dimensional case, Eq. (4.17) is transformed 

into the following relation: 

+ 2ml(4m2 + n)W,-/~l-1 
+ 4m l(m l _1)(W2)ijt~,-2]t;" 

(4.28) 

In this equation, WZ can be reexpressed in terms of! and W. 
Any matrix satisfying its characteristic equation, we indeed 
obtain from Eq. (4.19) that for d = 2 
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(4.29) 

After this transformation, Eq. (4.28) becomes a relation 
between the independent matrices I and W. Their coeffi
cients must therefore be set equal to zero. In this way, we 
obtain the two following recursion relations for am,m,: 

m 2(2m 2 + n - 3)am,m, = 2(ml + 2)(ml + l)am, + 2.m, _ 1 , 

(4.30a) 

(4.30b) 

The solution of Eq. (4.30b) is given by 

amtm, = [im
'm l!(n/2 + 2m2)m,] -laOm2 ' (4.31) 

where aOm2 has to be determined from Eq. (4.30a). By setting 
m l = 0 in the latter, we obtain the following recursion rela
tion for aOm, : 

2m2(2m 2 + n - 3)(4m2 + n - 2)(4mz + n - 4)aom2 

= ao.m , _ 1 , (4.32) 

whose solution satisfying Eq. (4.22) is given by 

aOm, = [24m2m2!([n - 1]12)m,(nI2lzm,] -I. (4.33) 

For the reproducing kernel, we finally obtain 

K (tr W,det W) 

= '" {22m,+4m, , ,([n-l]) (/2) }-I L ml·mz· n m, + 2m, 
m 1m2 2 m2 

X (tr Wr'(det Wr2 
, (4.34a) 

or equivalently 

K (tr W,det W) 

X oFt(; + 2m; ~ tr w)( -k det W r (4.34b) 

In the three-dimensional case, a similar procedure, de
tailed in Appendix C, leads to the following relation: 

K (tr W,tr W(2),det W) 

X ([n - 2]12)m,([n - 1 ]l2)m, + 2m, 

X (n/2)m, + 2m, + 3m, J -I(tr wt' 
X (tr W(2)t'(det wt' . (4.35) 

From the reproducing kernels (4.27), (4.34), and (4.35), 
it is now trivial to obtain the explicit expression of BGCS in 
one, two, and three dimensions. For such purpose, we only 
have to make the following replacement: 

W = w'w* __ iPtw* , 

which implies the substitution 

W(i) __ (9J tW*)(i) = (9J t )(/l(w*)(i) , 

(4.36) 

(4.37) 

where in the last step we used Binet-Cauchy theorem on the 
product of compound matrices. 14 

J. Deenen and C. Quesne 1643 



                                                                                                                                    

5. UNITY RESOLUTION FOR THE BARUT -GIRARDELLO 
COHERENT STATES 

In Sec. 3, we proved the (over) completeness ofBGCS 
by showing that they give rise in the collective subspace to a 
unity resolution relation, expressed in Eq. (3.18). In this sec
tion, we shall propose a procedure to determine the weight 
functionf(w,w*). We shall prove thatf(w,w*) is a solution ofa 
system of partial differential equations, that we shall write in 
full generality for any d value, and we shall then illustrate its 
solution by explicitly treating the two-dimensional case. 

As it was done for the one-dimensional case in Sec. 4 of 
I, we start with the Hermiticity properties of the -Y/>(2d,R ) 
generators, given in Eq. (4.4). By introducing the unity reso
lution relation (3.18) into Eq. (4.4), and by successively tak
ing Eqs. (3.20) and (3.21) into account, Eqs. (4.4a) and (4.4b) 
are transformed into 

f dw dw* f(w,w*)lw)~ij(wl 

= f dw dw* f(w,w*)[ ~;;(wl P(wl , (5.1a) 

f dw dw* f(w,w*)lw).@ij(wl 

= f dw dw* f(w,w*) [.@ijt(wl P(wl , (5.1 b) 

or 

f dw dw* f(w,w*)lw)(w.:i")ij(wl 

= f dw dw* f(w,w*)(w*.:iw")ji Iw)(wl , (5.2a) 

f dw dw* f(w,w*)lw)!.:i .. [w.:i .. + (n - d - 1)1] Lj(wl 

= f dwdw* f(w,w*)wijlw)(wl· (5.2b) 

We next transfer the differential operators from Iw) or 
(wi to the weight functionf(w,w*) by integrating by parts, 
once on both sides ofEq. (5.2a), and twice on the left-hand 
side ofEq. (5.2b). This can be done because Iw) and (wi only 
depend upon wij or wij , respectively, and the latter are inde
pendent variables. We obtain the following system of partial 
differential equations for f(w, w*): 

(w.:iw)ijf(w,w*) = (w*.:iw")jJ(w,w*), (5.3a) 

[.:i w [w.:iw - (n - d - 1)1] )ijf(w,w*) = wijf(w,w*). 

(5.3b) 

At this point, it is important to note the formal analogy exist
ing between these equations and Eqs. (4.6a) and (4.6b) satis
fied by the reproducing kernel K (w',w*) ofBGCS ifin the 
latter we set w' = w. As amatteroffact, Eq. (5.3a) is identical 
with Eq. (4.6a), whereas Eqs. (5.3b) and (4.6b) only differ by a 
sign change inside the square brackets. 

The results of Sec. 4 show that the general solution of 
Eq. (5.3a) is an arbitrary function in the invariants 
ti = tr W(i), i = 1, ... ,d, of the matrix W = ww*. We are then 
left to solve Eq. (5.3b), which can be rewritten as 
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[w.:i w [w.:iw - (n - d - 1)1] )ijf(t" ... ,tcl ) = Wijf(t" ... ,tcl ). 

(5.4) 

It differs from the solution ofEq. (4.17) not only in the above
mentioned sign change, but also in the additional restrictions 
onf(t " ... ,tcl ) necessary to make it an acceptable weight func
tion:fmust be real, positive (except at the boundaries where 
it may go to zero), and integrable. Moreover, by taking the 
expectation value of both sides of the unity resolution rela
tion with respect to the vacuum state, we find from Eq. (3.6) 
that the weight function must also satisfy the normalization 
condition 

(5.5) 

In the one-dimensional case,fis a function in the single 
real variable t, = W = Iw1 2

, whose range is given by 
0<£,< + 00. Since 

d 
w.:iwf(t,) = 2t, -f(tt!, 

dt, 
Eq. (5.4) becomes 

[ d2 d] 4t'--2 -2(n-4)--1 f(t,)=O. 
dt, dt, 

(5.6) 

(5.7) 

It was shown in I [cf. Eq. (4.17) in I] that the solution of this 
equation, which goes to zero when t,-+oo, is given by 

(5.8) 

where K is a modified Bessel function, and A is some norma
lization constant determined by Eq. (5.5). 

Let us now turn to the two-dimensional case. The 
weight function is then a function in the two real variables 

t, = tr W = I 1 Wij 12 , 
ii 

and (5.9) 

t 2 = det W = 1 det w 12 . 

Let us first determine the domain of this function. Since W is 
a Hermitian, positive definite matrix, its eigenvalues ,.1",.12 
are real and lie in the range 

(5.10) 

In terms of these two independent variables, t, and t2 can be 
expressed as 

t,=A,+A 2 , t2 =A,A 2 • (5.11) 

We now question what is the domain of variation oft, and t2 
when A , andA2 are real and satisfy Eq. (5.10). To answer this, 
let us consider the characteristic equation 

,.12 - t,A + t2 = 0 , (5.12) 

whose solutions are A, and ,.12' The reality condition for the 
latter can be written as 

ti - 4t2>0. (5.13) 

When it is fulfilled, A / and ,.12 are given by 

Au = Ht, ± (ti - 4tzl'/2] . (5.14) 

It is clear from Eqs. (5.11) and (5.14) that t / and t2 are non
negative whenever A, and A2 are so, and vice versa. The do
main of variation of t / and t 2 is therefore given by 
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(5.15) 

Let us now rewrite Eq. (5.4) for d = 2 in terms of the 
variables tl and t2. For such purpose, we start with the rela
tion 

(w.<l")ij/(t l,t2) = 2(~j ~ + Dijt2 ~)/(tl>t2)' (5.16) 
atl at2 

which directly follows from Eq. (4.23). By repeated applica
tions ofEq. (5.16) and by taking Eqs. (4.23) and (4.24) into 
account, it is straightforward to transform Eq. (5.4) into the 
following equation: 

[ 2Dij(2t~ a22 - (n - 5)t2~) 
at 2 at2 

+2Wij(4t2~-(n -6)~) 
atlat2 atl 

+ 4(W2)ij -- /(t l,t2) = Wij/(tl>t2) ' a
2 

] 

ati 
(5.17) 

where W 2 can be reexpressed in terms of I and W through 
Eq. (4.29). Equation (5.17) is then converted into a relation 
between the independent matrices I and W. By equating 
their coefficients to zero, we obtain the following system of 
two partial differential equations for/(t l ,t2): 

(5.18a) 

4t l --+ 8t2-- - 2(n - 6)-- 1 /(t l,t2) = o. [ 
a2 a

2 
a] 

at i atlat2 atl 

(5.18b) 

Equation (5 .18a) being separable with respect to t I and 
t2 is easy to solve. It is shown in Appendix D that it has a 
solution integrable in the domain (5.15), given by 

/(t l,t2)= LX> dAX(A) 

Xexp( - !Atl)(A Ji;)ln - 3)12Kln _ 31/2 (A Ji;), (5.19) 

where X (A ) is a function in A, only subject to the condition 
that the integral in Eq. (5.19) does exist. This function X is 
now determined by imposing that/(t l ,t2 ) is also a solution of 
Eq. (5.18b). For such purpose, it is convenient to use the 
following relation: 

4tl --+ 8t2---2(n -6)--1 [ 
a2 a

2 
a] 

ati atlat2 atl 

x exp( - + Atl}A Ji;)(n - 3)12K(n _ 3)12 (A Ji;) 

= [ - U 2 ~ + (n - 6)). - 1 ] 

xexp( - ~ Atl}AJi;)ln-3112Kln_3)12(AJi;) , (5.20) 

proved in Appendix D. By integrating by parts and assuming 
that 

X (0) = X ( + (0) = 0 , (5.21) 

Eq. (5.18b) can be converted into a differential equation for 
X(A), 
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(5.22) 

Its solution is given by 

X(A)=AA -In-2112 exp [ _(U)-I], (5.23) 

where A is a normalization constant, and it satisfies Eq. 
(5.21) as it should be. We have therefore proved that the 
system of partial differential equations (5.18) has a solution 
satisfying the appropriate asymptotic conditions and that 
this solution admits the following integral representation: 

/(ll,t2) = A 100 

dA A - (n - 2)/2 

xexp [ - ~ (A -I + Atd](AJi;)ln-3)12 

XK(n _ 3)12 (A Ji;) , (5.24) 

where A is determined by Eq. (5.5). 
It now remains to perform the integration in Eq. (5.24) 

to get an explicit expression for/(tl,l2). This can be done by 
using the following expansion: 

Kin _ 3)12 (A Ji;) = 17"1/2(U Ji;)-1/2 exp( - A Ji;) 

X f r [In - 2) + k] 
k=O 2 

X {klr [In ~ 2) _ k ]} -1(UJi;)-k, 

(5.25) 

which is a consequence of Eqs. 8.451.6 and 8.468 of Ref. 15. 
For even n values, the right-hand side ofEq. (5.25) contains a 
finite sum, m being given by 

m = (n - 4)12, (5.26) 

whereas for odd n values, it contains an asymptotic expan

sion valid for large values of the argument A Ji;. When Eq. 
(5.25) is introduced into Eq. (5.24), the latter becomes 

/(ll,t2) = A (217")1/2t in - 4)14 ktO r [(n ~ 2) + k ] 

X [(t l + 2Ji;)(4t2)-I] kl2Kd [tl + 2Ji;)112) , 

(5.27) 
by successively applying Eq. 3.471.9 of Ref. 15, 

100 

x v- I 
exp( - ~ - yx )dX = 2(~r/2Kv(2$Y), 

Rep> 0, Re Y> 0, (5.28) 

with v = - k,p =~, and y = !tl + Ji;, and Eq. 8.486.16 of 
the same reference, 

(5.29) 

We have therefore obtained a representation of the 
weight function in the form of a finite sum for even n values, 
and of an asymptotic expansion valid for large values oft2 for 
odd n values. In the latter case, it is also possible to get a 
representation valid for small values of t2• From Eq. (5.24), 
we note for instance that for t2 = 0,/(tl,t2) reduces to 
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l(tl,O) = A 2(n - 5j12r [(n ~ 3)] LX> dAA - (n - 2)12 

X exp [ - +(A -I + At l )] • (5.30) 

By using Eqs. (5.28) and (5.29) with v = - (n - 4)/2, /3 = !, 
and r = t l /2, Eq. (5.30) is transformed into the following 
expansion: 

l(tl,O) =A 2(n- 3j12r [In - 3)/2jt\n-4j/4Kln_4112(Ft) , 
(5.31) 

valid for any n value. The same procedure would enable us to 
obtain an approximate form of the weight function valid for 
small values of t2 by keeping the first few terms in the expan

sion of Kin _ 31/2 (A Ji;) into powers of A Ji;. 

6. HOLSTEIN-PRIMAKOFF REPRESENTATION IN 
TERMS OF A THIRD CLASS OF COHERENT STATES 

In the present section, we wish to introduce a third class 
of coherent states, which can be put into one-to-one corre
spondence with the standard coherent states,16 and lead to 
HP representation. 

In Secs. 2 and 3, we considered two discrete, nonortho
gonal basis, namely the oscillator basis and its dual. Instead 
of them, we could use as well an intermediate orthogonal 
basis, obtained from the oscillator basis by the standard 
orthonormalization procedure. Its elements (for which we 
utilize a curly bracket instead of an angular one) are defined 
by 

INj = I IN')(M- 1/2)N·.N = I IN')(M I /2)N',N' (6.1) 
N' N' 

where MI/2 denotes the square root of the Hermitian, posi
tive definite matrix M, and M- 1/2 the inverse ofMl/2. The 
states INj satisfy the two following relations: 

{N'INj = ON'.N , (6.2) 

and 

I INj{NI =1c· (6.3) 
N 

By analogy with Eqs. (2.10) and (3.28), let us now intro
duce the states Iv j, depending upon some complex param
eters vij = Vji' iJ = l,oo.,d, and defined by 

Ivj = I FN(v*)INj , (6.4) 
N 

where FN (v*) is given by Eq. (2.11) with u replaced by v. As a 
direct consequence ofEqs. (6.2) and (2.11), the overlap of two 
such states, characterized by some parameters v and v', re
spectively, is given by 

{v'lvJ = I FN (v')FN (v*) 
N 

= exp{~ [(1 + Oij)-1/2Vij] [(1 + Oij)-1/2vt] } . 

(6.5) 

It therefore reduces to the reproducing kernel of a Barg
mann-Hilbert space 13 of analytic functions in the v variables 
(1 + Oij)-1/2Vij , 1 <J<j<d. In matrix notation, Eq. (6.5) can 
be rewritten as 
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{v'lvj = exp(pr v'v*). 

From Eq. (3.8), we also note that 

{v'lvJ = (v'lv). 

(6.6) 

(6.7) 

It is now trivial to show that when each of the param
eters (1 + Oij)-1/2Vij , i<j, runs over the whole complex plane, 
the set of states I v J form a continuous basis of the collective 
space. For such purpose, we shall prove that they give rise to 
the following unity resolution relation: 

f d,u(v)lvj{vl =1c, (6.8) 

where 

(6.9) 
j<J 

and d,u [ (1 + 0 ij ) - 1/2v ij ] is the standard Bargmann measure 
defined in Eq. (3.15). By taking the matrix element of both 
sides ofEq. (6.8) between the bra {N'I and the ket INJ, we 
indeed obtain the relation 

f d,u(v)FN' (V*)FN(V) = ON'.N . (6.10) 

Equation (6.10) is identically satisfied for any Nand N' since 
FN (v) is just the Bargmann representation of the boson state 

II (Nij!)-1/2(aijtij I0) = FN (at) 10) , (6.11) 
j<J 

built from v independent boson creation operators aij = aJ;, 
i,j = l,oo.,d, or the associated non-normalized operators 
aij =aJ; =(1 +Oij)1/2aij,i,j= l,oo.,d,definedinEq.(3.13)of 
II. 

We conclude that the third class of CS I v J introduced 
above defines an alternative representation of Y fic (2d,R ), 
that we shall distinguish from the remaining ones by an in
verted caret. In such a representation, the oscillator basis 
states, for instance, are represented by 

v - 1/2 ¢ltv) = {vIN) = IFN,(v)(M )N'.N· (6.12) 
N' 

We now wish to establish a link between this represen
tation and HP one. For such purpose, we note that the orth
onormal states INJ can be put into one-to-one correspon
dence with the boson states defined in Eq. (6.11). From Eqs. 
(6.4), (6.5), and (6.6), it is clear that in such a mapping, the CS 
I v J are mapped onto the standard CS 

~ FN(v*)FN(at)IO) = exp( + tr v*at
) 10) , (6.13) 

in whose representation aij and aij are, respectively, repre
sented by vij andLivij = (1 +jij)J(}vij' Heece, by replacing 
vij and ..:lvij byaij and aij in Yfl ct, Yfl c, and '!lc, we obtain a 
boson representation of Y fic(2d,R ), which is nothing else 
than HP representation, since the mapping between IN J and 
the states defined in Eq. (6.11) preserves scalar products. 

We shall not try to implement this procedure for getting 
the HP representation of Y fic (2d,R ) since the latter was 
already found in II. We shall instead take advantage of the 
results previously proved to directly write the representation 
of the YA(2d,R) generators in the basis IvJ as follows: 
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9-et=[~e+(n_d_1)1)112V, (6.14a) 

9-e =.J v [~e + (n - d - 1)1]112, (6. 14b) 

~e = ~e + (nI2)1 , ~e = v.J v • (6. 14c) 

As explained in II, the square root on the right-hand side of 
Eqs. (6.l4a) and (6.l4b) must be understood as a compact 
form for a finite expansion into powers of ~e. 

Before concluding this section, one more remark is in 
order. We can also establish a mapping between the oscilla
tor basis states IN) or the dual basis ones IN) and the boson 
states defined in Eq. (6.11). The PCS or BGCS are then 
mapped onto the standard coherent states. Hence, by substi-

A A A 

tuting aij and aij for uij and .Juij in flJ et, flJ e, and /fe, or for 
wij and .Jw jj in flJ et, flJ<, and /fe, we obtain two additional 
boson representations of .Y fie (2d,R ). Both of them are gen
eralized Dyson representations 11 since the Hermiticity prop
erties of the generators are not preserved under the corre
sponding non unitary mappings. This procedure was 
actually implemented in II for the BGCS representation. 

7. CONCLUSION 

In the present paper, we considered three different CS 
representations of the dynamical group .Y A (2d,R ) of mi
croscopic collective states, when the latter are assumed to be 
scalar under O(n). They, respectively, correspond to the PCS 
already studied in Ref. 6, to a generalization of some CS 
proposed by Barut and Girardello for Sp(2,R ), and to a third, 
new class of CS. The major merit of their joint study is that 
we now have at our disposal a unified treatment of both the 
BG and boson representations considered in I and II and of 
the work of Ref. 6. 

Various questions may be raised regarding these three 
classes of CS. First we may ask what is their respective use
fulness for practical purposes. This will of course depend 
upon the kind of application one has in mind. From the 
study carried out in the present paper, it is clear that each of 
the three classes shares one interesting property with the 
standard Glauber CS: PCS are obtained by acting with some 
group element upon a fixed vector in the vector space of an 
irreducible unitary representation, BGCS are eigenvectors 
of some lowering generators, and the third class CS lead to a 
unity resolution which makes use of Bargmann measure. 
Moreover, each one of them may also be considered as a 
generating function for some basis states: those of the oscilla
tor basis. of its dual or of an intermediate orthogonal basis. 

We may therefore answer the question in the following 
way. PCS may be useful in the calculation of some operator 
matrix elements between oscillator basis states. both owing 
to their generating function property and to the simple form 
assumed by some operators. such as the .Y fie (2d,R ) genera
tors, in PCS representation. Since the oscillator basis states 
have a simple form in the BGCS representation. the latter 
may be well suited to the construction of collective states 
satisfying some definite properties. An example of such a 
construction was actually given in II for the collective states 
classified according to the group chain .Y fie (2d,R ) ~ ~ c (d ). 
Finally, as it was mentioned in Sec. 6. the third class CS may 
provide a convenient starting point to derive the HP repre-
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sentation. 
Second, we may ask if the three classes of CS considered 

in the present paper, and applicable with slight modifica
tions to closed-shell nuclei, have a counterpart for open-shell 
nuclei, whose collective states transform under an IR 
(A l"1.:03) of O(n) for which A 1,;1.2,;1.3 are not all equal. In a 
forthcoming paper. we plan to show that such an extension 
does actually exist. 

APPENDIX A: PERELOMOV COHERENT STATE 
REPRESENTATION OF THE .Y fie (2d,R) GENERATORS 

In this appendix, we wish to prove Eq. (2.16). Starting 
with the representation of flJ ij' we successively obtain 

§ij(uI1/l) = (Olexp{pr uflJ)flJ ij 11/1) 

= .J Uij (Olexp(! tr uflJ) I 1/1) = .J Uij (uI1/l) , (AI) 

showing that Eq. (2. 16b) directly follows from the definition 
of PCS given in Eq. (2.2). 

To prove Eqs. (2.l6a) and (2.16c), we first note that for 
any operator X the following identity is satisfied 

%e(uI1/l) = (01 [exp(~ tr uflJ)X 

Xexp( -! tr uflJ)]exp(! tr uflJ) I 1/1) . (A2) 

We then apply Baker-Campbell-Hausdorff formula 

exp( Y)xexp( - Y) 
00 

=X + I (m!)-l[ Y.[ Y, .. ,[ y,x]"']]m (A3) 
m=l 

to the right-hand side of Eq. (A2) with Y = ! tr uflJ. 
For the representation of /f ij' we get in this way the 

relation 

~ij(uI1/l) = (01 [~ij + (uflJ)ij ]exp(! tr uflJ) I 1/1) , (A4) 

which leads to Eq. (2.16c) by replacing flJ by its PCS repre
sentation. and by noting that ~ ij reduces to (nI2)oij when 
acting upon the bra (01. 

Similarly, for the representation of flJij, we obtain 

§ijt(uI1/l) = (01 [flJij + (~u)ij + (~u)ji 

+ (uflJu)ij] exp(! tr uflJ) I 1/1) . (A5) 

When acting upon the bra (01, flJij gives zero, and ~ reduces 
to (n/2)1. The last term (uflJ u)ij between the brackets in Eq. 
(A5) can be replaced by 

I UjkUIj.J Uk, = I Ujk.JUk,UIj - (d + 1)uij 
kl kl 

= [~eu - (d + 1)u]ij' 

thus completing the proof of Eq. (2. 16a). 

APPENDIX B: SOLUTION OF EQUATION (4.6a) 

(A6) 

The purpose of this appendix is to point out some details 
overlooked in the solution ofEq. (4.6a), as given in Sec. 4. 

To start with, let us check that the variables Wij and Xi' 
respectively, defined in Eqs. (4.8) and (4.9), are functionally 
independent. For such purpose, we have to prove that their 
Jacobian with respect to the old variables wij, wt, i<j, is 
different from zero. Since the term of the Jacobian, whose 
degree in each of the variables WTl' W!2' .... W!d' WIl ' 
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Wi2 ,. .. ,Wd _ I.d _ I is the highest one compatible with the de
grees of the variables preceding it in the list, is equal to 

(B1) 

and is clearly different from zero, this also holds true for the 
Jacobian itself. 

We next tum to the solution ofEq. (4.11). The latter can 
be considered as a system of d linear equations in the d unk
nowns JK(W,X)lJXj! i = 1, ... ,d. In the determinant of its 
coefficients, the term of highest degree in the wij variables is 
equal to detl(Wi - IW')ji I, where i andj are the row and col
umn indices, respectively. This term is clearly different from 
zero since for the wij and wt particular values 

wij =w'oij' 

wt = wtoij , wfl :;;6W~2 :;;6···:;;6w:d , (B2) 

it is straightforward to show that 

Idet(Wi-Iw')ji 1= (W')d(d+ 1)12 II (wt - w':):;;60. (B3) 
i>j 

Therefore the determinant of the system is different from 
zero; hence its solution is given by Eq. (4.12), as stated in Sec. 
4. 

We now consider the change of variables defined in Eq. 
(4.14), and prove that its Jacobian is different from zero. The 
latter can indeed be shown to be equal to the following 
expression: 

(B4) 

which reduces to 

(B5) 

when 

(B6) 

As a final point, we prove that the solution of Eq. (4.15) 
is given by Eq. (4.16). We note that the derivatives of K (T) 
with respect to Tkk , k = 1, ... ,d, do not appear in Eq. (4.15). 
The latter therefore, represents a system of d (d - 1) linear 
equations in the d (d - 1) unknowns JK (T)! JTkl , k :;;6 I. In 
the determinant of its coefficients, the term of highest degree 
in WI 1"'" Wdd is given by IIi#j( Wii - Wji)' and is clearly 
different from zero. Hence this also holds true for the deter
minant itself, thus completing the proof of Eq. (4.16). 

APPENDIX C: REPRODUCING KERNEL OF BARUT
GIRARDELLO COHERENT STATES IN THREE 
DIMENSIONS 

The purpose of the present appendix is to prove the 
validity ofEq. (4.35) for the reproducing kernel K (t l,t2,t3)· 

By taking Eqs. (4.23) and (4.24) into account, Eq. (4.17) 
assumes the following form for d = 3: 
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+ Wij[2ml(4m3+n)t~,-lt;2 

+ 2m2(4m3 + n - l)t~' + It ;2- 1
] 

+ (W2)ij [4m l(m l _ l)t~,-2t;2 

+ 2m2(4m l - 4m3 - n + l)t~'t;2-1 
+ 4m2(m 2 - l)t~' + 2t ;2 - 2] 

(W3) [8 m, - I m2 - I + ij - m I m2t I t 2 

_ 8m2(m 2 
- l)t~' + I t ;2 -2] 

+ (W4)ij [ 4m2(m 2 - l)t ~'t;2 - 2] J t~) 

(Cl) 

In this equation, W3 and W4 can be reexpressed in terms on, 
W, and W2

• From Eq. (4.19) and the fact that any matrix 
satisfies its characteristic equation, we indeed obtain the re
lation 

W3 = It3 - Wt2 + W 2t l , 

from which it follows that 

W4 = Itlt3 + W(t3 - t lt2) + W 2(ti - t2)' 

(C2) 

(C3) 

When we introduce Eqs. (C2) and (C3) into Eq. (C1), we 
get a relation between the independent matrices I, W, and 
W2

• By equating their coefficients to zero, we obtain the fol
lowing set of three recursion relations for am, m2m) : 

m3(2m3 + n - 4)am,m2m) 

- 4(ml + l)(m2 + l)am, + l,m2 + l,m3 - I 

- 2(m2 + 1 )(m2 + 2)am, _ I,m2 + 2,m, _ I = 0 , 

2(ml + 1)(4m2 + 4m3 + n)am, + I,m2,m3 

+ 2(m2 + 1)(2m2 + 4m3 + n - 1) am, - l,m2 + I,m, 

+ 4(m2 + 1 )(m2 + 2)am"m2 + 2,m, - I = am,m2m) , 

2(ml + l)(ml + 2)am, + 2,m2,m) 

- (m2 + 1)(2m2 + 4m3 + n - 1)am"m2 + I,m) = O. 

(C4a) 

(C4b) 

(C4c) 

From Eq. (C4c), we can express am ,m
2
m) in terms of 

am, + 2m2,O,m3 as follows: 

am,m2m) = (ml + 2m2)!([n - 1]!2bm, 

X (ml!m2!([n - 1 ]!2)m2 + 2m3 J -lam, + 2m2,O,m3 . 

(C5) 

When we introduce Eq. (C5) into Eq. (C4a), the latter is 
transformed into 

m3(2m3 + n - 4)(4m3 + n - 3)(4m3 + n - 5)am, + 2m2,O,m) 

= 8(ml + 2m2 + l)(ml + 2m2 + 2)(m\ + 2m2 + 3) 

X(m l + 2m2 + 4m3 + n - 3)am, + 2m2 + 3.0,m, - I , 

(C6) 

and its solution is given by 
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= (ml + 2m2 + 3m3)!(ml + 2m2 + 3m3 + n - 3)m3 

X {(ml + 2m2)!m3!([n - 2]12)m3 

x([n -l]12bm,j-Iam,+2m2+3m3'o,o' (C7) 

We next combine Eq. (C5) with Eq. (C7) to obtain the follow
ing result: 

= (ml + 2m2 + 3m3)!(ml + 2m2 + 3m3 + n - 3)m3 

X {ml!m2!m3!([n - 2]12)m3 

X ([n - 1 ]l2)m2 + 2m3 J -lam, + 2m2 + 3m3'O.0 , (C8) 

and we introduce the latter into Eq. (C4b). We then get the 
following equation: 

2(ml + 2m2 + 3m3 + 1)(2ml + 4m2 + 6m3 + n) 

Xam, + 2m2 + 3m3 + 1.0,0 = am, + 2m2 + 3m3'O,O , (C9) 

whose solution is given by 

am, + 2m2 + 3m3,O,O 

= {22m , + 4m2 + 6m3(m I + 2m2 + 3m3)! 

X (n/2)m, + 2m2 + 3m3 J -laOOO . (ClO) 

To obtain the sought for result, Eq. (4.35), it only remains to 
combine Eq. (C8) with Eq. (ClO) and to take Eq. (4.22) into 
account. 

APPENDIX D: PROOF OF EQUATIONS (5.19) and (5.20) 

In the first part of this appendix, we shall show that the 
function defined in Eq. (5.19) is a solution ofEq. (5.18a), 
integrable in the domain (5.15). 

Let us look for a solution ofEq. (5.18a) in the product 
form 

(D1) 

The equation splits into the two following ordinary differen
tial equations: 

(2£-A \°((1)=0, (D2a) 
dt~ r 

and 

[2t2 £ - (n - 5) ~ - A ]h (t2) = 0 , 
dt~ dt2 

(D2b) 

where A is the separation constant. 
In order thatj(tl,t2) be integrable in the domain (5.15), 

g(t tl must go to zero when t 1-00. Equation (D2a) has a solu
tion satisfying this condition, 

g(tt! = exp[ - (A /2) I12ttl , (D3) 

for any positive value of A. From now on, we shall therefore 
restrict ourselves to such values. 

By setting 

(D4) 

where A and a are two yet undetermined positive constants, 
Eq. (D2b) is transformed into 
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{X2~+ (2a -n +4)x~ 
dx2 dx 

+ [ala - n + 3) - ~ x2]}H(X) = O. (D5) 

Fora = (n - 3)/2, and A = (2A )1/2, Eq. (D5) reduces to the 
differential equation 

{X2:X22+X! _[x2+(n~3r]}H(X)=0, (D6) 

whose solutions are the modified Bessel functions 
I ± (n _ 3)/2 (x)andK(n _ 3)/2 (x). In order thatj(tl,t2) goes to zero 
when tl and t2 both tend to infinity, it is necessary to choose 
K(n _ 3)12 (x) for H (x) since I ± (n _ 3)/2 (x) would lead to a diver
gence when t2 = t ~ /4-00. Hence 

h (t2) = (A Ji;)(n - 3)12K(n _ 3)/2 (A Ji;) . (D7) 

We have therefore found particular solutions ofEq. 
(5.I8a), 

gA(tl)h,dt2) = exp( - !Atl)(A Ji;)(n -3)/2K(n_ 3)12 (A Ji;), 

(D8) 

having appropriate asymptotic properties and depending 
upon the separation constant A, where 0 < A < + 00. By lin
early combining them with arbitrary coefficients X (A ), only 
subject to the condition that the resulting integral exists, we 
obtain the function defined in Eq. (5.19), which is therefore a 
well-behaved solution ofEq. (5.18a). 

In the second part of this appendix, we shall prove Eq. 
(5.20). For such purpose, our starting point is the following 
equation: 

4t l -+ 8t2 ---2(n -6)--1 [
if a2 a] 
at~ atlat2 atl 

( 
1 1 ) (n - 3)12K ( ) Xexp -TA-tl X (n-3)/2 X 

= { - A [2t I ~ + 4t2 ~ - (n - 6)] - I} 
atl at2 

( 
1 1 ) (n - 3)/2K ( ) Xexp - TA-tl X (n _ 3)/2 X , (D9) 

where x is defined in Eq. (D4). It is now straightforward to 
see that 

tl ~ exp( - J... Atl) = - J... Atl exp( - J... Atl ) 
atl 2 2 2 

=A ~ exp( - J... Atl ) , (DlO) 
aA 2 

and 

2 a In - 3)/2K ( ) _ a In - 3)/2K ( ) t2 - X In _ 3)/2 X - X - X In _ 3)/2 X 
at2 aX 

1 a In - 3)12K ( ) = A- aA x In - 3)/2 X . 

(D11) 
Hence 

( tl ~ + 2t2 ~)exp( - J...Atl)xln-3)/2Kln_3)/2(X) 
atl at2 2 

1 a ( I 1 ) In - 3)/2K ( ) = A- aA exp - TA-tl X In _ 3)/2 X . (DI2) 
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By introducing Eq. (DI2) into the right-hand side ofEq. 
(D9), the latter is transformed into Eq. (5.20), whose proof is 
thus completed. 
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Young supertableaux of the graded unitary groups SU(n 11) are classified and interpreted in terms 
of representations of the group. A distinction between typical and atypical representations arises 
naturally, and we propose a new type of generalized atypical supertableaux for non-fully
reducible representations. 

PACS numbers: 02.20. + b 

1. INTRODUCTION 

Young supertableaux have been introduced by Balante
kin and Bars 1.2 for a graphical description oftensorial repre
sentations of Lie superalgebras as a generalization of ordi
nary Young tableaux for ordinary Lie algebras. The simplest 
case appears to be that ofsuperunitary groups SU(nlm) de
fined as the set of complex linear transformations of the spe
cial graded linear group SPL(n 1m) leaving invariant an even 
regular sesquilinear form G,3 

SU(nlm) = (MESPL(nlm)IM+GM=Gj, 

su(nlm) = (X E spl(nlm)IX +G + GX = OJ. 
The relation between supertableaux and representations of 
basic simple supergroups has been initiated by Bars4 and 
Morel and Ruegg. 5 For special superunitary groups SU(n 1m) 
the legal purely covariant and legal purely contravariant su
pertableaux describe one irreducible representation of 
SU(nlm), typical or atypical, but the correspondence is not 
one-to-one and the concept of equivalence between super
tableaux of these types has to be introduced. Unfortunately, 
there exist irreducible representations ofSU(nlm) and also 
not fully reducible representations which cannot be visua
lized in that way, and mixed supertableaux containing both 
covariant and contravariant boxes must be introduced. 
Their discussion is considerably more complicated than for 
covariant and contravariant supertableaux, and the aim of 
this paper is a classification and an interpretation of the 
mixed supertableaux of SU(n 11). The general case for 
SU(nlm) will be considered in a subsequent publication. 

The fundamental representation ofSU(nlm) acts in a 
graded (n + m)-dimensional space V = Vo Ell VI where Vo is 
bosonic and VI fermionic. We have two possible graduations 
of Vand, by tensor product, two classes of representations of 
SU(nlm) 

dim Vo = n, dim VI = m, Class I, 

dim Vo = m, dim VI = n, Class II. 

Because of the isomorphism of the two supergroups SU(n 1m) 
and SU(mln) it is obvious that class I (II) representation of 
SU(nlm) are also class II (I) representations ofSU(mln). 

alLPTHE, Tour 16 EI, Universite Pierre et Marie Curie, 4 Place Jussieu, 
75230 Paris, Cedex 05. 

Equivalently a class II supertableau is simply obtained from 
a class I supertableau by the transposition operation ex
changing the roles of rows and columns. In the rest of this 
paper we shall limit ourselves to class I representations of 
SU(n 11). For a measure of the number of covariant and con
travariant boxes of the rows and columns of a supertableau 
ofSU(nlm) we use the notations of Ref. 6: 

I~;I counts the ,covariant , 
contravariant 

boxes of the row 

I;: 1 counts the 
, covariant , 
contravariant 

boxes of the column 

with the usual constraints 

bl>b2>· .. >bj> ... >0, 

CI >C2>"'>Ck>"'>0, 

bl >b2>···>bj;, ... >0, 
CI >C2 ;,···;,Ck>···>0. 

j, 

k, 

A class I supertableau ofSU(nlm) is legal if and only if the 
numbers of covariant and contravariant boxes of its rows 
satisfy one of the inequalities 

bn+l_j+bj+l<m, j=O,I, ... ,n, (1) 
or, equivalently if the numbers of covariant and contravar
iant boxes of its columns satisfy one of the inequalities 

(2) 

These two sets of constraints are clearly equivalent, and for a 
legal class I supertableau ofSU(nlm) at least one of the in
equalities (1) and one of the inequalities (2) is fulfilled. 

For purely contravariant and purely covariant super
tableaux the conditions given in Ref. 6 

(i) bn + I <m; Cm + I <n in the purely covariant case, 

(ii) bn + 1 <m; em + I <n in the purely contravariant case 

are obviously contained in Eqs. (1) or (2). 
The proof of the inequalities ( 1 ) can be obtained by using 

two complementary techniques: 
(i) the reduction of a legal supertableau with respect to 

the subgroup SU(n) ® SU(m) ® U(l) associated with the bo
sonic part of the superalgebra must exist; such a criterion has 
been partly discussed in Ref. 6; 

(ii) the computation of the dimension of the supertab
leau with a determinant, as proposed in Ref. 1 must give, for 
a legal typical supertableau, a positive result. 
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We shall not give more details in this paper and we 
postpone the general proof to a subsequent publication. 

2. KAC-DYNKIN PARAMETERS OF SU(nI1) 

(1) The graded Lie algebra of the superunitary group 
SU(n 11) has a Bose sector which is the Lie algebra of the 
direct product SU(n) ® U(I). We have n Cartan operators 
H 1,H2, ••• ,Hn the (n - 1) first ones belonging to SU(n) and the 
U( 1) generator Q is defined by 

1 n 

Q=-2:)Hj' 
n 1 

The Kac-Dynkin parameters! a l,a2, ••• ,an _ 1 ;an J define an 
irreducible representation of SU(n 11).6-8 They are the eigen
values of the Cartan generators for the highest weight of the 
representation chosen by Kac as corresponding to the lowest 
eigenvalue of Q. 

The (n - 1) first Kac-Dynkin parameters 
(a l ,a2,.··,an _ I) describe an irreducible representation of 
SU(n), precisely that associated with the lowest eigenvalue of 
Q. As a consequence, they are nonnegative integers. The last 
parameter an may be any real number. In the supertableau 
approach it is an algebraic integer. In what follows we re
strict ourselves for an to algebraic integer values, advocating 
a remark on this point made in Ref. 6, even if the question 
does not seem to us entirely clear. 

(2) We have two types of irreducible representations of 
SU(n 11), the typical representations and the atypical repre
sentations.6-9 Fixing a l,a2, ... ,an _ 1 and defining 

n -I 

Aj = I (1 + a,j, j = 1,2, ... ,n - 1, (3) 
n - j 

we have the following result. An irreducible representation 
ofSU(nll) is atypical if and only ifa n takes one of the n values 

an = 0, - A I' - A2,···, - An - 1 . 

In particular all the representations with an > ° and 
an < - An _ 1 are typical. For typical representations of 
SU(n 11) the dimension is even-with an equal number of 
bosonic and fermionic weights-and it turns out to be inde
pendent of an and given by 6-9 

dim! a l ,a2, •• ·,an _ 1 ;an J = 2n dim(a l ,a2,···,an -I)' 

where the last factor is the dimension of the SU(n) represen
tation given by the well-known formula 

[ l:~as] 
dim(a l ,a2,···,an - I) = IT 1 +. . l' 

1<;<)<n-1 ] -/ + 
For atypical representations the dimension is always lower. 

(3) Finally, let us give as an illustration, three important 
examples: 

(i) the fundamental representation! 1,0, ... ,0;OJ has the 
dimension n + 1; it is atypical and associated with the super
tableau with one covariant box. 

(ii) the fundamental representation 10, ... ,0; - 1 J is the 
contragradient of the previous one with the same dimension 
n + 1; it is atypical and associated with the supertableau 
with one contravariant box 

(iii) the adjoint representation! 1,0, .... ,0; - 1 J has the 
dimension (n + 1)2 - 1 and is self-contragradient; it is atypi-
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cal when n > 3 and associated with the supertableau with one 
covariant box and one contravariant box. For SU(211) the 
adjoint representation is typical, and it has the dimension 8. 

3. LEGAL SUPERTABLEAUX OF SU(n/1) 

(1) In SU(n 11) the two sets of constraints (1) and (2) are 
written as 

bn + l _ j +bj + I <I, j=0,1,2, ... ,n, (4) 

Ck + 1 +c2 _ k <n, k=O,l. (5) 

We then can distinguish between two categories of supertab
leaux, depending on the value of the sum of covariant and 
contravariant boxes of the first columns C 1 + cl : 

(a) When C I + cl < n, the two inequalities (5) are simul
taneously satisfied and we can describe these supertab
leaux with C 1 parameters of type bj and C I parameters of 
type bj fixing entirely the number of boxes of each row. 
(/3) When C1 + cl>n, we solve Eqs. (4) and (5), and we 
easily find 2(n + 1) solutions characterizing 2(n + 1) 
types of supertableaux. In this case only n + 1 free pa
rameters determine the supertableau, the other ones be
ing fixed. 
(2) The construction and the discussion of the various 

types of legal supertableaux will be made by the following 
method. With a legal supertableau of SU(n 11) we associate a 
point P in a (n + 1 )-dimensional space. The coordinates of P 
are chosen in such a way that they produce the same Kac
Dynkin parameters for the supertableau as those given by 
the SU(n) ® Uti) analysis of the supertableau.6 We then in
troduce n + 1 coordinates 

X1>X2 >,,,>xn and YI' 

The Kac-Dynkin parameters are then computed with the 
formulae 

aj = Xj - xj+ 1 >0, j = 1,2, ... ,n - 1, 

an = Xn - Yl' 

Inverting these relations, we are able to express the param
eters b l and bl as linear combinations of the Kac-Dynkin 
parameters aj and ofYI' This last quantity has a range of 
variation defined by the positivity constraints on the param
eters bl ,bl ,C I ,C1, and it is interpreted as describing the equiv
alence between supertableaux of different topology but hav
ing the same Kac-Dynkin parameters. 

4. ATYPICAL SUPERTABLEAUX C1 + C1 < n 

(1) Let us call N = C 1 the number of rows with covariant 
boxes and N = c1 the number ofrows with contravariant 
boxes, and let us study the case where N + N ~ n. The corre
sponding supertableaux are defined by N + N positive inte
gers bj,bj , with the constraints 

b1 ';?b2 ';?···';?bN > 1, 

b l >b2 ,;?",,;?bj,r';? 1, 

and they are represented in Fig. 1. 
The Kac-Dynkin parameters of this supertableau are 

defined by the eigenvalues of the Cartan subalgebra genera
tors for the highest weight of the representation. Such an 
analysis is made in Appendix A, and it is equivalent to the 
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FIG. 1. Atypical supertableau c, + 1', < n. 

following choice of coordinates for the point P of the (n + 1)
dimensional space, associated with the supertableau 

and 

Xs = h., 

Xs =0, 

xs =l-hn+l _ s, 

YI =c I =N. 

s = 1,2, ... ,N, 

s = N + 1, ... ,n - N, 
s = n - N + 1, ... ,n, 

(6) 

We then compute the Kac-Dynkin parameters with the usu
al formulae, and we get 

as = hs - hs+ I' 

an = hn, 

as = 0, 

an_N=hN-l, 

as =hn_ s -hn- s+ 17 

and 

an = I-h l -N. 

s = 1,2, ... ,N - 1, 

s = N + 1, ... ,n - N - 1, (7) 

s = n - N + 1, ... ,n - 1, 

The formulae (7) can be uniquely inverted, and we im
mediately obtain the length of the covariant and contravar
iant rows in terms of the (n - 1) Kac-Dynkin parameters of 
the SU(n) part 

N 

hj = 1 + Lan-s' 
j 

j= 1,2, ... ,N, 

(8) 

j= 1,2, ... ,N 

The last Kac-Dynkin parameter an turns out to be a linear 
combination of the same aj's given by 

N 

an = -N- Lan-s = -AN' 
I 

It follows that an takes the atypical value - AN previously 
defined in Eq. (2). 

The supertableaux with C1 + ci < n describe the atypi
cal irreducible representations ofSU(n 11) and the correspon
dence between the supertableaux and the representation is 
one to one without equivalence. As an example, the N row 
covariant supertableaux with N < n correspond to the atypi
cal representations an = 0. 

(2) The SU(n) ® U(I) decomposition of the atypical irre
ducible representations is easily made by using the supertab
leaux. The component of the lowest eigenvalue of Q repre
sented in Fig. 2 contains the highest weight, and by 
definition of the Kac-Dynkin parameters we simply have 

(9) 

The other levels in q are obtained by transferring covariant 
and contravariant boxes. For one box the spacing is 
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FIG. 2. SU(n) ® U(l) component of Fig. I containing the highest weight. 

(1 - lin) and the total number of possible levels is 
N + N + 1. It follows thatthe maximal value of q is given by 

qmax = qmin + (N + N)(1 - lin). 

When all possible SU(n) ® U( 1) components are present, sim
ple combinatorics gives the total number of these compo
nents to be 2N + N. 

5. TYPICAL SUPERTABLEAUX C1 + c1>n 

(1) We now consider the case where C1 + cl>n, and we 
introduce the constraints (4) and (5). We classify the super
tableaux C1 + cl>n with one constraint (4) and one con
straint (5) 

(10) . {hn + I _ j + bj + I < 1 
Ii=!? _ 

Ck+1 +c2 _ k <n. (11) 

The parameterj can take n + 1 valuesj = O,I, ... ,n and the 
parameter k takes two values only for m = 1, k = 0,1. The 
total number of types ofsupertableaux C1 + cl>n is then 
2(n + 1). 

The I { type supertableaux are first defined by a set of n 
positive integers describing the nontrivial rows 

h1>h2 > .. ·>hn _ j > 1, 

hl>b2> .. ·>bj > 1. 
(12) 

The inequality (10) means that one of the two quantities 
h n _ j + I or bj + I must vanish, the other one being bounded 
by one. The choice between these two possibilities is made by 
the inequality (11), and we get 

bj+1 =0, c1 =j, c1>n-j for I~, 

hn-J+l =0, cl=n-j, c1>j for It· 
(2) Let us first discuss the n parameters hand b. The x 

coordinates of the associated point P of the (n + 1 )-dimen
sional space S are given, as previously, in Eq. (6) 

Xs = hs, s = 1,2, ... ,n - j, 

xs =l-bn+ 1 _ s, s=n-j+l, ... ,n, 
(13) 

and we compute the (n - 1) Kac-Dynkin parameters of the 
SU(n) part 

as = hs - hs+ I' S = 1,2, ... ,n - j - 1, (14) 

an _ j = hn _ j + hj - 1, (15) 

as=hn_s-hn_S+l' s=n-j+l, ... ,n-1. (16) 

(3) Let us first study the casej = 0. Equations (14) only 
are present, and they are inverted as follows: 

n-l 

bl = Las + hn , 1= 1,2, ... ,n - 1. (17) 
I 

The positivity constraints on the hi parameters imply a tri
vial ordering of the XI coordinates 

X1>X2>",>xn > 1. 
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FIG. 3. Typical covariant supertableau 
c, +c,>n. 

the set of supertableaux of type lOis divided in two subsets 

CI = 0, cl>n, purely covariant supertableaux, 

Ig CI = n, CI> 1, mixed supertableaux. 

The purely covariant supertableaux I? are represented 
in Fig. 3. TheYI coordinate of the associated point P is cho
sen so that an agrees with the value obtained using the 
SU(n) ® U( 1) reduction (see Appendix B). With 

YI=n-c l 

we compute the last Kac-Dynkin parameter an 

an = Xn - YI = bn + CI - n. (18) 

The positivity constraints bn > 1 and cl>n give a double ine
quality for YI 

1-an<YI<0. (19) 

The compatibility of these inequalities restricts an to positive 
values only 

an>l. 

As a consequence, purely covariant supertableaux of type I? 
are associated to typical irreducible representations of 
SU(n 11) with an > 0. Giving now a typical irreducible repre
sentation ofSU(nI1) by its Kac-Dynkin parameters with 
an > 0, the purely covariant supertableaux associated with 
this representation are constructed as follows: 

n-I 

b, = Las + an + YI' 
I 

CI =n -YI' 

(20) 

with the parameter YI varying in the range (19). We then 
obtain an equivalent typical covariant supertableaux I? 

The mixed supertableaux o/type Ig are represented in 
Fig. 5. TheYI coordinate is chosen as previously (see Appen
dix B) and with 

YI =c I 

we determine the last Kac-Dynkin parameter an 

an =Xn -YI =bn -L\. 
The positivity constraint CI> 1 implies trivially 

YI>l, 

(21) 

FIG. 4. SU(n) Ql) U(\) component of Fig. 3 containing the highest weight. 
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FIG. 5. Mixed supertableau of type 
I~. 

and we have no restriction on an in this case. When an has a 
typical value, we obtain an infinite set of mixed supertab
leaux of type Ig associated with a typical irreducible repre
sentation of SU(n 11). These supertableaux are parametrized 
with the coordinate Y I> 1 

n-I 

bl = I as + an + YI' 
I 

C1 =YI' 

(22) 

The caSe where an has an atypical value will be dis
cussed in Sec. 7. 

(4) We are now interested in the casej = n which is the 
contragradient \0 of the previous one. Only Eqs. (16) are pres
ent, and they are inverted as follows: 

n-I 

b, = - I as + bl , 1= 2,3, .... n. 
n+I-1 

(23) 

The positivity constraints on the h, parameters imply a tri
vial ordering of the x I coordinates 

0>X 1>X2> .. ·>xn • 

The set of supertableaux of type I n is divided into two sub
sets: 

I ~ , C I = n, C I> 1, mixed supertableaux, 

I~, cl>n, CI = 0, purely contravariant supertableaux. 

The purely contravariant supertableaux I ~ are repre
sented in Fig. 7. TheYI coordinate is chosen on the 
SU(n) ® U( 1) basis as previously (see Appendix B), and we 
have 

YI =cI· 

The last Kac-Dynkin parameter an has the value 

an = Xn - YI = 1 - bl - cI • (24) 

The positivity constraints bn > 1, cI>n give a double inequa
lity for YI 

n-I 

n<YI< - an - Las' 
I 

(25) 

The compatibility of these inequalities restricts an to typical 
values 

n-I 

an < - n - L as = - 1 - An - I . (26) 
I 

As a consequence, purely contravariant supertableaux I ~ 
are associated to typical irreducible representations of 
SU(nI1) with an < -An_I' 

i~~ ,. 

n 

FIG. 6. SU(n) Ql) U(\) component of Fig. 5 containing the highest weight. 
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FIG. 7. Typical contravar
iant supertabJeau c, + c,;m. 

Giving now a typical irreducible representation of 
SU(nll) by its Kac-Dynkin parameters with an < - An _ I' 
the purely contravariant supertableaux associated with this 
representation are constructed as follows: 

n-I 

bl = - L as + 1 - an - YI' 
n+I-1 (27) 

with the parameter YI varying in the range (25). We then 
obtain - an - An _ I equivalent typical contravariant su
pertableaux I ~ . 

The mixed supertableaux of type I 7 _ are represented in 
Fig. 9. TheYI coordinate is chosen as previously (see Appen
dix B), and with 

YI =n -CI 

we determine the Kac-Dynkin parameter an 

an = Xn - YI = 1 - n - bl + CI. (28) 

The positivity constraint C 1;;;.1 implies trivially 

YI"n -1, 

and we have no restriction on an' When an has a typical 
value, we obtain an infinite set of mixed supertableaux of 
type 17 associated to a typical irreducible representation of 
SU(n 11). These supertableaux are parametrized with the co
ordinateYI 

n-I 

bl = - L as + 1 - an - YI' 
n+I-1 

with now YI"n - 1. 

(29) 

(5) For the intermediate situations 0 <j < n the relation 
(15) is present and when combined with the positivity con
straints b n _ j;;;.1 and bj ;;;'l, it gives 

an _ j ;;;.1. 

This inequality is a necessary and sufficient condition for the 
existence of mixed supertableaux of type I { for 0 <j < n. 

Assuming now this condition to be fulfilled, we invert 
the relations (14), (15), and (16) using bl as a parameter, 

.. ,:: .. ;.:.' 
: .. 
C~:i.~ ~ •. 

c, 

.. 

FIG. 8. SU(n) O!O U(I) component of Fig. 7 containing the highest weight. 
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FIG. 9. Mixed supertabJeau 
oftypeI~. 

n-I 

bl = Las + 1- bl , 1= 1,2, ... ,n -j, 
I 

n-I 

bl = - L as + bl> 1 = 1,2, ... J . 
n+I-1 

(30) 

The positivity constraints (12) imply bounds for the x coordi
nates of the point P. In particular for Xn = 1 - bl we get 

n-I n-I 
1- Las<xn<- Las, (31) 

n-j n-j+1 
and for the ordering of the x coordinates 

n-I n-I 
L as;;;.xl;;;.x2;;;. .. ·;;;.Xn_j >O;;;.xn_j+ I ;;;. ... >xn>l - Las' 

I n-j 

The set of mixed supertableaux of type I j is divided in two 
subsets 

I~, ci = j, cl>n - j, mixed supertableaux, 

lb, CI = n - j, cl;;;.j, mixed supertableaux. 

The mixed supertableaux of type I ~ are represented in 
Fig. 11. The YI coordinate of the point P is given by (see 
Appendix B) 

YI = CI> 

and the Kac-Dynkin parameter an has the value 

an = Xn - YI = 1 - bl - cI· (32) 

The positivity constraints bj ;;;'1, cl>j give a double inequa
lity for YI' 

n-I 
j<YI" - L as - an' (33) 

n+ I-j 

The compatibility of these inequalities gives an upper bound 
for the values of an associated with supertableaux oftypeI~ 

n-I 
an" -j- L as = -l-Aj _ l • 

n-j+ 1 
(34) 

On the other hand, the third positivity constraint bn _ j > 1 
implies a second lower limit for YI 

n-I 
1 - Las - an <Yl' 

n-j 
(35) 

Giving now an irreducible typical representation of SU(n 11) 
by its Kac-Dynkin parameters with an _ j > 1 and an typical 
satisfying the inequality (34), we associate with this represen-

I::':~": 2 '.:. • : 
~.~.. ~ 

;.~.. : 
:'~'; ..... ,: 

c, 

FIG. 10. SU(n) ® U(I) component of Fig. 9 containing the highest weight. 
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I 
2 

.~ 

FIG. II. Mixed supertableau of type n. 

I 
2 

n-l 

tation mixed supertableaux of type I b described by 
n-I 

bl = ~ as +an +YI' 

n-I 

bl = - L as + 1 - an - YI' 
n-I+I 

CI=YI' 

1= 1,2, ... ,n - j, 

1= 1,2, ... ,j, 
(36) 

withYI varying in the range intersection of the ranges (33) 
and (35). The number of equivalent supertableaux of type I b 
describing the same typical irreducible representation of 
SU(nll) depends on an' The result is 

(i) l-Aj <an<-I-Aj _I> 

1 - A j _ 1 - an supertableaux, 

(ii) an < - Aj' 

an _ j supertableaux. 

The mixed supertableaux of type I ~ are represented in 
Fig. 13. The YI coordinate ofthe point P is given by (see 
Appendix B) 

YI =n -CI , 

and the Kac-Dynkin parameter an has the value 

an = Xn - YI = 1 - n - bl + C I • (37) 

The positivity constraints b n _ j > 1, C 1 >n - j give a double 
inequality for Y I 

n-I 

1 - Las - an <YI~j. (38) 
n-j 

The compatibility of these inequalities implies a lower bound 
for the values of an associated with supertableaux of type I ~ 

n-I 

an> 1 - j - Las = 1 - Ai" (39) 
n -j 

On the other hand, the third positivity constraint bj > 1 im
plies a second upper limit for Y 1 

n-I 

YI< - L as -an' 
n-j+ 1 

(40) 

Giving now an irreducible representation of SU(n 11) by its 
Kac-Dynkin parameters with an _j> 1 and an typical satis-

I 
? 

I 
2 

n-) 

c, 

FIG. 12. SU(n) ® U(I) component of Fig. II containing the highest weight. 
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I 

2 
I 
2 

n_l 

FIG. 13. Mixed supertableau oftypeI~. 

fying the inequality (39), we associate with this representa
tion mixed supertableaux of type I ~ described by 

n-I 

bl = Las + an + YI, 
I 

n-I 

1= 1,2, ... ,n - j, 

bl = L as + 1 - an - YI' 1= 1,2, ... ,j, 
n-I+ 1 

C1 = n - Yl> 

(41) 

withYI varying in the range intersection of the ranges (38) 
and (40). The number of equivalent supertableaux describing 
the same typical irreducible representation depends on an . 
The result is 

(i) l-Aj<an<-I-Aj_ l , 

- 1 + Aj + an supertableaux, 

(ii) an > - Aj _ I, 

an _ j supertableaux. 

Finally, the intersection of the two sets I b and I ~ corre
sponds to mixed supertableaux with only (n - j) covariant 
rows andj contravariant rows. They have the shape drawn in 
Fig. 1 with now N = n - j and N = j. The length of the co
variant and contravariant rows is given by Eqs. (36) and (41) 
withYI =j 

n-I 

bl = Las + an + j, 
I 

n-I 

bl = - L as + 1 - an - j, 
n -1+ 1 

1= 1,2, ... ,n - j, 

1= 1,2, ... ,j, 

and we have C1 = n -j and c1 = j fixed. In this case where 
CI + ci = n we have no equivalence. 

The subset of mixed supertableaux I ~ rJ b describes the 
typical irreducible representations of SU(n I 1) with an in the 
range intersection of the ranges (34) and (39) 

l-Aj <an< -1-Aj _ l • 

This finite subset has the dimension an _ j' 
Forj = 0 andj = n the analogs of this subset oftypical 

I 
2 

I 
2 

n_l 

c,-(n-j) 

FIG. 14. SU(n) ® U(I) component of Fig. 13 containing the highest weight. 
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supertableaux are, respectively, the n covariant row super
tableaux of n and the n contravariant row supertableaux of 

I~. 

In conclusion the full set ofsupertableaux CI + ci = n 
gives a unique description of all typical representations of 
SU(nll). 

(6) For the typical supertableaux C I + cI>n the rela
tions of contragradience are simply expressed. It is straight
forward to check that, for all supertableaux It the ex
changes bj~bj' CI~I imply the following relations 
between the coordinates of two contragradient points P and 
P CT in the (n + 1 )-dimensional space S 

xl" = l-xn + l _ j , j= I,2, ... ,n, 

yfI" = n - YI' 

As a consequence, we obtain the relations between the Kac
Dynkin parameters of two typical irreducible representa
tions ofSU(nII) 

a'jT = an_ j , j = I,2, ... ,n - 1, 
n-I 

a;T = 1 - n - Las - an' 
I 

(7) The SU(N) ® Uti) decomposition ofthe typical irre
ducible representations considered in this section is easily 
made using the supertableaux. The components with the 
lowest eigenvalue of the V(I) operator Q are represented for 
each type of typical supertableaux in Figs. 4, 6, 8, 10, 12, and 
14. We simply have 

(42) 

and the other levels in q are obtained by transferring the 
covariant boxes from the SU(n) part to the Uti) part, and the 
contravariant boxes from the Uti) part to the SU(n) part, in 
all the ways compatible with the symmetries of the boxes. 
The spacing for one box is (1 - lin) and the number of possi
ble levels is n + 1. The maximal value of q is then given 

qmax = qmin + n(I - lin) = qmin + n - 1. 

The level qj = qmin + j(I - lin) contains, at most, C~ com
ponents SV(n) and the total number of these components is 
simply 

j=n 

LC~ =r. 
j=O 

When some of the Kac-Dynkin parameters al,a2,· .. ,an _ I of 
a typical representation vanish the number ofSU(n) ® V(I) 
representations is, by accident, less than 2n but the number 
of levels in q stays at n + 1. 

6. TENSOR PRODUCTS INVOLVING THE 
FUNDAMENTAL REPRESENTATIONS 

(1) A straightforward way to construct representations 
of SV(n 11) is to perform the tensor product of a particular 
representation by one of the two fundamental representa
tions. The reduction of the tensor product of these two repre
sentations is simply obtained by considering the tensor pro
duct within SU(n) of their SU(n) ® V( 1) components and by 
rearranging the result into representations of SU(n I 1). 
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We now consider the tensor product of an irreducible 
representation ofSU(n) given by its n - 1 Dynkin param
eters (a l,a2, ... ,an _ I ) by one of the two fundamental represen
tations ofSU(n), (1,0, ... ,0), or (0 ... ,0,1). The result is 

(a l,a2, .. ·,an _ I) ® (1,0, ... ,0) 

= (a l + I,a2' .... an_I)E9(al ..... an_2.an_1 -1) 
;=n -2 

E9 (al ..... ai -I.a i + 1 + I, .... an_ I ). 
i= 1 

(a l .02 ..... an _ I) ® (0 ..... 0.1) 

=(al-I.a2 ..... an_I)E9(al ..... an_2.an_1 + 1) 
i=n-2 

E9 (al ..... ai + I.a i + 1 -I .... ,an_ I). 

(43) 

;=1 
(44) 

For the first two terms of the sums (43) and (44) only one 
Dynkin parameter a 1 or an _ 1 is modified; for the n - 2 other 
terms two Dynkin parameters are modified as indicated. 
When all the aj's are nonzero, the sums (43) and (44) have n 
terms. When some aj 's are vanishing, the corresponding 
terms involving aj - 1 are not present in the sums. 

(2) As an immediate consequence. we get the following 
formulae for the tensor product of an irreducible representa
tion ofSV(nII) given by its n Kac-Dynkin parameters 
{a l'a2 •... ,an _ 1 ;an } by one of the two fundamental represen
tations ( 1,0, ... ,0;0) or (O .... ,O; - 1): 

(al'a2 ..... an_l;an) ® (I.O, ... ,O;O) 

= (a l + I.a2,· .. ;an ) E9 (al,· .. ,an _ I ;an + I) 
;=n-1 

E9 {al.· .. ,ai - l.ai + 1 + I, ... ;an j, 
i=1 

(a l,a2 .... ,an _ 1 ;an ) ® (O,O, ... ,O; - I) 

= {a, - l,a2, .... an ) E9 (a1, .... an _ 1 ;an - 1) 
i=n-l 

E9 (a l1 ... ,ai + I.ai + 1 - I, ... ;an ). 
;=1 

(45) 

(46) 
When all the aj ·s. j = 1.2 .... ,n - 1. are nonzero, the sums 
(45) and (46) have n + 1 terms. When some of these aj's are 
vanishing. the corresponding terms involving aj - 1 disap
pear from the sum. Of course. this last remark does not apply 
to an' which can be any algebraic integer. and the minimal 
number of terms of the sums (45) and (46) is two. 

Equations (45) and (46) have a translation in the lan
guage of supertableaux. A detailed discussion will be given 
later. but it is straighforward to check that there are. at most. 
n + 1 independent ways to add (suppress) a covariant (con
travariant) box to a legal supertableaux ofSU(n 11) to obtain a 
new legal supertableau. 

(3) Let us first consider the case where the original re
presentation is an atypical irreducible representation as 
studied in Sec. 4. From Eqs. (7) and (9) we get the Kac
Dynkin parameters of such a representation 

aN >I. as =0. for s=N+ l ..... n-N-l. 

an = -AN' 

with N + N < n. and we have seen that such a representation 
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is uniquely associated with a supertableau with N covariant 
rows and N contravariant rows. 

For N + N < n - 1 we obtain. at most. N + N + 1 
terms in Eqs. (45) and (46). each term being associated with 
an atypical irreducible representation. The construction of 
these representations is trivial in the supertableau approach. 

When N + N = n - 1 we obtain. at most. 
N + N = n - 1 terms associated with an atypical irreduci
ble representation, and in all cases one term associated with a 
typical irreducible representation. In the language of super
tableaux this term has C I + C I = n. and this subset of typical 
supertableaux has been studied in Sec. 5. 

(4) We now suppose that the original representation is a 
typical irreducible representation as studied in Sec. 5. The 
maximal number of terms in Eqs. (45) and (46) is n + 1. and it 
corresponds to the maximal number of independent ways we 
have to add (suppress) a covariant (contravariant) or a con
travariant (covariant) box to a legal typical supertableau. the 
result being again a legal supertableau. 

In Eq. (45) either all terms are typical or two and only 
two terms become atypical. the other ones remaining typical. 
This last situation occurs when the original an parameter 
takes one of the values - Ak - 1 assumed to be typical. It is 
then straightforward to check that the second term and one 
of the other ones are atypical. For Eq. (46) the situation is 
entirely analogous and the degeneracy arises when the origi
nal an takes one of the values - Ak + 1 assumed to be typi
cal. This property will be referred. in what follows. as the 
mechanism of pair production of atypical representations 
and atypical supertableaux. 

7. ATYPICAL MIXED SUPERTABLEAUX C1 + C1 >n 

(1) We consider the mixed supertableaux studied in Sec. 
5 for which the Kac-Dynkin parameter an takes one of the n 
possible atypical values - Ak with k = O.I ..... n - 1. As a 
consequence. the two parameters CI and cl are now deter
mined when the length of the rows bj,ljj is known. 

For the mixed supertableaux of type I ~ with 
j = O.I ..... n - 1. we have CI = n - j. and from Eqs. (21) and 
(32) we get 

cl =j+bn _ j +Ak -Aj • 

Because of the positivity constraint. C1 + cl > n. we immedi
ately see that k takes only (n - j) values. 
k = j.j + 1 ..... n - 1. 

For the mixed supertableaux of type I ~ with 
j = 1.2 ..... n. we have ci = j. and from Eqs. (28) and (37) we 
have 

u 

"r 
FIG. 16. Generalized atypical supertableaux ofSU(211) for [1;0]. 

Again the positivity constraint C I + C I > n restricts k toj val
ues k = O.I ..... j - 1. 

(2) We now come back to Eqs. (45) and (46) in the degen
erate case. Two terms. Y I and Y z. become simultaneously 
atypical. and it is straightforward to study their SU(n) ® U( 1) 
content and to deduce. from that content. their dimension. 
This SU(n) ® U(l) analysis exhibits. for Y I and for Y z• two 
atypical components and one of these components is the 
same for Y I and Y z: 

Y I = sf l + sfz• Y z = sfz + sf3 · 

This result is identical to that found by Marcu II in the 
SU(2Il) case. and his conclusion was that the four atypical 
components are the basis of a non-fully-reducible represen
tation ofSU(211) with the structure 

d l 

sf{ '-sfz 
'-sf 3 / 

We conjecture that the same result holds also for SU(n 11). 
(3) In the language of supertableaux the appearance of 

two atypical terms in Eqs. (45) and (46) correspond to the 
appearance of two atypical supertableaux TI and Tz. We 
have no consistent way to relate individually TI or Tz to the 
terms Y I or Y z or. equivalently. to find a definite 
SU(n) ® U(l) content of TI and Tz separately. 

However. it is formally possible to compute the dimen
sion of TI and Tz by using the determinant technique. I and 
we make the following observations: 

(i) the results dim TI and dim Tz are not always positive 
definite for a legal atypical mixed supertableau C I + C I > n; 

(ii) the sum dim TI + dim Tz is positive definite; 
(iii) the simple relation holds 

dim TI + dim T2 = dim Y I + dim Y z· 

These features are clearly in favor of a non-fully-reduc
ible representation with four atypical components. and we 
introduce the notation [a2] for such a representation. In fact. 
they express the impossibility in this tensor representation to 
separate the components TI and Tz of the full tensor. one of 
them being associated with a trace. 

An atypical supertableau is only a part of a non-fully-

5 uF ~.: s 
u~1 

5 ~ I 

FIG. 15. Generalized atypical supertableaux ofSU(211) for [2;0). FIG. 17. Generalized atypical supertableaux ofSU(211) for [0;0]. 
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• u 

~. ·F 
FIG. 18. Generalized atypical supertableaux ofSU(211) for [0; - I). 

reducible representation ofSU(nll), and only the considera
tion of pairs of neighboring atypical supertableaux in the 
space S makes sense. We then introduce new generalized 
atypical mixed supertableaux incorporating the two atypical 
components whose sum is associated with a non-fully-reduc
ible representation ofSU(n 11). In a generalized mixed super
tableau, double bars will indicate which ordinary atypical 

{1;OJ 

5 

~. u;>,. I 

FIG. 19. Generalized atypical supertableaux ofSU(211) for [I; - 2). 

supertableaux are contained in the generalized one. 
(4) Let us be a little more precise for the SU(211) case for 

which the non-full-reducibility has been proved. We only 
have two Kac-Dynkin parameters, al>O and a2, and the 
atypical values ofa2 are 0 and - (1 + at!. We then have non
fully-reducible representations [al;O] and [a l; - 1 - all 
The four atypical components of these representations are 

/ "" [0;0] = {O;O J { O;O} self-contragradient dimension 8, 

""- to; -1}/ 

{al + 1; - 2 - al} 

[a l;-I-atJ={al;-I-ad / "{al;-I-ad for a l)1, 

"" / {a l -l;-a l } 

{1; - 2} 

/ ""-[0; - 1] = to; - 1) to; - 1) dimension 12. 

"" (O;O) / 

We have illustrated in Figs. 15-19 the five particular cases of 
generalized atypical supertableaux [2;0], 

[1;0], [0;0], [0; - 1], and [1; - 2], giving the full set of 
equivalent generalized supertableaux. 

(5) For the general case of SU(n 11) thing are analogous 
but more complicated. The non-fully-reducible representa-

1659 

FIG. 20. Generalized atypical supertableau 
ofSU(nll) for [0 •...• 0;0). 
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I 
tion is defined by its four atypical components 

FIG. 21. Generalized atypical supertableau 
of SU(n 1 I) for [1.0 •...• 0; - I). 
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c. = n 

FIG. 22. Generalized atypical supertableau 
ofSU(nlll for [0 ..... 0.1;0]. 

Giving now an atypical component .if 2 by its Kac-Dynkin 
parameters .if 2 = [a l,a2,· .. ,an _ I; - Ak J with 
k = O,I, ... ,n - 1, we determine its two partners.if I and .if 3' 
The general result is the following: 

.if l = [al,···,a n _ I_ k + l,an _ k -1, ... ,an_ l ; -Ak + IJ, 

.if3 = [al,···,an_ I_ k ~ l,an _ k + 1, ... ,an _ l ; -Ak -IJ. 

When an _ k = 0, the term .if I has to be modified as follows: 
defineO<;r<;k by an _ k =an _ k+ 1 =···=an_ r _ 1 =0, 

an _ r> 1. Then the new term .if 1 has an _ r ~ n _ r - 1, and 
the last parameter is now - A r + 1. 

When an _ 1- k = 0, the term .if 3 has to be modified. 
Defining now k<;s<;n - 1 by 
an_I_k =an - 2- k =···=an - s =0, a n _ l _ s >1.Then 
the new term .if 3 has an _ I _ s ~ n _ I _ s - 1, and the last 
parameter becomes - As - 1. 

These results hold for any value of k = O,I, ... ,n - 1. Let 
us give now a few simple examples: 

(i) .if 2 = [0, ... ,0;0 J: we obtain 

.if l = [0, ... ,0;1- nJ and .if3 = [O, ... ,O,I;OJ. 

.if 1 and .if 3 are contragradient atypical representations and 

.if 2 is a self-contragradient one. It follows that [0, ... ,0;0] is 
also self-contragradient and its dimension is 2n + I. 

(ii) .if 2 = [ 1,0, ... ,0; - 1 J: we obtain 

.if l = [0, ... ,0,1;1- nj and .if3 = [1,O, ... ,O,I,O;Oj. 

Again .if 1 and .if 3 are contragradient atypical representa
tions, and .if 2 is a self-contragradient one. It follows that 
[1,0, ... ,0; - q is also self-contragradient and its dimension 
is n2" + I. 

(iii) .if 2 = [0, ... ,0,1;0 j: we obtain 

.if l = [0, ... ,0,2;Oj and .if3 = [O, ... ,O;Oj. 

The dimension of[O, ... ,O,I;O] is (n + 1)2n. 
(iv) .if2 = [1,0, ... ,0,1;0]: we obtain 

.if l = 11,0, ... ,0,2;0] and .if3 = [1,0, ... ,0;0]. 

The dimension of [1,0, ... ,0,1;0] is (n 2 + n - 1)2n. We have 
illustrated these results in Figs. 20-23 by representing one 
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FIG. 23. Generalized atypical supertableau 
ofSU(nll) for [1.0 ..... 0.1;0). 
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generalized atypical supertableau of SU(n 11) for each exam
ple considered. 

8. CONCLUDING REMARKS 

We have constructed the supertableaux of class I of 
SU(n 11), and they can be classified as follows: 

(i) C 1 + c1 < n: we have the atypical covariant, contra
variant, and mixed supertableaux uniquely associated with 
an atypical irreducible representation of SU(n 11); 

(ii) C j + c1 = n: we have typical covariant, contravar
iant and mixed supertableaux uniquely associated with a 
typical irreducible representation ofSU(nll); 

(iii) C1 + cj > n: we have two possibilites: 
(a) The covariant, contravariant and mixed typical su
pertableaux are associated with typical irreducible re
presentations of SU(n 11), and we have equivalences . 
(f3 ) The mixed atypical supertableaux are bounded by 
pairs into generalized mixed supertableaux associated 
to non-fully-reducible representations of SU(n 11) with 
four atypical components. Again we have equivalences. 

The reduction of a tensor product of representations of 
SU(nJ1) considered here can be obtained by using the super
tableaux, and the ordinary rules of Young tableaux can be 
applied provided we take care of the case of mixed atypical 
supertableaux appearing in pairs and reinterpreted as form
ing generalized mixed atypical supertableaux. 

The problem of equivalence of supertableaux has been 
discussed, and it appears only in the case C I + c] > n.1t hap
pens that only the atypical irreducible representations are 
described by one supertableau. All the typical representa
tions and the non-fully-reducible representations with four 
atypical components are described by an infinity of equiva
lent supertableaux. Incidentally, we have not found super
tableaux corresponding to non-fully-reducible representa
tions ofSU(njl) containing only two or three atypical 
components or representations where the Cartan operator Q 
is not diagonalized. II 

The extension of these considerations to the superuni
tary groups SU(nlm) is in progress, but the classification of 
supertableaux is entirely analogous to that found here start
ing from the constraints oflegality (1) and (2). 
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APPENDIX A: SU(n) ® U(1) DECOMPOSITION OF 
ATYPICAL SUPERTABLEAUX 

We consider an atypical supertableau with N rows of bj 

covariant boxes and N rows of contravariant boxes, 
N + N < n, as represented in Fig. 1. The highest weight of 
this representation belongs to the SU(n) ® U(l) component 
having the lowest eigenvalue of the U(l) generator Q. Such a 
component is obtained, from the original diagram, by trans
ferring the first contravariant column of Nboxes to the U(l) 
part as a row of Iv contravariant boxes. The result is shown in 
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Fig. 2. It is straightforward to determine the (n - 1) Kac
Dynkin parameters al,a2 , ... ,a" _ 1 on the SU(n) part of this 
component, and we immediately get the relation (7) of the 
text. The computation of the lowest eigenvalue of Q is 
straightforward: 

qmin = J...{£bj - r(bj - II} - N. 
nil 

Using now the Eqs. (8), we compute the two sums 
N N 

Ibs = Isas 
I I 

N N N N 

Ibs = Isa,,-s = nIa,,-s - I(n -s)an- s, 
I I I I 

and we get 
I n - I _ N In 

qmin =- Isas -N- Ian- s =-Isa,. 
n I I n I 

The value obtained for a" is atypical 
N 

an = -N- Ian- J = -AN' 
I 

APPENDIX B: SU(n) ® U(1) DECOMPOSITION OF 
TYPICAL SUPERTABLEAUX 

(1) For supertableaux of type I ° of the SU(n) ® U(I)com
ponent containing the highest weight is shown in Figs. 4 and 
6 (see also Ref. 6). We now compute for this component the 
eigenvalue of the U( 1) operator Q. The result is simply 

with 

1 n 

qrnin =-Ibj +A, 
n I 

A = CI - n for covariant supertableaux I~, 

A = - cI for mixed supertableaux Ig. 

(Bl) 

The set of parameters a l,a2, ... ,a" _ I is then trivially obtained 
as in the text, and, using Eq. (17), we get 

n n-l 

Ibj = I sas + nb". 
I I 

The Kac-Dynkin parameter an is given by 
I n-I 

an =qrnin -- Isas. 
n I 

Using Eqs. (BI) and (B2), we get 

an =bn +A. 
The coordinate Y I is given by A. 

(B2) 

(2) For supertableaux of type In the SU(n) ® U(I) com
ponent containing the highest weight is shown in Figs. 8 and 
10 [see also Ref. 6]. We now compute for this component the 
eigenvalue of Q. The result is 

1 n _ 

qrnin = - -I(b} - 1) +A (B3) 
n I 

with 
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A = - cI for contravariant supertableaux I~, 

A = C I - n for mixed supertableaux I ~ . 
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The set ofparametersa l ,a2, ... ,an _ I is obtained as in the text, 
and, using Eq. (23), we get 

n n-l 

I(bj - 1) = n(bl - 1) - 2: sas ' (B4) 
I I 

For the Kac-Dynkin parameter an' we obtain from Eqs. (B3) 
and (B4) the value 

an = 1- b l +A, 
leading again to 

YI= -A. 

(3) Now for mixed supertableaux of type P with 0 <j < n 
the SU(n) ® U( 1) component containing the highest weight is 
shown in Figs. 12 and 14. We compute for this component 
the eigenvalue of Q 

1 [n -j j _ ] 
qmin =- Ibs - I(bs -1) +A, 

n I I 

(B5) 

with A given by 

A = - c1 for mixed supertableaux Ib, 
A = C1 - (n - j) - j = C1 - n for mixed supertableaux Ijl' 

Again we immediately obtain the set of parameters 
a l ,a2, ... ,a" _ I as in the text. We now use the Eqs. (30) to 
compute the sums 
n-j "-j n-I 

I as = I sas + (n - j) 2: as + (n - j)( 1 - bd, 
1 I ,,-j+ I 

j n-1 n-I 

I(bs - 1) = - j(1 - bl ) + (n - j) I as - 2: sa,. 
1 n-j+! n-j+! 

Combining both results, 
n-j j ,,-I 

I bs - I(bs - 1) = I sas + n(I - bd. 
I I I 

Using Eqs. (B5) and (B6), we get 

an = (1 - bd + A, 

corresponding again to 

YI= -A. 

(B6) 
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Differentiable vectors and sharp momentum states of helicity 
representations of the Poincare group 
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This paper discusses some mathematical difficulties in handling sharp momentum eigenvectors 
for a massless helicity representation of the Poincare group, related to the non-nuclearity of the 
space of differentiable vectors, and to the existence of singularities in the Lorentz group 
generators. A simple characterization of the nuclear space of differentiable vectors of the 
extension of the representation to a representation of the conformal group is given in terms of 
functions on the space R4 - ! 0). Using a fibration of this space over the forward light cone (in 
momentum space), the singularity in the generators is shown to be related to the fact that the 
standard presentation of the helicity representations should be reformulated in terms of nontrivial 
sections over the light cone. The problem is partly identical with the one encountered in the study 
of an electron in a magnetic monopole field, the generator singularity taking the place of the Dirac 
string. 

PACS numbers: 02.20. + b, 02.40. + m, 11.30. - j 

I. INTRODUCTION 
This paper is concerned with the helicity representa

tions, i.e., the mass zero, "discrete spin" representations of 
(the covering of) the Poincare group, and with their general
ized sharp momentum state vectors. 

Most physicists, of course, use sharp momentum states 
of photons and other massless particles without hesitation. 
A recent example is given by the paper of Weinberg and 
Witten,1 where possible restrictions on the possibility of con
structing quantum field theories with massless fields are dis
cussed. We shall be concerned with two (seemingly unrelat
ed) difficulties in the mathematical description of such sharp 
momentum states. 

The standard way2,3 to introduce generalized states in a 
group representation is via a "Gelfand triplet" 
9 cdf'c 9/, Here df'is the Hilbert space of our represen
tation, and 9 is a dense invariant domain of definition for all 
the infinitesimal generators, equipped with a topology mak
ing it a nuclear topological space, The infinitesimal genera
tors should be essentially self-adjoint on 9 and continuous 
as operators in 9; 9/, the topological dual of 9, is then a 
possible space of generalized state vectors. In particular it 
contains complete sets of generalized eigenvectors for all the 
generators. 

The first difficulty with the helicity representations 
concerns the choice of the nuclear space 9. For many repre
sentations the natural choice is the maximal common invar
iant domain of the infinitesimal generators, i.e., the space of 
differentiable vectors of the representation, with a certain 
natural topology. For the helicity representations, however, 
this space of differentiable vectors is not nuclear. 3 Since a 
helicity representation can be uniquely extended to a repre
sentation of (the covering of) the conformal group SO(4,2),4-6 
we choose the nuclear space of differentiable vectors of this 
extended representation as our 9. The fact that the helicity 
representations can be extended to a larger semisimple group 
seems to be closely related to the non-nuclearity of the space 
of differentiable vectors. 

The second difficulty is related to the singularity which 

appears for nonzero helicity in the expressions for the infini
tesimal generators.7

-
9 It turns out to be natural to consider 

our representation space as a Hilbert space of sections in a 
certain complex line bundle over the forward light cone in 
momentum space, rather than as a space off unctions on the 
cone. As L 2-spaces these are equivalent, but the differentia
ble vectors are most naturally expressed as sections. 

These line bundles are mathematically the same as the 
ones used in the description of "magnetic monopoles with
out strings. 10,11" The state of a charged particle in the field of 
a magnetic monopole is described by a "wave section" rather 
than a wave function. 

The line bundles involved can all be described using a 
certain projection R4-+R3 (Rk = Rk - ! 0) ), which restricted 
to the unit sphere is the Hopf map S 3 -+S 2. The fiber over 
each point of R3 is a circle. Our analysis is simplified by 
describing the sections of the representation space as func
tions on R4 with a certain equivariance condition along the 
fibers (see Ref. 5). 

The nuclear space of differentiable vectors of the con
formal group then turns out to be the set of equivariant func
tions in Y (R4), the space of rapidly decreasing test func
tions. The generalized states can then be identified with 
equivariant elements of Y/(R4), the space of tempered distri
butions. 

Here two remarks are in place. 
First, even for helicity zero, where the state vectors can 

be considered as ordinary functions of pER3 (the forward 
light cone in p-space), not all the differentiable vectors will 
correspond to functions which are differentiable at p = O. 
This is because our projection R4-+R3 is quadratic. 

Second, since the differentiable vectors are not neces
sarily zero at the origin, we will have generalized state vec
tors with support at the origin describing non-wave-like 
states of the "field." 

The structure of the set of sharp momentum states is 
then also clear. A o-function in a point ofR4 describes a state 
with the corresponding momentum, and o-functions in dif
ferent points on the same fiber over R3 correspond to the 
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same state, up to a phase. This means that the p-dependence 
of the momentum states should not be considered as a func
tion, but rather as a section in a certain bundle. 

More explicitly, if we try to fix the phase at each p and 
let Ip) denote the corresponding generalized state vector of 
momentum p, we shall find that the mapping 
R33P---+lp)E,@' cannot be continuous for nonzero helicity. 
This is not at all surprising, it generalizes the fact that we 
cannot choose a continuously varying plane of polarization 
for photons in all points of the sphere (there is no continuous 
field of nonzero tangent vectors on a sphere). 

This article is organized as follows. In Sec. II we deduce 
the form of the helicity representations using the method of 
induced representations. There the projection R4~R3 will 
also be described. In Sec. III we give the local (infinitesimal) 
form of the representations, exhibit the extension to the con
formal group, and show how our form of the representations 
corresponds to that of Refs. 7-9. The action of the infinitesi
mal generators on functions expanded in "monopole har
monies" is also given and the analogy with magnetic mono
poles is presented. In Sec. IV we deal with the concepts of 
differentiable vectors and nuclearity, and find the spaces of 
differentiable vectors of our representations of the confor
mal group. Generalized eigenstates of the momentum opera
tors are presented in Sec. V and a brief discussion of the 
relation between states of zero momentum and space-time 
independent fields is given. The results are summarized and 
discussed in Sec. VI. 

II. THE REPRESENTATIONS 

We shall study the (O,A, ), i.e., zero mass, finite helicity A, 
representations of the double covering group ?J ofthe prop
er Poincare group, where 

?J = R4 XSL(2,C) = [(a,A); aER4, AESL(2,C)). (2.1) 

The covering homomorphismA~A (A ) ofSL(2,C) onto 
the proper Lorentz group it'1+ is defined as usual by 

H(A (A)P) =AH(p)A +, 

where 

H(p) = pOuo + P'(J 

(2.2) 

(2.3) 

is a parametrization of Minkowski p-space I p = (po,p)) by 
2X2 Hermitian matrices, Uo is the 2X2 unit matrix, and (J 

the Pauli matrices. The scalar product in Minkowski space is 
ap = aOpo - a·p. 

The theory of induced representations is presented in 
many books and articles. We mention only one rather recent 
reference,12 which also gives a treatment of induced repre
sentations of Lie groups in terms of sections of fiber bundles, 
appropriate for our purpose. For the special case of induced 
representations of the Poincare group, whieh is also treated 
in many places, we can mention, apart from the original arti
cle by Wigner,13 the articles by Guillot and Petit,S which 
treat explicitly the form of the representations in terms of 
functions on the group SL(2,C). 

In the induced representation framework the zero mass 
representations correspond to a stability point in p-space sit
uated on the light cone, say p = (1,0,0,1). This gives 
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H(p) = (~ ~), 
and the corresponding stability group-the little group L in 
this case-is 

{ (

ei<p 
E(2)= a 

Given an inducing representation U v(L ) of the little 
group L in a vector space V. the corresponding representa
tion of ?J can be realized on the space of equivariant func
tions from SL(2,C) to Vby the formula 

[U((a,A ))F](B) = exp [ia·A (BJPJF(A -IB). (2.5) 

Equivariance means that for BESL(2,C), CEL, 

F(BC) = Uv(C-1)F(B). (2.6) 

It should be noted that this form of the induced repre
sentation is uniquely fixed by the choice of stability point p 
and inducing representation U v(L ) of the little group corre
sponding to p. 

Equation (2.6) means that the function F is determined 
by giving its value for one element of each of the left cosets of 
SL(2, C) with respect to the subgroup L, or expressed in fiber 
bundle terminology, F is a section of the fiber bundle SL(2, C) 
X L V associated to the principal bundle [SL(2,C), SL(2,C)/ 
L,L]. The base space of both bundles, the homogeneous 
space X = SL(2, C)/ L, can be identified with the orbit 
IA (A JP;AESL(2,C)) ofSL(2,C) in Minkowski space through 
the point p. 

In the case of a massive representation this orbit is the 
mass hyperboloid I p;p2 = m 2,po > 0) and is the same as
more precisely, is diffeomorphic to-three-space R3. Since 
this space is contractible, every fiber bundle with R3 as a base 
is trivial, i.e., of the form R3 X 7, where Y is the fiber. This 
corresponds to the possibility of choosing the set of A 's para
metrizing the orbit IA (A JP) in a smooth way. In other words, 
there exists a global smooth section in the principal fiber 
bundle [SL(2,C), SL(2,C)/ L,L ] (not the same Land p as be
fore!). Let us call the parametrizing function A (p); here p 
varies over the orbit, and we have A (A (p)JP = p. This global 
cross section defines an isomorphism relating a function 
fX = SL(2,C)/L-+V to an equivariant function 
F:SL(2,C)~V through therelationf(p) =F(A (p)). There
presentation (2.5) on equivariant functions, when trans
ferred to functions on the homogeneous space, then takes the 
familiar form 

[U((a,A )If](p) 

= eia'PUv[A (p)-IAA (A (A )-lp)lf(A (A )-lp). (2.7) 

The representation space of the corresponding unitary 
representation is the spaceL 2(R3,dp/po, V) of square integra
ble V-valued functions on the mass hyperboloid, equipped 
with the invariant measure. The explicit form of the repre
sentation depends, besides on p and U v(L ), on the choice of 
cross section A (p). Different choices give unitary equivalent 
forms of the representation as do different choices ofp on the 
mass hyperboloid, provided the associated representations 
U v(L ) and U v(L ') of the conjugated little groups Land L ' 
are equivalent in an obvious way. 
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The set of differentiable vectors turns out to be the set of 
Coo, rapidly decreasing V-valued functions on the mass hy
perboloid. Since V is finite dimensional, this set of functions 
can easily be given a topology making it a nuclear space, and 
the generalized eigenvectors of the group generators are then 
contained in the set of tempered V-valued distributions on 
the mass hyperboloid. 

We now return to the mass zero representations. In this 
case the homogeneous space SL(2,q/E (2) is diffeomorphic 
to the pointed cone ( p;p2 = O,po> 0 J, or, equivalently, to 
three-space with the origin removed, JR3. The principal bun
dle is nontrivial in this case, which means that it is not possi
ble to choose a (smooth or even continuous) cross section 
A (p) covering the whole base space. There must be discon
tinuities along a curve. In one standard choice this singular
ity curve is taken to be the line ( p = (K,O,O, - K), K> 0 J 
through the "south pole"; on this line (the formula corre
sponding to) (2.7) does not make sense. As far as the defini
tion of the unitary representation is concerned, this lower
dimensional singularity does not matter, but when one is 
interested in the proper definition of the infinitesimal gener
ators and the differentiable vectors it is necessary to face the 
fact that (for A i= 0) one really has to do, not with ordinary V
valued functions, but with nontrivial sections in the associat
ed vector bundle SL(2,q X L V, which sections have to be 
defined on (at least) two coordinate patches over JR3. In the 
study of the infinitesimal generators a domain of these oper
ators is sometimes given as the set of rapidly vanishing C 00 

functions on lR3 which vanish also in a small cylinder con
taining the negative z axis, along which the generators are 
singular. Although this gives a subset of differentiable vec
tors invariant under the action of the generators, this subset 
is neither dense in representation space nor invariant under 
finite group transformations, and is not very useful in defin
ing generalized eigenvectors of the generators. 

Since for the helicity representations the inducing re
presentation of the little group E (2) is one-dimensional-i.e., 
V is one-dimensional-the space of the induced representa
tion is a space of sections of a complex line bundle over the 
base space JR3. Since JR3 can be writtenS 2 X lR+, where lR+ is 
the open positive half-axis, the nontrivial part of the bundle 
is a complex line bundle over S 2. These are well-known, and 
enter, e.g., in the geometric quantization of a system consist
ing of a particle moving on a sphere. The corresponding 
problem on R3 instead of S 2 appears-apart from in the case 
studied here-when one treats the quantum mechanics of a 
charged particle, e.g., an electron, in the field of a point mag
netic monopole situated at the origin. ID.I I The singularity of 
the generators alluded to above and exhibited in Sec. III is 
the exact equivalent of the "Dirac string" containing the 
singularity of the vector potential representing the magnetic 
field of the monopole. The different possible complex line 
bundles are indexed by the integers; these integers appear as 
the monopole charges or as the possible values of U in our 
case. 

In the study of the differentiable vectors of a (O,A ) repre
sentation it is convenient to use a form of the representation 
intermediate between (2.5) and (2.7), namely a form realized 
on a set of equivariant functions on R4. This form is related 
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to the so-called KAN factorization (or global Iwasawa de
composition, see, e.g., Ref. 12 or 14) of the group SL(2,q, 
which shows that this group is, as a manifold, diffeomorphic 
to the productS 3 X lR+ X lR2, where the last factor is actually 
the translation part of the little group E (2), given by z in (2.4). 
This part is represented trivially in the inducing representa
tion in the helicity case (but not in the "continuous spin" 
representations). 

The KAN factorization expresses an element ofSL(2,q 
uniquely in the form 

(
a b) (fl -Y)(J.L 0 )(1 Z) 
c d = r fJ 0 l/J.L 0 1 

{ :x: J (2.8) 

where 

J.L = ~ lal 2 + Ic1
2

, fJ = a/J.L, r = c/J.L, 
z = (ab + cd )/J.L2. 

Here J.LElR+, ZEC, and fJ and r fulfilllfJ 12 + Irl2 = 1. 

(2.9) 

Since the first factor on the first rhs of (2. 8) is an element 
of SU(2);:::;S 3, the relation shows the diffeomorphism 
SL(2,q;:::;S3 X lR+ X lR2 ;:::;R4X lR2

• The last equality in (2.8) 
shows that the R4 part ofSL(2,q is parametrized by the first 
column (a,c) of the SL(2,q matrix. 

For the representation (O,A )-where U is an integer
the inducing E (2) representation is 

[(
e

ia/2 
Z)]. U

V 
= e,,ta. 

o e-,a12 

(2.10) 

From (2.6) we conclude that if 

then 

F(BC)=F(B), (2.11) 

i.e., Fis constant on every fiber lR2 over R4. 
Changing notation and defining JR4 = C2 as the space of 

complex nonzero two-spinors U = (u I, u2 ) [ = (a,c)], we de
fine equivariant functions on C2 from (2.6) by 

(2.12) 

The invariant volume element on SL(2,q underlying 
the (unitary) representation (2.5) corresponds to the Euclid
ean volume element on R4, and (2.5) takes the form 

[U((a,A ))g](u) = eia'Plulg(A -IU ). (2.13) 

Herep(u) is defined by H(p(u)) = 2uu+, or in compo
nent form, 

p(u) = (IUII 2 + IU21 2,U IU2 + UIU2' 

i(U IU2 - UIU2),lu II2 - lu212). (2.14) 

Equation (2.14) gives an explicit expression for the pro-
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jection map from ueR4 to the point peR3; all points on the 

circle {eia/Zu; Oo;;;a < 41T J project on the same p. The radius 

Ipi corresponds to lull z + IUzlz. 
The essential part of the fibration of R4 -;:;:,S 3 X R + over 

R 3 -;:;:, S Z X JR + is the so-called Hopf fibration (S 3,S Z,S I ), or, in 
group language, the principal fiber bundle [SU(2), SU(2)1 
U(l), U(l)] ofSU(2) over the homogeneous space ofleft co
sets ofSU(2) with respect to a U(l) subgroup. The projection 
map S3_Sz-the Hopfmap--ofthis fibration can be real
ized by combining the map S3_C given by (up uz)-uzlu l 

with a stereographic map from the complex plane C to the 
unit sphere SZ. 

III. INFINITESIMAL GENERATORS AND EXTENSIONS 
OF THE REPRESENTATIONS 

A. The Infinitesimal generators on equlvariant functions 

To find explicit expressions for the infinitesimal genera
tors of the representations presented in Sec. II we introduce 
real Euclidean coordinates (7J1,7Jz,'I73,7J4) and "spherical" co
ordinates (7J,(),t/J,t/J) on CZ = R4 as follows: 

U I = 714 - i7J3 = 71 cos ~()e - itt/> + "')lZ, 

Uz = 7Jz - i7J1 = 71 sin ~()ei(t/> - .p)/Z, 

7JeJR+, ()e[O,1T], t/Je[0,21T), t/Je[0,41T). 

(3.1) 

Then 7Jz = 7J~ + 7J~ + 7J~ + 7J~ and p( u), the image of U 

under the projection CZ_R3 defined in (2.14) has spherical 
coordinates (7Jz,(),t/J ). 

A normalized U (i.e., 71 = I) corresponds to an element 
ofSU(2) [choose z = O,/-l = I in (2.8)], and (t/J,(),t/J) are then 
the Euler angles defined to give the following element of 
SU(2): 

- i(IIZ)t/>", - i(IIZ)O"y - i(IIZ)""" e e e . (3.2) 

The Euclidean volume element is 

4 I d~ 
d 71 = d7J1 d7Jz d7J3 d7J4 = - dt/J -, (3.3) 

16 P 
where p = p(u),p = Ipl. (N.B. Thisp is different from the 
four-vector p used in Sec. II!) 

The condition (2.12) for equivariance in the (0). ) repre
sentation becomes 

g(7J,(),t/J,t/J - a) = e - iAag(7J,(),t/J,t/J), (3.4) 

i.e., our representation space is the closed subspace of L Z(JR4) 
consisting of functions for which this condition is fulfilled 
almost everywhere. 

If we define the infinitesimal generators P, J, N of the 
representation (2.13) by 

U ((a,!)) = eia.P = ei(aOpO - a'p), aeJR4, 

U ((O,e - i(I12)a''')) = e - ia'J,} JR3 
U((O,e(IIZ)P''')) = e - iP·N, u,pe, 

we find, with the notation ai = ala7Ji' 

1665 

pO =po = 7Jz, 

p = p = (2(711713 + 7Jz7J4),2( - 711714 + 7JZ7J3)' 

- 7Ji - 7J~ + 7J~ + 7J~), 
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(3.5) 

J = (i/2)( - 714 al + 713 az - 7Jz a3 + 711 a4 , 

- 713 BI - 714 Bz + 711 B3 + 7Jz B4, 

7Jz BI - 711 Bz - 714 B3 + 713 B4), (3.6) 

N = (i/2)( - 713 BI - 714 Bz - 711 B3 - 7Jz B4, 

714 BI - 713 Bz - 7Jz B3 + 711 a4, 

711 BI + 7Jz az - 713 a3 - 714 B4)' 

B. Extensions of the representations 

The extensions of these representations to the confor
mal algebra so(4,2)4.5 then have the following form for the 
generators D and K: 

D i B' i a. 
= "2 7Ji i + I = "271 B7J + I, 

Ko = - ! Bi Bi = - ~ BZ, 

K = !(2(BI B3 + Bz a4), 2( - BI a4 + Bz B3)' 

- Bi - B~ + ~ + ~). 

(3.7) 

They have been chosen to satisfy the following commu
tation relations,9 with 

(3.8) 

[M I-'V,M ,1(7] = i(gvAM 1-'(7 _ gV(7M 1',1 _ gl-"'Mva + gl'(7MvA), 

[M I'v,PA] = i(gvAp I' _ gI'Apv), [P I-',PV] = 0, 

[MI'V,KA] = i(gvAKl'_gI'AKV), [KI',KV] =0, (3.9) 

[K I',PV] = 2i(gl'vD - M I'V), [M I-'V,D] = 0, 

[D,P 1'] = iP 1', [D,K 1'] = - iK 1'. 

To see that this extension of the (0). ) representation is 
not only on the level of algebras, but can be integrated to a 
representation of the covering group of the conformal group 
SO(4,2), we study a certain representation of the symplectic 
algebra sp(8,JR) on all of L Z(JR4). 15.16 

The 36-dimensional algebra sp(8,JR) consists of 8 X 8 
real matrices of the form 

with P, Q, R, and S 4 X 4 matrices such that S = _ P " 
R = R " Q = Q '. Here A ' denotes the transpose of A. 

It is not difficult to see that then the symmetric opera
tors 

7J'R7J + (i/2)(7J'S a - alp 71) + ! a'QB, (3.10) 

where 71 and a are interpreted as column vectors, define a 
representation of i sp(8,JR) onL Z(JR4). It contains a subalgebra 
isomorphic to i so(4,2), and the restriction of this subalgebra 
to the subspace of A-equivariant functions is exactly the (0). ) 
representation given above. 

To prove that our sp(8,JR) representation-and hence 
also the so(4,2) representation-can be integrated, we apply 
the well-known criterion due to Nelson. 17 
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Suppose {XI' ... ,xd J is a set of symmetric operators on 
a Hilbert space JY, with a common invariant dense domain 
!iJ and such that (iX I , ••• ,iXd J define a representation of a 
real Lie algebra with corresponding simply connected Lie 
group G. 

If then the Nelson operator A = l:X~ is essentially self
adjoint on !iJ, there is a unique unitary representation of G 
on JY with generators XI , '" ,xd' 

Apart from repetitions, the following operators form a 
basis for our sp(S,R) representation: 

l1;l1j,i(l1; Jj + Jj 11;)12/2, 

J; Jj 14; iJ = 1, ... ,4. 

We then get the Nelson operator as 

A = ( - J2/4 + 112)2 +~. 

(3.11) 

(3.12) 

If we choose for !iJ the set Y(R4) of C oc, rapidly de
creasing (with all derivatives) functions on R4, this set fulfills 
the conditions of Nelson's criterion. That it is a common 
invariant domain of all the generators is obvious, and that A, 
being essentially the square ofthe isotropic harmonic oscilla
tor Hamiltonian in four dimensions, is essentially self-ad
joint on !iJ is well known; it follows most easily from the fact 
that the eigenfunctions of A, being Hermite functions, all 
belong to !iJ . 

This proves the integrability of our sp(S,R) representa
tion, and hence a fortiori of the (O,A. ) representation of so(4,2). 

Now we introduce the operators I, which are generators 
for our sp(S,R) representation but not for so(4,2): 

1= (iI2)(114 J I + 113 J2 - 112 J 3 - 111 J4, 

-113 J I + 114 J2 + 111 J3 -112 J4, 

112 J I -111 J2 + 114 J 3 -113 J4) 

(i.e., like J except for a change of sign of 114 and J4 ). 

Then 

(3.13) 

[/Jj] = i€ijk1k, [1;.Jd = 0, 12 = J2, (3.14) 

i.e., the I generate a su(2) subalgebra of sp(S,R) commuting 
with our su(2) subalgebra of so(4,2). Both J and I can be 
considered as acting on L 2(S 3) and with our identification of 
S 3 with SU(2), J and I correspond to the left and right regular 
representations, respectively. 

One finds 

(3.15) 

13 commutes with our so(4,2) subalgebra, and the space of ..1.,
equivariant functions inL 2(R4) is exactly the eigenspace of 13 
corresponding to eigenvalue - A. 

As for the commutation relations between I and the 
so(4,2) generators, one finds that the "J-scalars" pO, D, KO 
are also "I-scalars," i.e., they commute with I, and that each 
component of the "J-vectors" P, N,K is the three-compo
nent of an "I-vector." The 36 (including I and J) operators so 
obtained form a basis for our sp(S,R) representation. 

C. The infinitesimal generators on "functions" on the 
cone 

To arrive at the "usual" form of the infinitesimal gener
ators expressed in p,7,9 we first transform the expressions 
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above to coordinates p, t/J or (P,(),t/J,t/J) in R4. The results are 

pO = P = I pi, P = p, 

J . V i J 
= -IPX - --e -

sin () P Jt/J ' 

N = - ipV + i cot ()e", ~ , 
Jt/J 

D = i(p·V + 1) = i~ ~ + I). 

KO= _pV2 _ _ 1_~ + 
P sin () J~ 

(3.16) 

2cos () J 2 

P sin2 () Jt/J Jt/J ' 
1 

K = - pV2 + 2(p·V)V + 2V + . 2 (ep - 2 cos ()ez ) 
psm () 

X J~:2 + ? (- p sin ()e", ~ + ez ~) ~ . 
'I' P sm

2 
() Jpz Jt/J Jt/J 

Here V = (JIJPx,JIJpy,JIJpz), ep = (cos t/J,sin t/J,O), ep 

= pip, e", = ( - sin t/J, cos t/J,O), and ez = (0,0,1). 
Also, 

13=i~, 
Jt/J 

I± =II±i/2 = _e=t=;tP( 

- i cot () :t/J)' 

J i J +-+-
- J() sin () Jt/J 

(3.17) 

These operators still act on equivariant functions on R4. 
As described in Sec. II, we arrive at a description acting on 
functions on the forward light cone (or R3) by choosing 
smooth local sections in the bundle (R4,R3,S I). The "stan
dard" choices are t/J = + t/J, which give charts a and h, re
spectively, and which are defined and smooth except on the 
negative and positivepz axis, respectively. 

For the chart a, for any A-equivariant gEL 2(R4), we 
write 

ga (112,(),t/J ) = g(l1,(),t/J, - t/J ), () =/= 1T, 

and find 

g(l1,(),t/J,t/J) = ga(p)e;A(H tPI, () =/=1T. 

(3.1S) 

(3.19) 

The generators' action on ga EL 2(R3,dplp), i.e., in the 
chart a, is then 

P~=P, Pa=p, 

J a = - ip X V + A P + pez 
, 

P+Pz 
ezXp 

Na = -ipV +..1.,---, 
P+Pz 

Da = i (p ~ + 1) , (3.20) 

2 2iA J U 2 

K~ = -pV - --- + --, 
p +pz Jt/J p +pz 

Ka = - pV2 + 2(p·V)V + 2V + 2iA P + pez XV 
P+Pz 

U 2 

- ---ez • 

P+Pz 
These expressions are the same as those given in Ref. 9. 
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D. A basis in the representation space 

To construct a suitable basis for the representations of 
the conformal algebra so(4,2), note that it contains two com
muting subalgebras: a su(2) algebra spanned by J and a 
su(l,l) algebra spanned by pO, KO, D. 

For the latter one finds with the basis 

Ao = ~(po + KO), Al = !(p0 - KO), A2 = D, (3.21) 

the Casimir operator 

A~ -Ai -A~ =!(p°Ko+KoPO)-D 2. (3.22) 

But in our representation 

J2 + D 2 = !(p°K O + KOpO), (3.23) 

so the Casimirs ofsu(2) and ofsu(l,l) coincide. 
As we noted above, J generate the left regular represen

tation ofSU(2) on itself, and the Peter-Weyl theorem gives 
us a complete and orthogonal set of functions of the angles: 

X~m(e,¢,1/;) = D~m( - 1/;, - e, - ¢), 1= O,p, ... , 
A,m = -I, -I + 1, ... ,I. (3.24) 

HereD ~m (a,/3,y) is the matrix element (A,m) of the unitary 1-
representation ofSU(2) for the group element with Euler 
angles (a,/3,y), and ( - 1/;, - e, - ¢ ) corresponds to the in
verse of the group element given by (¢,e,1/;). We use phase 
conventions as, e.g., in Ref. 18, thus 

X~m(e,¢,1/;) = N + A )!(/- A )!(I + m)!(1 - m)!ei(AI/o+ m~J 
(_ l)'-A+m 

x~ (I +..1, - t)!(/- m - t)!t!(t -A + m)! 
X (cos !e fl + A - m - 21 (sin !e )21 - A + m. (3.25) 

get 

and 

Then, from the representation condition of the D ~m we 

J2X~m = 1(1 + l)X~m' 
JyX~m = mX~m' 

J±X~m =~/(l+ l)-m(m± l)X~m±I' 

IyX~m = -AX~m' 

I ± X~m = - ~I (I + 1) - A (A + 1)X~ =+= 1m . 

(3.26) 

(3.27) 

So the index A introduced in X ~m is indeed the helicity 
[cf. the discussion after (3.15)], and an arbitrary function in 
the space of the (O,A ) representation can be written 

f(1],e,¢,1/;) 
I 

I I ftm(1])X~m(e,¢,r/J). (3.28) 
I~ IAI.IAI + I •.. m~-I 

The equivariance condition is thus taken care of by the 
X ~m , and the ftm (1]) are ordinary functions. The sur 1,1) gen
erators act on theftm only, and for each I,m we have an 
irreducible representation. Since the value of the Casimir 
operator is I (I + 1), and the "compact" generator Ao is evi
dently positive [see (3.21), (3.6), and (3.7)], this irreducible 
representation is the representation D / from the discrete 
principal series (see, e.g., Ref. 19). As Ao is essentially the 
four-dimensional isotropic harmonic oscillator Hamilton
ian, a suitable basis for our representation could then be the 
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set of eigenfunctions of this operator, with fixed A and all 
I,m. 

Below we give the expressions for the action onf(p) 
XX~m (withp = 1]2) of the so(4,2) generators. Using the "1-
vector" properties noted above, it is enough to find the ac
tion of P3, N 3, K3 on, e.g., xii and use the Wigner-Eckarts 
theorem both in J and in I, and self-adjointness. 

The results are given for the spherical components 

P -I = (PI - iP2)1.J2, Po = P3 , 

P +1 = - (PI + iP2)1.J2, (3.29) 

and similarly for Nand K: 

Paf(P)X~m 

= (I + I,m + (711(7,lm) (I + 1,A 110,/..1, )pf( p)X t;r/+ a 

+ (I,m + (711(7,/m) (1..1, 110,/..1, )pf(P)X~.m + a 

+ (1- I,m + (711(7'/m) (1- 1,A 110,/..1, ) 

Xpf(p)X~~I+a' 

Naf(P)X~m 

= - i(1 + I,m + (711(7,lm) (I + 1,A 110,/..1, ) 

Xpl+1 ~p-1(P)X~:;r/+a 
- i(l,m + (711(7,lm) (1..1, 110,/..1, ) 

X ~Pf(P)X~.m+a 
- i(/- I,m + (711(7'/m) (1- 1,A 110,/..1, ) 

d 
Xp-I dp /+1(p)X~~I+a' 

Kaf(P)X~m 

= (I + I,m + (711(7,lm) (I + 1,A 110,1..1, ) 

d 2 
Xpl+ l-p -1(p)Xl+ 1 

dp2 A.m +a 

+ (I,m + (7/1(7,/m) (fA 110,/..1, ) 

X/ ~ p-21 ~ /+ 1(p)X~,m+a 
+ (1- I,m + (71 1(7'/m) (/- 1,A 110,1..1, ) 

d 2 

X -I 1+1'f( )XI-I 
P dp2 P P A.m + a' 

(7 = 0, ± 1, 

and for the generators of our sur 1,1) subalgebra 

pOf(P)X~m = Pf(P)X~m' 

Df(P)X~m = i ~Pf(P)X~m' 

E. Relations with magnetic monopoles 

(3.30) 

(3.31) 

(3.32) 

(3.33) 

As has been pointed out earlier, the above description of 
the (O,A ) representation parallels that of a charged particle in 
the field of a magnetic monopole, given, e.g., in Refs. 10 and 
11. (The analogy, at least on a formal level, between this 

B. Ek and B. Nagel 1667 



                                                                                                                                    

magnetic monopole problem and massless helicity represen
tations has been noted by other authors.20

) In the monopole 
case, the base space is the three-dimensional configuration 
space instead of the light cone, and the equivariance condi
tion is the transformation rule for the wave function under 
gauge transformations. The value of A for the monopole case 
is proportional to the product of the electric charge of the 
particle and the magnetic charge of the monopole, and the 
fact that U must be an integer is the famous Dirac charge 
quantization condition. 

Our choice oflocal sections giving charts a and b corre
sponds to the gauges a and b of Ref. 11 and the relation 
between our functions X ~m and the "monopole harmonics" 
in Ref. 11 is 

Yq,lmJO,(J) = ~(21 + 1)/417' X1_q,m.(O,(J), (3.34) 

i.e., Yq,lm isX1_q,m normalized on S2. 
For q integer, the operators I ± give a convenient way 

to find Yq,/m from the ordinary spherical harmonics 
Y1m = YO,/m' 

IV. DIFFERENTIABLE VECTORS AND NUCLEARITY 

In the following we collect first some standard results 
on differentiable vectors of group representations, nuclear
ity, etc. For details we refer, e.g., to Ref. 3 and references 
there. 

The set of differentiable vectors of a unitary representa
tion U(G) ofa Lie group Gin a Hilbert spaceKis the (dense, 
linear) set g of all x5:W" such that the map G-+K defined by 
g-+U(g) x is a C 00 function on G (differentiability in the K 
norm sense). Equivalently g can be defined as the largest 
common invariant domain of a set of generators {J1, ••• ,In J 
ofU( G). This can also be expressed as follows: form the Nel
son operator 

A =Ji + '" +J~, (4.1) 

associated to the choice {J1, ••• ,In J of generators. Here A 
can be shown to be essentially self-adjoint (i.e., its self-adjoint 
extension is uniquely fixed) on a suitable domain ofU(G), 
e.g., the Giirding domain (which can actually be shown to 
coincide with g, see Ref. 21). If we denote the self-adjoint 
closure of A by A, g can be defined as the intersection of the 
domains of all powers of A: 

(4.2) 

We can give g a natural Frechet space topology by the 
countable set of scalar products (x,Y)n = (x,(A + 1 fny ). We 
can then form the triplet 

geKeg', (4.3) 

where g' can be identified (via an antilinear isomor
phism) with the space of linear functionals on g. Here g 
(and hence &) is dense in g' in the topology of g' as a 
strong dual of g. Here g is invariant not only under the 
action of all generators (and hence of the elements in their 
enveloping algebra), but also under U(G); all these operators 
are also continuous in the topology of g. By duality they 
can then be extended to continuous operators in g'. We 
then have in fiJ' a representation U' (G ) of G with everywhere 
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defined and continuous generators J ; , ... , J ~ . 
The advantage with working in the extended domain 

g' instead of the restricted domain!» is that under certain 
conditions we are assured to find in g' a complete set of 
(generalized) eigenvectors of the generators J 1 , ••• ,In and 
other operators in the enveloping algebra of U( G). 

According to the nuclear spectral theorem this last as
sertion holds if!» , with the Frechet topology defined above, 
is a nuclear space. The condition for!» to be nuclear can be 
expressed in terms of the spectral properties of the Nelson 
operator A (which is evidently nonnegative). 

It states that g is nuclear if and only if A has a purely 
discrete spectrum {A 1),2"" J such that for some positive M 
the sum 

1 
~ (1 +Ai)M < 00. 

(4.4) 

This condition is equivalent to requiring that the opera
tor (I + A) - M12 should be of the Hilbert-Schmidt type. 

Using this criterion for nuclearity it is easy to see that 
the set of differentiable vectors of a (0), ) representation of9 
cannot be nuclear3

: Suppose the Nelson operator 
A = J2 + N2 + p2 + p02 had a smallest (obviously positive) 
eigenvalue A 1> with corresponding normalized eigenfunction 
tP. Forming the (still normalized) eigenfunction 

where D is as in (3.7) or (3.20), we easily deduce from the 
commutation relations (3.9) that 

(tPK;AtPK) = (tP;AtP) + (e - 2K _ 1) (tP,(P2 + p02)tP). 

Since the scalar product in the last term is positive, we obtain 
for K> 0 the impossible result (tP K;A tP K) < A l' 

Now we shall show that the set of differentiable vectors 
of the representation of the covering group of SOl 4,2) ob
tained by extension from our (0), ) representation of 9 is a 
nuclear space. Using this space as our!» , we get what is 
called a Gelfand triplet 

g eKe!»', (4.5) 

where g is a dense subspace of K with a nuclear Frechet 
topology. Any self-adjoint operator in K, which is essential
ly self-adjoint on !» and is continuous as an operator in g , 
then has a complete set of generalized eigenvectors in g', 
the dual of!». 

For the following it is convenient to observe that a cov
ering ofSO(4,2) is actually the group SU(2,2). Since this 
group [as well as SO(4,2), of course!] is semisimple with a 
finite center, it follows from a general theorem3 that the set 
of differentiable vectors, with the natural topology, is a nu
clear space. We will show this directly in our case, at the 
same time obtaining a concrete characterization of the set of 
differentiable vectors of SU(2,2). 

For the proof we study the reducible representations of 
9, SU(2,2), and Sp(8,JR) in L 2 (JR4

) obtained by dropping the 
equivariance condition, i.e., allowing all possible half-in
teger values of A. As follows from Sec. III, we have in th~ 
space, besides a unitary representation (UR, for short) of 9, 
also UR's ofthe chain 

Sp(8,JR) :>SU(2,2):> SUI 1,1):> U( 1), (4.6) 
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where U(I) is the group generated by Ao = !(p0 + KO). De
noting the corresponding sets of differentiable vectors
with their natural topologies-by !P(G), we shall prove the 
following chain inclusion (set-theoretical and topological) 

Y(R4) = !P(U(I):l!P(SU(I,I):l!P(SU(2,2)) 

:>!P (Sp(8,R)) = Y(R4), 

which implies equality everywhere, and in particular 

!P(SU(2,2)) = YCR4). 

(4.7) 

(4.8) 

Here Y(R4) is the set of C 00 functions on R4, rapidly 
decreasing (with all derivatives) at infinity, with the standard 
topology. This space is a nuclear Frechet space. 

Proofof(4. 7): The only nontrivial parts of the chain are 
the equalities at the ends. These equalities both follow from 
the fact that the Nelson operators of the groups Sp(8,R) and 
U( I) are both essentially the square of the (rescaled) harmon
ic oscillator Hamiltonian in four dimensions [cf. (3.12), and 
(3.21) combined with (3.6) and (3.7)]. It is well-known that 
the domain of all powers of this oscillator Hamiltonian is just 
Y(R4). In fact, Y(R4) can be topologized, in the way indicat
ed under formula (4.2), by the powers of the operator 
-..::1 +rz. 

The spectrum of the generator Ao of U( I) in L Z(R4) can 
in fact be obtained explicitly from the discussion following 
formula (3.28). The result is as follows: For every j = 0, ~, 
1, ... , there is a sequence of eigenvalues j, j + I, j + 2, ... , 
each with degeneracy (2j + I)z. The nuclearity of the space 
!P(U(I)) then follows from an application of the criterion 
(4.4). 

Concluding: the set of differentiable vectors of the re
presentation ofSU(2,2) extending the (O,A ) representation of 
9 is just the set of equivariant functions of the nuclear space 
Y(R4). This set, which we shall denote Y" (R4) or Y", is 
also nuclear, as a (closed) linear subset of a nuclear space. 

v. GENERALIZED MOMENTUM EIGENSTATES 

Using the results of the last section, for the (O,A ) repre
sentation of 9 we use the Gelfand triplet!P cJY'c!P/, 
with !P = Y" (R4). The space of generalized state vectors 
!P/ is then Y,,(R4),. 

Since any continuous linear functional on Y" can be 
extended to all of Y, we can consider !P / as a space of equiv
alence classes of Y/, two elements of Y/ being equivalent if 
their restrictions to Y" coincide. Alternatively, one could 
fix the extension and identify !P / with the set of elements of 
Y/ which are zero on Y", for alIA. / #A., i.e., simply take!P' 
as the space of A.-equivariant elements of Y/, denoted Y~. 
The latter description may be more natural, but we shall also 
find the former convenient when we now tum to a discussion 
of the eigenstates of energy-momentum, 

The spectrum of P !J. is the closed forward light cone. 
The corresponding generalized eigenvectors are fundamen
tally different for nonzero eigenvalues on the one hand, and 
for eigenvalues at the origin on the other. 

For any nonzero pt on the cone, it is not hard to see that 
the most general solution in Y/(R4) of the equation P!J.F 
= PI: F is given by a distribution FI on S I by the expression 

1669 J. Math. Phys., Vol. 25, No.6, June 1984 

(FI) = (Fl/o), wherefo(t/I) = f(#o,Oo,ifJo,t/I)· Here (Po,Oo,ifJo) 
are the spherical coordinates of Po' Due to the equivariance 
condition, for each nonzero momentum the corresponding 
space of sharp momentum states in!P' is thus one-dimen
sional. Such a state vector can be represented by a multiple of 
the 8-function in some point on the fiber over Pt. For A. #0, 
8-functions in different points on the fiber will correspond to 
different phases for the eigenvector. This means that the 
space of sharp momentum eigenvectors for nonzero momen
tum have a nontrivial line bundle structure over the forward 
light cone. 

In Y~ we can expand the eigenvectors as 

8(1] -1]0)::::: 11]01- 38(11]1 - 11]01) 

2rr 
x I 

/ = I" I.IA 1 + I, ... 21 + I 
/ 

X I X ~m (Oo,ifJo,t/lo) X ~m (O,ifJ,t/I)· 
m= -/ (5.1) 

Generalized eigenvectors of zero energy-momentum 
can be represented by elements of Y/ with support at the 
origin, i.e., by finite sums of derivatives of 8 (1]). To find all 
these eigenvectors we introduce the following derivation op
erators: 

1T1 = Wa4 - a3 ), 1T1 = 1T'f = Wa4 + a3 ), 

1Tz = waz - all, 1Tz = 1T! = ~ (iaz + all· 
Then the 1T'S all commute with each other and 

[1Tj ,Uk] = i8jk , [1Tj ,ud = i8jk , 

[1Tj,Ud = [1Tj ,Uk] = o. 

(5.2) 

(5.3) 

A general A.-equivariant element F of Y/ with support 
at the origin can then be expressed as a unique finite linear 
combination of terms of the form 

(5.4) 

with n;.ni = 0,1, ... ,and n l + nz - nl - nz = U. Here 
P!J.F= 0 is equivalent to uiujF= 0, all iJE{O,I). But 

- n, n2-n,-n2~ - n·-I_n_1 ~ db l' . d UiUj1T1 1Tz 1T1 1T2 U = ninj1Ti' 1T/ "'U, an y mear m e-
pendence we must have ninj = 0 for all terms in F. This 
means that for A.»O the eigenspace corresponding to p!J. = 0 
is spanned by the linearly independent vectors 

1T':w1." - n8, n = 0,1, ... ,U, 

and for A.<O by 

(5.5) 

(5.6) 

The space of generalized eigenvectors for zero eigenval
ue is thus (21A. I + I)-dimensional. In the case of the electro
magnetic field, for instance, we have two representations, 
with A. = ± 1, and the total dimension of the zero momen
tum eigenspace is 6. These six linearly independent general
ized states correspond to the three components each, of con
stant electric and magnetic fields. 

VI. SUMMARY 

In this study of sharp momentum states for a helicity 
representation of the Poincare group we have in some detail 
analyzed two problems which do not appear for the massive 
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representations, and given their solutions. 
Since the space of differentiable vectors of the represen

tation is not nuclear, we have used the differentiable vectors 
of the extension of the representation to the conformal 
group. 

The string-like singularities in the generators, i.e., the 
nontriviality of the line-bundles involved, were taken care of 
by utilizing equivariant functions on (:2 (or R4) rather than 
functions on the forward light cone in p-space. 

Let us summarize some of the advantages with working 
in (:2, rather than on the cone. 

First, the representation of the Poincare group takes a 
very simple form, both globally (2.13) and locally (3.6), and 
the extension to the conformal algebra (3.7) is easy to find. It 
is interesting that the different helicity representations all 
look formally the same, they only act on different subspaces 
of L 2((;2). Taking them all together, the extension to Sp(8,JR) 
used in Sec. III is very natural. 

Second, the space of differentiable vectors of the confor
mal group is just a subspace of the well-known Y (JR4). This 
greatly simplified the analysis of the sharp momentum states 
in Sec. V. 

Third, although we do not give the details in this paper, 
the decomposition of the (0,...1 ) representation in irreducible 
representations of the Lorentz group is very simple to obtain. 
The result is a direct integral decomposition over the contin
uous index in the principal series of unitary irreducible re
presentations of SL(2, q (the covering group of the proper 
Lorentz group), whereas the discrete index is simply related 
to the helicity A. 

Fourth, functions on (:2 also give the natural represen
tation space for the continuous spin representations. 22 We 
thus find a unified description of all the massless representa
tions of the Poincare group. 

In our opinion, these advantages greatly outweigh the 
advantage of an intuitively more clear picture with functions 
on the light cone; a picture which is anyhow often mislead
ing, as has been discussed in Ref. 23. 

In Sec. V we pointed out that the sharp momentum 
states are, in their dependence on p, sections in a nontrivial 
bundle instead of ordinary functions. That this is a possible 
objection to the treatment in Ref. 1 was what first stimulated 
our interest in the problem. This and other questions related 
to the results of Ref. 1 are discussed in Ref. 23. 

Finally, we shall indicate a rather direct generalization 
of the treatment in this paper, namely to a semidirect pro-

duct JRn
2 

X SL(n,q, where SL(n,q is taken to act on the space 
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JRn
2 

of Hermitian n X n matrices in a way analogous to that 
given in (2.2). If we assume the rank of these Hermitian ma
trices to be 1, i.e., only one eigenvalue different from zero, 
and use a one-dimensional inducing representation for the 
corresponding isotropy group, it can be shown that the re
presentation of the original group can be realized on a space 
of equivariant functions on (:n. The space of differentiable 
vectors will not be nuclear in this case. It seems reasonable to 
assume that one can use the differentiable vectors of an ex
tension of the given representation to a (degenerate) repre
sentation of a semisimple group containing the original 
group. This space should consist ofthe equivariant functions 
in Y(JR 2n

). 
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We show that any polynomial equation covariant with respect to any representation ofSO(2) is a 
gradient equation. The same holds for the fundamental representation ofSO(3). For the other 
representations ofSO(3) we give a simple necessary and sufficient condition an equation has to 
satisfy in order to be a gradient one. As a side result, we obtain a formula for the decomposition of 
the symmetrized power of an irreducible representation of SO(3) in a sum of irreducible 
representations. We apply our results to symmetric bifurcation theory. 

PACS numbers: 02.20. + b 

We want to investigate the gradient property of the bi
furcation equation for systems with symmetry, in this case 
with rotational symmetry, i.e., we would like to make some 
precise statement about the possibility of expressing the bi
furcation equation for such systems as a gradient equation. 
Since a well-known theorem I ensures that the bifurcation 
equation has all the symmetry of the original equation, what 
we are really investigating is simply the gradient property for 
covariant operators homogeneous in the basis function of a 
representation; i.e., for monomials of these functions which 
still transform according to the same representation. 

Given a representation F of a group [9, which acts on 
the space V spanned by the vectors { v I"'" V n J ' we call vectors 
(scalars) of order K the objects which follow the representa
tion F (the identity representation) in the symmetrized pro
duct (F®F® .. · ®F)s = (F @K)s' So what we want to know 
is under which conditions any vector of order K can be ex
pressed as the gradient of a scalar of order (K + 1). Here we 
deal with the cases [9 = SO(2) and [9 = SO(3). 

Following Sattinger l we start with the formula 

(I) 
n 

where X n(g) is the character of the symmetrized n-tensor 
product [T(g)@n]s andz is a complex variable Izl < 1. Multi-

plying both sides by xl 1l1(g) and integrating with the invar
iant Haar measure we have 

f dv(g)det [ 1 - zT (g)] - I xl 1l1(g) = ~ ~ f X"(g) xl IlI(g) dv(g), 

but 

is the number of times the representation Til is contained in 
(TIl@n)s' We note that, sincedet(A) = det(UAU +)and triA )
= tr( UA U +), where U is a unitary matrix, the function to be 

integrated is a class function, and we can consider, instead of 
the representation T(IlI(g), any other unitarily equivalent re
presentation, so that we have 

where the integration is over the set of conjugate classes, and 
dv(l) is the corresponding class measure. 

Now we came to the case [9 = SO(2). First of all we 
treat the fundamental representation, which is given by 

T(I)(O) = ( co~ 0 sin B) 
- sm 0 cos B ' 

or, after a unitary transformation, 

T(J)(B)=(e~ill e~). 
Now formula (2) yields 

Ifill = -1-f21T[(I-Ze-ill)(I-Zeilln-IXfIll(B)dO. 
21T 0 

Namely, considering vectors and scalars (we always indicate 
with T(OI the identity representation) 

1(01 = _1_ f2'" [(I _ ze - ill)( 1 _ zeill )] - I dO, 
21T 0 

1(11 = _1_ f21T [(I _ ze - ill)(1 _ zeill )] -I(eill + e - ill) dO. 
21T 0 

(3a) 

(3b) 

These integrals are, of course, transformed into integrals 
over the unit circle of the complex plane through the change 
of variable w = eill, that is, 

1(11= ~f[W(I-ZW)(w-Z)]-I(W2+ l)dw. 
2m 

Evaluation of these with the residue formula gives 

'" 1(1) = I z(2n + II, 

n=O 

(4a) 

(4b) 

(5a) 

(5b) 

so that we have only one vector at each odd order, and one 
scalar at even order. Since the gradient of a scalar is obvious
ly a vector, we have that gradient property holds for the 
fundamental representation of SO(2). 

For what concerns the general case, namely any repre
sentation T(ml(g), 
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Sin(mO)) 
cos(mO) , 

performing an unitary transformation we have 

Tlml(O) = (e-~me ei~e). 
Inserting this in formula (2), and performing the change of 
variable <p = mO, we have, using the 21T periodicity of ei¢" 
formulas (3a) and (3b), with <p appearing for 0, so that what 
we did for the fundamental representation holds for any re
presentation ofSO(2). 

We have therefore proved, for any representation of 
SO(2), that any vector of any order is the gradient of a scalar. 

This implies, of course, that for any system with SO(2) 
symmetry, the bifurcation equation is a gradient equation. 

Now we pass to the case Y = SO(3). The representa
tions ofSO(3) will be indicated by D I, their dimension being 
(21 + 1), and D 0 being the identity representation. 

We consider at first the fundamental representation, 
i.e., the three-dimensional representation D I. Formula (2) 
gives now 

1(0) = - (1 - cos 0 ) 1 f21T 
21T 0 

X [(I-ze- io)(l-z)(1 _zeiO)]-1 dO, (6a) 

l(l) = _1_ f21T(1 _ cos 0 )[(1 _ ze - iO)(1 - z)(1 _ zeiO)]-1 
21T 0 

(6b) 

after transformation to complex integrals on the unit circle 
we get 

1(0) = - _1_. f( 1 - W)2[W(W - z)( 1 - z)( 1 - zw)] -I dw, 
4m 

(7a) 

X [w2(w - z)(1 - z)(1 - zw)] -I dw. (7b) 

Evaluation through the residue formula yields for these 

(8a) 

"" l(l) = I z(2n + I), (8b) 
n=O 

and the same considerations apply as in the SO(2) case treat
ed above, so that for the fundamental representation ofSO(3) 
any vector of any order is the gradient of a scalar. 

Now we note that, in order to prove gradient property 
at order N (namely for vectors of order N), it suffices in gen
eral to prove that the number of (completely symmetric inde
pendent) vectors of order N is equal to the number of (com
pletely symmetric independent) scalars of order N + 1. In 
fact, the gradient of a scalar is surely a vector, and gradients 
of independent scalars are themselves independent; and all 
the vectors of order N are, therefore, in this case, gradients of 
scalars of order N + 1. Consider now the product [(r It)N ] s. 
The multiplicity of vectors and scalars is given, as said be-
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fore, by the coefficients c~J and c~J in 

I lit) = f det[ 1 - zr(g)] -I Xlit)(g)dv(g) = I~zN, 

1 (0
) = f det[ 1 - zr(g)] -I dv(g) = Ic~lzN. 

Therefore the gradient property holds for the representation 
r lt at order N if and only if 

(9) 

Now we wish to consider the general case for Y = SO(3), 
namely, in the language used just above, that in which r is 
any of the D l>s. The integrals 1 (0

) and Ill) will be written 

1 f21T ( 1 )-1 
1(0)= - (I-cosO) II (I_zeio ) dO, 

21T 0 m = -I 

1 f21T (I) l(l) = - (1 - cos 0) I eimO 
21T 0 m = -I 

xcttP _zeiO )) -I dO. 

Now, using the fact that 
1 

(lOa) 

(lOb) 

(1 - cos 0) I eimO = cos(/(J) - cos[(1 + 1)0], (11) 
m= -I 

and writing S(O,z) = rr~ = _ til - zeimO)-1 we write (10) as 

1 f21T 1(0) = - (1 - cos 0 )S(O,z)dO, 
21T 0 

(I2a) 

I f21T 
1(11= - (cos(/(J)-cos[(/+ I)OJ}S(O,z)dO. 

21T 0 

(12b) 

Using the formula for geometrical series we get 
1 1 00 

S(O,z) = II (1 - zeimO)-1 = II I (zeimO(m 
m = - I m = - I rim = 0 

00 

I ~eb 
n _ b···.nl = 0 

= Iu(N,l,SjzNeiSO, 
N,S 

a = Ink' b = IknkO, k = -1, ... 1, 
k k 

and where u(N,I,S) is the number of possible ways of arrang
ing 21 + 1 integer positive numbers nk , k = -1, ... ,1 so that 

1 1 

I n k =N, I knk =s. 
k= -I k= -I 

Now we can rewrite (12) as 

1 (0) = _1_ IzN r21T(1 _ cos 0 )Iu(N,I,s)eiSO dO, (13a) 
21T N k S 

1 121T 
1(/1 = - IzN (cos (10) - cos[(/ + I)O]j 

21T N 0 

X Iu(N,I,S)eiSO dO, (13b) 
S 

which, using the orthogonality property of Fourier basis in 
[0, 21T], gives finally 
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/(0) = I [o{N,l,O) - o{N,l,I)]zN = Ic~)zN, (I4a) 
N N 

/(1) = I [o{N,l,l) - o{N,I,l + I)]zN = Ic~)zN, (I4b) 
N N 

SO that we can give a simple necessary and sufficient condi
tion in order to have the gradient property holding for vec
tors of order N following D I representation, namely it holds 
if and only if 

a(N + 1,1,0) - a(N + 1,1,1) = o{n,l,l) - a(N,l,l + I). (15) 

By the way, during this computation we have proved 
that the multiplicity of D S in the symmetrized product 
! (D I)N Is is given by 

a(N,I,S) - a(N,l,s + 1). (16) 

As a check for our result, we notice that, for I = I, we have 

a(N + 1,/,0) = [(N + 1)12 + I], 
u(N + 1,1,1) = [N /2 + 1], 

a(N,I,/) = [(N - 1)/2 + 1], 

a(N,/,/ + I) = [N /2], 

(I7) 

where the square brackets mean integer part. It is immediate 
to see that in this case Eq. (15) is satisfied at any order, so we 
have anew the result obtained before by direct computation, 
namely that the gradient property holds at any order for the 
fundamental representation of SO(3). 

In order to show our result is not trivial, and it really 
gives a useful criterion and not one which is always (or never) 
satisfied, we consider here the case I = 2. Using the usual 
technique to evaluate the integrals /(0) and /(Z) given by 

1 L21T ( 2 ) - 1 /(0)=_ (I-cosO) II (l_zeimll ) dO, 
21r 0 m = - 2 

/ (2) = 2~ f1T( 1 - cos 0 )C P_ 2(1 _ zeimll)) - 1 

xCt_2eimll) dO, 

we get 

/(0) = LC~)zN = [(I - r)(1 -.z3)] -I, (ISa) 
N 
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/(2) = IcWzN =z[(1 - z)(1 - .z3)]-I, (ISb) 
N 

SO that at first orders we have the following situation: 

N 

cW 
c(O) 
N+I 

1 2 

1 

3 4 

2 

1 

5 
2 

2 

6 

2 

7 

3 . 

2 

Also, we have that at order 4 the gradient property is not 
true, but it is true again at order 5. 

We recall that for N<.3, it has been shown l
•
2 that the 

gradient property holds for any D I. The table above sh0.ws it 
is not possible to extend those results in such a generality. 

In the case I = 2 it is easy to convince oneself, from (IS), 
that the gradient property does not hold for N> 5. It is natu
ral to ask ifit is possible to give a function of I, F(/), such that 
gradient property for the representation D I does not hold at 
order N for any N> F (I ). 

As for what concerns the bifurcation equation, we have 
that (a) for any system with SO(3) symmetry, the reduced 
bifurcation equation up to order 3 is a gradient equation 1.2; 

(b) if SO(3) acts on the space in which the bifurcation equa
tion acts through the three-dimensional representation D I, 

the ful1 bifurcation equation is a gradient equation; and (c) if 
SO(3) acts on the space in which the bifurcation equation 
acts through another representation D I, the gradient proper
ty holds for reduced bifurcation equations up to order M if 
for any order N at which we have nonvanishing terms, with 
N<.M, condition (15) is satisfied. 

In the case of systems with SO(2) symmetry, as we 
showed before, the bifurcation equation is always a gradient 
equation. 
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In this paper we discuss certain aspects of the theory of Verma submodules of Verma modules of 
simple Lie algebra. We describe a simple algorithm for the complete determination of the highest 
weights which are associated with the Verma submodules. Moreover, we give the prooffor a 
method which permits an explicit determination of the extremal vectors which define the Verma 
submodules. For the case of the simple Lie algebraA, the Verma modules are obtained in explicit 
form. 

P ACS numbers: 02.20. + b 

1. INTRODUCTION 

In this paper we discuss certain aspects of the theory of 
Verma modules of simple Lie algebras. By making use of the 
fundamental results of Verma's theory as given by Verma I 
and Bemshtein, Gel'fand, and Gel'fand2 we obtain an algo
rithm for the determination of the weights which are asso
ciated with the extremal vectors which define the Verma 
submodules. This algorithm is discussed in detail for the case 
of the simple Lie algebras A,. 

In Ref. 3 it was observed that the extremal vectors 
which define the Verma submodules factorize. Based upon 
this fact we make use of Verma's theory to prove the factori
zation of the extremal vectors for the general case of a simple 
Lie algebra. It is shown that every extremal vector can be 
obtained in the form of a product of simple extremal vectors. 
That is, every extremal vector is given as a product of extre
mal vectors each of which belongs to a Verma submodule 
V Me VA whose weight M is related to the weight A of an
otherVermasubmodule VA by a single reflection Sa wherea 
is a (positive) root of the algebra. If Sa is a reflection which 
corresponds to a nonsimple root then Sa can be broken up 
into a product of an odd number of reflections on simple 
roots. Thus the extremal vector will be the product of simple 
root vectors. If a simple root vector has negative power for 
some stage one can also define the extremal vector formally, 
by the product of simple root vectors with possible negative 
powers and then obtain its expression in terms of the basis 
vectors by simple commutation relations. 

This then permits an explicit determination of the ex
tremal vectors which define the Verma submodules of the 
Verma modules of the simple Lie algebras. The method em
ployed is again an algorithm and thus a given extremal vec
tor is constructed in stages from previously constructed ex
tremal vectors. The extremal vectors which are obtained in 
this manner are in general not in standard form. Use has to 
be made of the Lie products to bring them into standard 
form and thus the extremal vector is in general obtained as a 
nontrivial linear combination over the basis elements of the 
weight subspace associated with it. 

alWork supported in part by a grant of the U.S.-Spanish Joint Committee 
for Scientific and Technological Cooperation. 

As an additional result we determine in this paper the 
Verma modules for the case of the simple Lie algebras A, in 
explicit form. 

2. THE LIE ALGEBRA AI AND ITS UNIVERSAL 
ENVELOPING ALGEBRA 

Let A, denote the complex simplex Lie algebra, which 
corresponds to the group SU(/ + 1). In its Cartan canonical 
form a basis is given by the elements 

'+1 
hi=eii , i = 1,2, ... ,1 + 1, I hi = 0, 

;=1 

i J;=eij' i#j, i,j = 1,2, ... ,1 + 1, 

where eij represents the matrix with 1 in the position (ij) and 
zero elsewhere; the hi are the diagonal elements of the Car
tan subalgebra, the i J; denote the root vector associated to 
the root ei - ej , and the ei denote the Cartesian basis in the 
(I + I )-dimensional root space. A suffix to the left of the root 
vector i J; indicates that the i-component of the root is + 1; 
while a suffix to the right indicates that the j-component of 
the root is - 1. Obviously i <j holds for the positive roots 
and i > j for the negative ones. 

The vectors hi'i J; satisfy the Lie products 

[hohj ] = 0, i,j = 1,2, ... ,1 + 1, 

[hoj!d =Oijj!k -Oikj!k' 

LJ;'kft] =Ojk ift -Oil kJ;· 

(1) 

According to the Poincare-Birkchoff-Witt theorem a 
basis for the universal enveloping algebra of A I can be chosen 
as the following set of ordered tensor products of the vectors 
hi and iJ;, namely, 

fl:{ 1,zftd7···J{J{···h ~h ~ ... J, (2) 

where m,n,r,s,r,t,u· .. are nonnegative integers, not equal to 
zero simultaneously. The symbol 1 represents the identity 
element of the enveloping algebra, i.e., for all exponents 
equal to zero. 

The basis for the universal enveloping algebra can be 
written as 

fl=fl_fl+flH' 
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where fl _ is the enveloping algebra of the vectors j!; (i > j) 
associated with the negative roots, n + is the enveloping al
gebra of the vectors j!; (i <j) associated with the positive 
roots, and n H is the enveloping algebra of the elements h j of 
the Cartan subalgebra. 

It is easy to prove by induction in the algebra n the 
following commutation relations 

[h j , jft] = m(c5ij jfkm 
- c5 jk jft), 

[jfk'kft] = m kft-I(hj - hk - m + 1), (3) 

[j.t;'kft] = m kft-I(Djk J; - c5i1 k!;)' 

3. REPRESENTATIONS OF A, IN THE SUBSPACE fl+ 

Let us define a basis for the enveloping subalgebra of all 
the vectors associated with positive roots. This basis is con
tained in (2) if we take all the exponents of the vectors h j and 
j!; (i > j) equal to zero and then choose an arbitrary, but 
fixed, order product for the vectors j!; (i <JI. For the sake of 
simplicity we choose the following ordering for our basis in 
n+: 

(4) 

wheren = I + 1, and theexponentsmij arenonnegativeinte
gers. The identity element 1 corresponds to the zero value 
for all the exponents. This basis defines a subspace of n, 
where a linear representation P of the elements of the algebra 
A, can be defined with the condition 

1+ I 

p(h j )1 =A jl, AjEC, 2: Aj =0, 
i=l 

pC!;)l =0, i>j, i,j= 1,2, ... ,/ + 1. (5) 

A straight-forward calculation with the help of rela
tions (3) and conditions (5) gives the following linear repre
sentations for the elements of the Cartan subalgebra h j and 
the root vectors j!; associated with the simple roots: 

p(h l )X(m I2,m 13,···) 

= (AI + m 12 + m13 + ... + m ln )X(m I2,m13,"')' 

P(h2)X (m 12,m \3"") 

= (A2 - m 12 + m23 + m24 + ... + m2n )X(m\21m I3, ... ), 

p(hn)X(m I2,m 13,···) 

=(An -min -m2n -···-mn_l.n)X(m12,mI3""); 

p(lf2)X(m\21m\3,"') = X(m12 + l,m\3'''')' 

pbf3)X(m I2,m13'''') = X(mI2,m13, .. ·,mln,m23 + l,m24,· .. ) 

- m 12X(m I2 - l,m 13 + l,m I4,· .. ), 

- m 13X(m 12,m 13 - l,ml4 + I,m I5, ... ) 

- m27(mI2, .. ·,mln,m23 - l,m24 + l,m25,···), 

1675 J. Math. Phys .• Vol. 25. No.6, June 1984 

=X(mI2,mI3, ... ,mn_2.n,mn_l.n + 1) 

- ml.n_IX(mI2,· .. ,ml.n_1 - l,m ln + l,m23 ,· .. ) 

-m2.n_IX(mI2,···,m2.n_1 -1,m2n + l,m34,···) 

-mn-2.n-IX(mIZ,· .. ,mn_2.n_l -1, 

mn _ 2.n + l,mn _ I.n); 

p(zfl)X (m Wm I3,· .. ) 

= m 12(A 2 -AI + 1 + mZ3 + m24 + ... + m2n 

- m l2 - m 13 - •.. - m 1n )X(m 12 - l,m 13 ,· .. ) 

+ ml~(m12,ml3 - 1, ... ,m 1n ,m23 + 1, ... ) 

+ ... 
+ mlnX(mlZ,· .. ,mln - 1, ... ,m2n + 1, ... ), 

p(dZ)X(mWm13"") 

- ml~(mI2 + l,m 13 - l,m I4,···) 

+ mz3(A 3 - A2 + 1 + m34 + m35 + ... + m3n 

- m23 - m24 - ... - mzn )X(m\2> ... ,m23 - 1, ... ) 

+ m24X(mW .. ·,m23,m24 - 1, ... ,m34 + 1, ... ) 

- minX (mIZ,···,m1.n _ I + l,m ln - l,m23, .. ·) 

- mZnX (mI2,· .. ,mZ3,· .. ,mZ.n _ I + l,m2n + 1, ... ) 

- ... - mn _2.nX (m 12, .. ·,mn _ 2.n _ I + 1, 

mn _ 2,n - 1, ... ) 

-'" + mn-1.n(A n -An_I + 1 - mn- 1.n) 

x X(m I2, ... ,mn_ l.n -1). (6) 

For the rest of the vectors with positive roots we can use 
the following relations: 

jfk = [[["'L!;+lJ+l!;+zh+2!;+3]""]'k-lfk]' 
These representations are called elementary representa

tions on the subspace n + and are either irreducible or reduc
ible and indecomposible. They have by definition an extre
mal vector 1, but they can have additional extreme vectors 
and, if this is the case, these extremal vectors will induce 
invariant subspaces. The invariant subs paces themselves 
serve as carrier spaces for elementary subrepresentations. 
Besides, other types of representations can be obtained on 
the quotient space with respect to the invariant subspaces. 
The general method to calculate the extremal vectors will be 
given in the following section. 

4. INVARIANT SUBSPACES ON fl_ 

We can construct a basis for the enveloping algebra of 
the vectors associated with the negative roots and obtain the 
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linear representations of the elements of A I by the same 
method which we used in Sec. 3. In order to make applica
tions to particular examples we restrict ourselves to the alge
bra A 3 and thereafter generalize to other simple algebras. We 
choose as our basis on {J _ the ordered product of vectors 

(7) 

with l,m,n,r,s,t nonnegative integers, and the identity ele
ment I given by I = m = n = r = S = t = 0. 

If we impose the conditions 

p(hj)l = Ajl, AjEC, AI +A2 +A3 +A4 = 0, 

p(d2)1 = pbf3)1 = P(J!4) 1 = 0, (8) 

then we can define an elementary representation for the vec
tors of the algebraA 3, namely, 

p(h,)X (/,m,n,r ,s,t) = (A I - n - S - t)X (/,m,n,r ,s,t), 

P(h2)X (/,m,n,r ,s,t) = (A2 - m - r + t)X (/,m,n,r,s,t), 

p(h3)X(/,m,n,r,s,t) = (A3 -I + r + s)X(/,m,n,r,s,t), 

p(h4)X(/,m,n,r,s,t) = (A4 + 1+ m + n)X(/,m,n,r,s,t), 

p(d,)X (/,m,n,r ,s,t) 

= X (/,m,n,r,s,t + 1) - rX(/,m,n,r - 1,s + 1,t) 

- mX(/,m - 1,n + 1,r,s,t), 

pbf2)X (/,m,n,r ,s,t) = X (/,m,n,r + 1,s,t) 

-IX(/- I,m + 1,r,s,t), 

p(4f3)X (/,m,n,r ,s,t ) = X (I + 1 ,m,n,r,s,t ), 

p( I f2)X (/,m,n,r,s,t ) 

=t(A I -A2+ 1-t)X(/,m,n,r,s,t-1) 

- nX(/,m + 1,n - 1,r,s,t) - sX(/,m,n,r + 1,s - 1,t), 

P(d3)X (/,m,n,r,s,t ) 

= r(A2 - A3 + 1 - r - s + t )X (/,m,n,r - 1,s,t) 

- mX(1 + I,m - 1,n,r,s,t) + sX(/,m,n,r,s - 1,t + 1), 

pb~)x (l,m,n,r ,s,t ) 

= I (A3 - A4 + 1 -1- m - n + r + s) 
X X(/- 1,m,n,r,s,t) + mX(/,m - l,n,r + 1,s,t) 

+ nX (/,m,n - l,r,s + l,t). (9) 

An extremal vector YEil _ is defined by the conditions 

P(d2)Y=p(d3)Y=P(J!4)Y=0 (10) 

and the corresponding weight M = (MI,M2,M3,M4) by 

p(h;)Y=MjY, MI+M2+M3+M4=0. (11) 

From (9) and (10) we find the most simple solutions for 
the extremal vectors, namely, 

(i) t=A , -A2 + 1, 1= m = n = r=s=O, 

(ii) r = A2 - A3 + 1, 1= m = n = s = t = 0, 

(iii) 1= A3 - A4 + 1, m = n = r = s = t = 0, 
Y = 4f 3A3 - A. + I. 

From (9) and (11) we obtain for the corresponding 
weights (we write MI -A ) 
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(i) MIl = (A2 - 1.A I + 1.A3.A4), 

(ii) MIll = (AI.A3 - 1.A2 + 1.A4), 

(iii) M IV = (A,.A2.A4 - 1.A3 + 1). 

In order to calculate other extremal vectors we could apply 
conditions (10) to a general element of {J _ given as a linear 
combination of basis vectors with the same weight, as has 
been worked out by Gruber, Klimyk and Smimov3 for the 
algebra A 2• Instead, we will use another method which is 
based on properties of extremal vectors given in the same 
work. Suppose we know some extremal vector ZIEil_, 
which defines an idea1I1 C{J_. If the weight associated with 
ZI isM

" 
we can takeM, as the highest weight of an elemen

tary representation defined on the idealI, = {J_ZI' If this 
representation contains another extremal vector Z2 with as
sociate weight M 2, we can construct this new subrepresenta
tion on the ideal 12 = {J _Z2 with highest weight M 2, and so 
on. If we have a sequence of ideals 
I j CIj _ , C ···CI2 CI, C{J_, the extremal vectors defining 
the ideal I j as a subspace of I j _ I will be Zj, and as a conse
quence the vector 

Yj = ZjZj_I",Z2ZI (12) 

will be an extremal vector with respect to the whole space 
{J _. An example of this inclusion relation among ideals and 
the defining extremal vectors is given in Ref. 3. 

In our case, we can apply the conditions (i), (ii), and (iii) 
to the representation defined by the weight MIl substituting 
A by MIl in (9), and thus we will obtain 

(iv) r=A I -A3 +2, l=m=n=s=t=O, 

Y= 3f2A,-A,+2 

with 

My = (A2 - 1.A3 - 1.A , + 2.A4)' 

(v) 1= A3 - A4 + 1, m = n = r = s = t = 0, 

with 

MYI = (A2 - l.A, + 1.A4 - 1.A3 + 1). 

Cases (iv) and (v) will give the following extremal vec
tors with respect to {J _: 

(iv) My: Y=3f2A,-A3 +22f:,-A,+I, 

(v) M yI : Y=4f3A,-A.+12f:,-A,+I. 

The same calculation can be applied to MIll and M Iy . 
In Table I we give all the extremal vectors of A3 and their 
weights using this method. In order that an extremal vector 
exists it is necessary that in each step the values t,r,l should 
be given by nonnegative integers. This is equivalent to saying 
that each weight M should satisfy 

M = A + I f343 + m f342 + n f341 + r f332 + s f331 + t f3w (13) 

l,m,n,r,s,t, being nonnegative integers and f3ij the negative 
roots. 

It will be shown in Sec. 5 that all weights obtained by 
this method form a subset of the set of weights defined by 

M=S(A +R) -R, (14) 

where R is half the sum of all positive roots of A 3 and S 

M. Lorente and B. Gruber 1676 



                                                                                                                                    

TABLE I. Extremal vectors in A3• 

1,1",1",1",1.1, 

f
lt , \ +1 , , 

lA, - 1,,1, + 1,,1,,,1.1,, 

~ 
1/:' ,,2 4f~' .1., I 21:' '1 t I 

lA, - 1,,1, - 1,,1, + 2,A.lv lA, - 1,,1, + 1,,1. - 1.,1, + IIV! 

1,1. - 3,,1, - 1.,1, + 1,,1, + 31xXlv 

represents an element of the Weyl group for A 3• In fact, the 
cases (i), (ii), and (iii) correspond to the reflections of the 
weightA + R on the hyperplanes perpendicular to the sim
ple roots el - e2, e2 - e3, e3 - e4, respectively. If the repre
sentation defined by the highest weight A satisfies condition 
(13) an invariant subspace is obtained and the representation 
is indecomposable. If there is no A such that (13) is satisfied 
then the representation is irreducible. 

The method we have outlined in order to calculate the 
extremal vectors for A3 can be generalized easily to all the 
algebras A I' and similar tables as Table I can be calculated by 
the following algorithm: 

(i) Given a particular highest weight 
A = (A I ,A2, ... ,AI+ d of the algebra AI, with 
Al + A 2 + ... + A 1+ 1 = 0, we can immediately write down 
the I weights MIl' MIll , ... ,MI and extremal vectors corre
sponding to the simple roots of Al in the following way: 

MIl = (A2 - l,A1 + l,A3" .. ,AI+ I)' 
y = 2!(,,-A,+ I, 

provided that the exponents of the vectors are nonnegative 
integers. We call these the weights and vectors of the first 
layer. 

(ii) Starting from each ofthe weights MIl' MIII, ... ,MI' 
we will obtain the weights and extremal vectors of the second 
layer provided the exponents are always nonnegative inte
gers. It may happen that weights of the second layer will be 
obtained from different weights of the first layer, as can be 
seen in Table I. 
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(iii) From the second layer we calculate the weights and 
vectors of the third layer and so on until we exhaust all the 
possible weights. To each weight will correspond a vector 
which will be given with respect to {J _ (i.e., with respect to 
the space defined by A ) by the product of all the extremal 
vectors given in each layer, taking care that the inclusion 
relation of the ideals, as explained in (12) must be taken in the 
correct order. 

(iv) If the extremal vector obtained in this fashion does 
not have the chosen standard order in the basis for the alge
bra AI' then it must be brought into standard order by mak
ing use ofthe commutation relations (3). Thus the extremal 
vectors will in general be given in the form of a nontrivial 
linear combination over basis elements which belong to a 
fixed weight subspace. 

5. EXTREMAL VECTOR IN SIMPLE LIE ALGEBRAS 

Let L denote a simple Lie algebra of rank I with diag
onal elementsH; (i = 1,2, ... ,1) forits Cartan subalgebra, shift 
operators Ea associated with each positive root a, and shift 
operators E _ a associated to each negative root; then the 
following canonical commutation relations hold: 

[H;oE±aJ = ±a;E±a' 

I 

[Ea, E -a J = L a; H;=(a,H), 
;=1 

where a; denotes the ith component of the root a. 

(15) 

We can construct an elementary representation dA de
fined on the subspace {J _ of the enveloping algebra of L, 
with basis 

(16) 

where m,n, ... ,r are nonnegative integers, and the following 
conditions hold: 
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TABLE II. Extremal vectors in simple algebras of rank 2. 

A, 

(A "A"A,), 

~ 
.~f;1 - A ~ 1" 1 

IA,.AltA' + II,,, 

21: 1 1, -I 2 

(A, - l,A, - I,A, + 2),v (A,- 2,A, + l,A, + Ilv ( - A 2 - 2,A, + I Iv 

~ // 
2/;'.' '\1 I 1 ]f~"'l \~ I J 

(A., - 2,A "A, + 2)v] 

(A, - I,A, + I,A,)" 

1 
(- A, + \' - A, - ;, - A, + ~)'v 

1 
E" , 

(A, - I,A,- 2,A, + 3)vlII 

~ 
E\ .1, f 2 

(A, - 3,A"A, + 3)x 
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~ 
(- A, - 3,A,Iv, ( - A, - 2, - A \ - 2lv" 

( -- At - ~, - A, - j, - A, + !.plxll 

f A, , , 
/ 

(-·A,-3,-A,-llvlll 

I-A,+ \. r' -,. -A, +"", 

EA~ 11. 1 .2 , 

lA, - '1' + l.Ad 2)" 

E _"'1~ t 4 
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(17) 

p( Ea)l = 0 for all positive roots a 

An extremal vector is defined by those elements Y of d A 

which satisfy 

p(H;)Y=MiY' (Ml>M2, ... ,M/) =M, 

(18) 

p( Ea)Y = 0 for all positive roots a. 

In order to construct the extremal vectors we start with 
those vectors whose weights correspond to simple roots of L. 

Let il: (a, p, ... J denote the set of simple roots. It is easy 
to prove by induction that the following commutation rela
tions hold: 

[Hi>E~a] = ±a;E~a' 

[Ea, E':.p] = m5ap E':.;.I{(a,H) - !(m - I)(a,a)). 

(19) 

Suppose that Y = E ~ a is an extremal vector. Apply
ing (19) to conditions (18) and (17) one obtains 

m{(a,A) - ~(m - I)(a,a)) E~;.I = o. 

Since m = 0 gives the trivial solution Y = I, we get 

m = 2(A,a)l(a,a) + lEN, aEll (20) 

as a condition that E ~ a is an extremal vector, correspond
ing to the simple root a. N denotes the set of all nonnegative 
integers. 

The weight M, which is associated with this vector Y is 
given by (18). One obtains with the help of (17) 

p(H;) E':.a = (A; - (2(A,a)l(a,a))aj - a;) E':.a, 

or 

M = A - (2(A,a)l(a,a))a - a. (21) 

Usingtheproperty2(R,a)l(a,a) = 1 for any simple root 
a and R equal to half of the sum of all positive roots, we have 

2(A +R,a) 
M=A- a 

(a,a) 
or 

(22) 

where Sa denotes the Weyl reflection on that hyperplane 
which is perpendicular to the simple root a. 

In the same fashion as was done for the case of A lone 
can make use of an algorithm in order to calculate the extre
mal vectors for a given representation d A of any simple Lie 
algebra, using the different layers and inclusion relations 
among ideals generated by the extremal vectors. 

In Table II we give the extremal vectors, the associate 
highest weights, and the inclusion relations among them for 
the simple Lie algebras of rank 2. We choose the following 
basis: 
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In A 2 : a l = (1, - 1,0), a 2 = (0,1, - 1), 

In B2 : a l = (1, - 1), a2 = (0,1), 

In G2 : a l = (1, - 1,0), a 2 = j( - 1,2, - 1). 
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6. VERMA SUBMODULES OF VERMA MODULES 

In the last section we have given a method to calculate 
the extremal vector of elementary representations; these ex
tremal vectors will induce invariant subspaces and therefore 
elementary subrepresentations. These type of subrepresenta
tions are called Verma submodules of Verma modules. I 

The question now arises whether or not the method of 
the last section gives all possible extremal vectors and thus 
all the Verma submodules of a given Verma module (of high
est weigth A ) defined on the enveloping algebra of a simple 
Lie algebra. In order to answer this question we must recall a 
theorem proved by Bemshtein, Gel'fand, and Gel'fand.2

,4 

BGG theorem: Let d A and d M be two Verma modules of 
highest weights A and M, respectively; the necessary and 
sufficient conditions that d M is contained in dAis that there 
exists a sequence of positive roots YI' Y2'''',Yk, such that they 
satisfy 

(i) M +R =Sy ... .sy,O",,,(A +R), 

(ii) 2(SYI_""Sy,Sy, (A + R ),y;)I(Yi'Yi)EN, 

whereSYi is the Weyl reflection for Yi (i = I,2, ... ,k), SYo=1. 
The BGG theorem gives a complete classification of the 

weights M which correspond to all the possible extremal 
vectors Y. Thus, given a highest weight A, defining a Verma 
module, we can find all the positive roots that satisfy condi
tion (ii) and the resulting weights M obtained by (i) will give 
the Verma submodules. Starting from the weights M we can 
find again all the positive roots satisfying condition (ii) and so 
we will obtain new weights from (i) defining new Verma sub
modules, and so on until all the possibilities are exhausted, 
since the Weyl group is finite. 

Nevertheless the BGG theorem does not give the extre
mal vectors explicitly. We will now show how the extremal 
vectors can be obtained using the results of Sec. 5. In order to 
do that it is sufficient to restrict ourselves to the use of one 
positive root Y in the BGG theorem, with the conditions 

(i) M=Sy(A +R)-R, 

(ii) 2(A + R,y)I(y,y)=nEN. 

It is known5 that any element of the Weyl group can be 
decomposed in the product of simple reflections Si on the 
hyperplanes perpendicular to the simple roots a; 
(i = 1,2, ... ,1). Since the product of two reflections does not 
correspond to a reflection, the elementSy of the Weyl group 
must be equivalent to the product of an odd number of sim
ple reflections. 

For the sake of simplicity let us suppose that S l' is equi
valent to the product of three simple reflections. We have 
two cases: 

(A) The simple roots are all different: for instance, 

Sy =S~zSl' 
Define 

2(A +R,ad 

(alad 

2(SI(A + R ),a2 ) 

(a2,a2 ) 

2(SzSl(A + R ),a3} 

(a3,a3) 

M. Lorente and B. Gruber 
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From condition (i) of the BGG theorem holds 

M = S3S2SdA + R ) - R = A - m)a) - m 2a 2 - m3a3.(24) 

The last equation together with condition (ii) requires 

ny = m)a) + m 2a 2 + m 3a 3. 

Since the simple roots are linearly independent we must have 

y = k)a) + k 2a 2 + k 3a 3, kiEN, 

and therefore 

m) = nk), m 2 = nk2' m3 = nk3 

which means that m),m2,m3 are nonnegative integers. Ifwe 
construct the vector 

(25) 

with the associated weight M given by (24), it can be proved 
that 

Ea, Y=Ea,Y=Ea, Y= 0, 

and therefore Y is the extremal vector that satisfies condi
tions (i) and (ii). 

(B) Two simple roots are equal: Sy = S)S2S), say. 
Define 

2(A + R,ad 

(a),ad 

2(S)(A + R ),a2) 

(a 2,a2 ) 

2(S~)(A + R ),ad 

(a),ad 
From condition (i) we have 

M=A -m)a)-m2a 2-m3a) 

and from condition (ii) we have 

ny = (m! + m3)a) + m2a2; 

therefore 

y = k)a) + k 2a 2, k),k2EN 

or 

(26) 

(27) 

(28) 

In this case m) and m3 can be arbitrary numbers. From con
dition (ii) and Eq. (26) it can be proved that m3 =; 0 (trivial 
case) or m3 =1=0 and 

k) = _ 2(a),a2 ) = -AI2EN 
k2 (al,a)) 

which, after substitution in (27) and (28), yields 

y=S)a2, m 2=n. (29) 

The most general vector satisfying (27) would be 
n 

Y= " a En-kE k E(I+A")n-A,,k. 
~ k -y -U2 u. 

k=O 

The conditions on Y to be an extremal vector lead to some 
recurrence relations for a k' which is a function of m ),m2,m3, 
and since these relations must stop, m) and m3 should be 
integers. This fact has been proved explicitly in Ref. 3, Theo
rems 1 and 2, in the case of a Weyl reflection on 
y = (1,0, - 1), where m l = A) - A2 + 1 and 
m3 = A2 - A3 + 1 are always integers. This property sim-
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plifies the construction of the extremal vectors. If m3 > 0, 
then the vector 

satisfies (using (19) and (26)) 

Ea , Y = Ea , Y = o. 

(30) 

If m3 < 0 (m) < 0 is excluded because M < A ) the vector Y 
defined by 

satisfies 

and since n _ has no divisors of zero (Ref. 2, Lemma 1) 

Ea , Y = Ea , Y = o. 

(31) 

The general case should be treated similarly. Suppose 
that there exists a positive root y, not equal to a simple root, 
such that conditions (i) and (ii) of the BGG theorem are satis
fied. Then, if 

Sy =Sik"Si,Si, 

we define 

m)= 
2(A +R,ai,) 

(ai"a;,) 

2(S)(A +R ),ad 
m 2= 

(ai2 ,a;2) 

2(Sik _ I ",Si,Si, (A + R ),ai.) 
m k = 

(aik,a;k) 

provided S I (A + R ) - R < A and so on. Then 

M=A -mlai, -m2a i, - .. ·-mkaik =A -ny. 

(32) 

If some of the simple reflections are equal, the m's can be 
arbitrary numbers but the recurrence relations imply, as be
fore, that they should be integers. 

Another argument to prove that the m's are integer 
numbers is the following: The extremal vectors can be ex
pressed always in terms of the (nonordered) products ofsim
pIe root vectors. We choose for our extremal vector Ya pro
duct of vectors corresponding to the simple roots which 
appear in the decomposition of Sy in terms of simple reflec

tions, E n,,- a ... E":.. a E n~ a . From the BGG theorem, if M 
'k '1 I, 

satisfies conditions (i) and (ii) an extremal vector must exist 
satisfying 

Ea, Y = Ea, Y = ... = Ea, Y = O. 

This requires that the powers of the simple roots vectors, 
n l,n2, ... ,nk must be equal to the coefficient m's given in (32), 
and therefore all the m's are integer numbers. 

Since there are, in general, several descompositions of a 
Weyl reflection in terms of simple reflections, there will be 
different products of simple root vectors for the same extre
mal vector, but all these vectors are equal, as Verma has 
shown in Ref. 1, Theorem 4. 

If all m's are nonnegative, the extremal vector corre
sponding to M will be 

(33) 
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If m k < 0, then the extremal vector is defined by 

It should be noticed that no more than one negative coeffi
cient will appear in (32) because, if mk and mk _ I' for in
stance, were negative then the vector X defined by 

would also be an extremal vector, but its associated weight 
would not correspond to the reflection of a positive root. 

7. SOME EXAMPLES 

Example 1: In algebraA2, A = ( - 1,1,0) satisfies the 
BGG theorem with respect to the positive root 
y = (1,0, - 1), namely, (i) 
M = Sy(A + R) - R = (- 2,1,1),(ii)2(A +R,y)/(y,y) = 1. 
Take Sy = S~IS2' Then m l = 2, m2 = 1, m3 = - 1. So we 
construct the extremal vector as 

d2 Y = 2/1 3/~ = 3/2blz dl - 2 dd; 

hence 

Y = 3/2 2/1 - 2 2/1' 

Formally we could have written 

Y=d2-ldld~ 

and used the appropriate commutation relation to cancel the 
negative power. 

Example 2: General case in A2: A = (A 1.A2.A3)' The 
only positive root different from simple ones is 
y = (1,0, - 1). We have two possibilities: 

(a) Sy = S~IS2' 

M = (A3 - 2.A2.AI + 2), 

(b) Sy = SIS2SI' 

M = (A3 - 2.A2.AI + 2), 

These two cases correspond in Ref. 3, Corollary 1 to the 
weight M yI , when (a) m3 =AI -A2 + 1 <Oor (b) 
m3 = A2 - A 3 + 1 < 0. If m3 is nonnegative we have case (c) 
with two possible inclusions; 

IYI C/y C/m C/I or IYI C/Iy C/u C/, 

where 1M represents the ideal I associated with the weights 
M. 

In case (a) with m3 < 0, we can calculate the extremal 
vector using the relation 

[2n'3/2
m

] = ± (n) ( ': ),31:d';-Sdt-
S 

s= ISm s. 

and we obtain, with n = m 2, m = m l , 

Y = ~ (m2) mil Im,-s IS Im,-s 
~ 32 312 I . 

5=0 S (ml -s)! 

With the substitution m2 - S = k, the last expression 
can be written as 
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Y= I m2(m2-1)·.·(m2-k+ 1) 
k=O kl 

X mil Im,-k Ik Ik 
(k _ m3)1 3 I 3 2 2 1 

which is equivalent to the case VI (a) in Corollary 1 of Ref. 3. 
Example 3: LetA = ( - 2,2,0,0) inA3' A satisfies condi-

tions of the BGG theorem for y = (1,0,0, - 1): 

(i) M=Sy(A +R) -R = (- 3,2,0,1), 

(") 2(A + R,y) _ 1 
11 - • 

(y,y) 

Take Sy = S~2SIS2S3; then 

m l = l,m2 = 4,m3 = l,m4 = - 3,ms = 0, 

Y = 3/2-
3

2/13/4
4

413 = 3/2 2/1 4/3 - 4 3/14/3' 

Notice that ms = ° means that the last reflection is the iden
tity, and therefore m 4 could be negative. 

Example 4: General case inA3: A = (AI.A2.A3.A4)' In 
Table I we have given all the inclusion relations among the 
ideals defined by the simple root vectors. The only cases in 
which the Weyl reflections correspond to (nonsimple) posi
tive roots are the following: 

Mx: y= (1,0, -1,0), Sy =SIS~I =S~IS2' 

M XYI : y = (0,1,0, - 1), Sy = S~3S2 = S3S~3' 

Mxxu: Y = (1,0,0, - 1), Sy = SIS2S3S2S1 

=S3S2SIS~3 

=SIS3S2S~1 

=SIS3S~IS3 

=S3SIS~~1 

= S3SIS~IS3' 

In the last case, care must be taken that the corresponding 
weights in each simple reflection be always less thanA. The 
extremal vectors are given by the product ofthe simple root 
vectors of Table I if all the exponents are nonnegatives. The 
exceptional case is when the last exponent different from 
zero is negative, in which case this exponent must be can
celed by appropriate commutation relations. 
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We present a detailed description of the minimal degeneracies of geometric (Kahler) fermions on 
all the lattices of maximal symmetries in n = 1, ... ,4 dimensions. We also determine the isolated 
orbits of the maximal symmetry groups, which are related to the minimal numbers of "naive" 
fermions on the reciprocals of these lattices. It turns out that on the self-reciprocal lattices the 
minimal numbers of naive fermions are equal to the minimal numbers of degrees of freedom of 
geometric fermions. The description we give relies on the close connection of the maximal lattice 
symmetry groups with (affine) Weyl groups of root systems of (semi-) simple Lie algebras. 

PACS numbers: 02.20. + b, 05.50. + q, 11.15.Ha, l1.30.Er 

I. INTRODUCTION 

The present paper is devoted to the investigation of the 
minimal degeneracies of fermions, if put on those lattices in 
the n-dimensional Euclidean space E n (n = 1, ... ,4) which 
correspond to the maximal discrete symmetries. There are 1, 
2,4, and 9 such lattices in 1,2,3, and 4 dimensions, respec
tively. Of these lattices the primitive (hyper) cubic ones have 
so far mostly been used in the investigation of lattice field 
theories. However, recently there has been an increasing in
terest in other lattices too (simplicial l and body-centered hy
percubic2 Iattices), for reasons which are related to the ques
tion of universality and to a possibly more rapid approach to 
the continuum limit due to the increased number of degrees 
of freedom or to the higher order of the symmetry group. 

In a lattice (gauge) field theory the (minimal) number of 
degrees offreedom of the fermions included will depend 
both on the lattice and on the description chosen for them. 
There are two attractive descriptions oflattice fermions, 
which start from slightly different points of view: the "na
ive" description3 on the one side and the geometric or Kahler 
description4--6 on the other. 

The naive description comes from a finite difference 
approximation of the Dirac equation, invariant under a dis
crete group, and is thus related to invariant smooth vector 
fields on the torus Tn, the (first) Brillouin zone of the lattice. 7 

The minimal numbers of naive fermions are related to the 
minimal numbers of (nondegenerate) critical points which 
any invariant smooth vector field has to have on the Bril
louin zones, i.e., on the Dirichlet cells (Wigner-Seitz cells) of 
the reciprocal lattices. 7 

The geometric description relates8 the minimal lattice 
fermionic degrees of freedom to the translation ally inequiva
lent k-faces (k = O, ... ,n) of some of those parallelohedra [po
lyhedra with pairwise parallel (n - I)-faces] which give nor
mal partitions [Le., partitions with only complete overlap of 
(n - 1 )-faces] of the Euclidean space En. On the lattices of 
maximal symmetries the normal partitions are unique and 
are given by the Dirichlet cells of the lattices. 

The minimal numbers of naive fermions and their de
pendence on the lattice symmetry have been described, for 
dimensions n,;;;3, in Ref. 7. Our concern in this paper, which 
is very closely related to Ref. 8, is therefore mainly in the 

Kahler description oflattice fermions and in its comparison 
with the naive description, extended here also to n = 4. We 
thus determine, on the one side, the minimal numbers of 
degrees offreedom of Kahler fermions on the lattices of max
imal symmetries from a detailed combinatorial description 
of the Dirichlet cells. On the other side, we investigate the 
actions of the maximal symmetry groups (precisely of their 
factor groups with respect to the lattice translations) on the 
Dirichlet cells and determine also for n = 4 their isolated 
orbits which are known7 to give the minimal sets already 
mentioned of critical points of invariant smooth vector fields 
on the Dirichlet cells. Since any lattice of maximal symmetry 
is reciprocal to a (generally different) lattice of also a maxi
mal symmetry, we thereby get, as far as no obstruction ap
pears from the additional, the physical requirement that the 
critical points be nondegenerate, the minimal numbers of 
naive fermions on the reciprocals of the lattices, and can 
compare them with the minimal numbers of degrees of free
dom of Kahler fermions on the lattices. On the self-recipro
cal lattices there is no obstruction, and the two numbers turn 
out to be equal. 

Since Kahler fermions are related9
-

13 to differential 
forms their number of degrees offreedom on a manifold M n 

of dimension n is a priori equal to the dimension 2n of the 
space of these forms. For free fermions it can be reduced 
because this space can be reduced conveniently into invar
iant subspaces of the Kahler-Dirac operator d + 0 acting in 
the Hilbert space of square-integrable differential forms 
(d = exterior differentiation, 0 = d * its adjoint). In the pres
ence of interaction this is no longer possible, and one remains 
with an object of zn degrees offreedom to which one has to 
give a physical interpretation. In spite of this problem, the 
Kahler interpretation of fermions is very attractive as a lat
tice formulation of fermions because of the essentially alge
braic nature of its mathematical background, the exterior 
calculus. Among the steps which one would have to perform 
in order to give the lattice analog of the exterior calculus as 
the formulation of the Kahler fermions on lattices in the n
dimensional Euclidean space E n corresponding to a given 
discrete symmetry group are: 

(i) to give a (minimal) normal partition of the space En 
into polyhedra, which is invariant under the action of the 
group and minimizes the number 
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(1.1) 

of degrees of freedom of the Kahler lattice fermions, where 
Ck is the number of k-faces of the polyhedra, which are not 
equivalent under lattice translations; 

(ii) to define on the k-faces of the polyhedra linear func
tions and to transfer the boundary operation a of the polyhe
dral complex to the space of functions as the coboundary 
operator Ll, the analog ofthe adjoint d * ofthe exterior differ
entiation d; 

(iii) to give on this linear space of functions a scalar 
product, which makes it to a Hilbert space and defines the 
lattice adjoint Ll * of Ll, as well as the lattice Dirac-Kahler 
operator Ll + Ll *; 

(iv) to perform a spectral analysis of the operator 
Ll + Ll *, in order to find out how the Ng degrees of freedom 
carried by the lattice fermions manifest themselves in the 
spectrum; 

(v) to investigate the behavior of the spectrum of 
Ll + Ll * when the minimal lattice translation tends to zero 
(continuum limit), eventually without going through the de
tailed spectral analysis. 

These steps are, of course, easily performed for primi
tive hypercubic lattices,4-6 where the polyhedra are hyper
cubes, and where Ck = (~) andNg = 2n as in (the continuum) 
En. For other lattices, especially in n = 4, this is no more so; 
in this paper we perform step (i) in some detail. The next step, 
(ii), which refers essentially to the incidence structure of the 
k-faces of the polyhedra, can be performed by further appli
cation of the methods used in this paper. On the remaining 
steps we shortly comment in the last section of the paper. 

We may limit ourselves, as far as geometric lattice fer
mions are concerned, to the maximal symmetry groups be
cause from their Dirichlet cells one also gets according to a 
simple rule,8 by linear deformation, the minimal normal par
titions which are invariant only with respect to their sub
groups. Naive fermions, however, are much stronger con
nected to individual groups because of their dependence on 
the orbit structure. In order to get a complete picture of 
naive fermions also in n = 4 dimensions, one would have to 
investigate the orbit structure of a very large number of 
groups, because the total number of symmetry groups in
creases very fast with dimension n: it is 2 for n = 1, 13 for 
n = 2, 73 for n = 3, and 710 for n = 4.14 The numbers of 
maximal symmetry groups are, on the contrary, fairly low: 1, 
2,4, and 9 in n = 1,2,3, and 4 dimensions, respectively, and 
equally low is therefore the number of normal parallelohe
dral partitions of En which are of relevance for geometric 
lattice fermions. 

We describe in Sec. II the maximal groups in precise 
(arithmetic) terms and relate them to quadratic forms (geom
etry of numbers) and an associated general theory of normal 
parallelohedral partitions of En, 15 as well as to root spaces of 
semisimple Lie algebras. 16 In Secs. III-VI we describe the 
Dirichlet cells corresponding to these groups. For most of 
the maximal groups we do this by exploiting the simple and 
detailed insight one gains from the Lie algebraic point of 
view. But in some cases we find it convenient to use also 
arguments from the theory of normal parallelohedral parti-
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tions of En. 15 In Sec. VII we compare the minimal numbers 
Ng of geometric fermions for the Dirichlet cells given by 
(1.1), with the minimal numbers of naive fermions on the 
corresponding reciprocal lattices. Finally we summarize 
(Sec. VIII) the results and make a few comments on some 
points not touched in the body of the paper. 

II. CRYSTALLOGRAPHIC GROUPS 

There are various (equivalent) ways to define these 
groups and several ways to classify them. In our choice l7

,18 

we will be guided by the wish to arrive in an economic way to 
our purpose. We consider a lattice Ln (a l, ... , an), spanned in 
the Euclidean space En by the n linearly independent vectors 
ai(i = 1, ... , n), 

Ln(a l, .. ·, an) = {xix=itlniai, niEl}. (2.1) 

With it we associate a group of symmetry operations which 
leave the point x = 0 (chosen as origin) fixed (point group). 
This group is finite and to it there corresponds a finite group 
G of n X n matrices with integer elements and determinant 
± 1, i.e., a finite subgroup ofGL(n,l). The correspondence 

is not one-to-one since it depends on the chosen basis 
a I'"'' an' A change of the basis corresponds to a conjugation 
of the matrices G by the matrix A E GL(n,l) of the basis 
transformation, 

(2.2) 

The group G leaves the positive definite quadratic form 
n 

F(x) = I aij x,xj' 
i,j= 1 

(2.3) 

with aij = ai . aj , invariant; its conjugate (2.2) leaves the 
form F(Ax) invariant. 

To any point group there thus corresponds an equiv
alence class (2.2) of finite subgroups of GL(n,l) and a corre
sponding equivalence class of invariant positive definite qua
dratic forms. Inversely, to any finite subgroup G of GL(n,l) 
there corresponds a point group of a lattice. For, ifF (x) is an 
arbitrary positive definite quadratic form in En, then the 
form 

n 

({J (x) = I F( gi x) - I bij Xi Xj (2.4) 
giEG i,j= 1 

is invariant under G; ({J (gx) = ({J (x), and G indeed corre
sponds to a point group of the lattice Ln (b p ... , bn ), 

bi . bj = bij' 
This correspondence between point groups and equiv

alence classes (2.2) of finite subgroups ofGL(n,l) is the basis 
for the arithmetic classification of point groups. Point 
groups are considered to be arithmetically distinct, if the 
equivalence classes (2.2) corresponding to them do not coin
cide. The number of arithmetically distinct point groups for 
n = 1,2,3, and 4 is 2, 13, 73, and 710, respectively. 

Not all of these groups are equally interesting for our 
subject. We may first concentrate on those groups, which are 
full symmetry groups of a lattice; they are sometimes called 
Bravais groups or also arithmetic holohedries. These groups 
give a classification oflattices; their number is 1, 5, 14, and 
64 in one, two, three, and four dimensions, respectively. But 
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the groups which are actually relevant for us are those Bra
vais groups which are maximal finite subgroups ofGL(n,l), 
i.e., those finite subgroups of GL(n,l) which are not sub
groups of any other finite subgroup of GL(n,l). These sub
groups are sometimes called maximal arithmetic holohedries 
or maximal Bravais groups. Their numbers for n = 1, 2, 3, 4 
are 1, 2, 4, 9, respectively. As we have seen they can be speci
fied by their corresponding lattices. In dimension n = 2 
these lattices are the quadratic and hexagonal ones, whereas 
in dimension n = 3 the corresponding lattices are hexagonal, 
cubic primitive, cubic face-centered, and cubic body-cen
tered. A lattice terminology for n = 4 is given in Ref. 14. 

Coming back to quadratic forms we observe that the 
Bravais groups are, by their very definition, the full symme
try groups [in GL(n,l)] of the positive definite quadratic 
forms. The description of all forms corresponding to the 
same Bravais group falls in the realm of reduction theory 
(theory of numbers). It is by this theory, in fact, that the 
maximal Bravais groups in higher dimensions (n<7) have 
been determined in terms of their equivalence classes of qua
dratic forms. We give in Table I for the dimensions 
n = 1 - 4, of interest to us, a complete list of representatives 
of quadratic forms for all maximal Bravais groups, together 
with the terminology of the corresponding lattices and the 
orders of the Bravais groups. 19.20 

All the crystallographic (space) groups can be con-

TABLE I. Quadratic fonns of maximal arithmetic holohedries. 

Dimension Lattice 

2 square. primitive 

hexagonal. primitive 

Quadratic Form 

A Ix; + x; I, A > 0 

A Ix; +x j x2 +x;l, A>O 

structed, as group extensions, starting from the groups of 
lattice translations and the lattice point groups. 14 But we will 
be concerned here only with the symmorphic space groups, 
which are the semidirect products of point groups with the 
lattice translations and thus are in one-to-one correspon
dence with the arithmetic crystal classes. 

There is an approach to part of the crystallographic 
groups which is related to root systems R of semisimple Lie 
algebras l6 as well as to their automorphism groups A (R ), 
which in most cases coincide with the Weyl groups W(R). 
The lattice generated by a basis of the root system is the 
affine root space Q (R ), the group A (R ) is the point group of 
this lattice [the Weyl group W(R ) is its subgroup generated 
byrefiections],andthesemidirectproductA (R)· Q(R )isthe 
corresponding symmorphic space group [with the affine 
Weyl group Wa = W(R). Q(R ) as subgroup]. Thereisacor
responding group A . P V acting on the reciprocal lattice of 
Q (R ), the weight lattice P v. 

One cannot expect to relate in a simple manner all arith
metic crystal classes to semisimple Lie algebras, but for the 
maximal Bravais groups this relation is indeed simple. One 
can easily identify21 the Lie algebras related to the maximal 
Bravais groups in terms of the quadratic forms generated by 
the root (weight) bases. These identifications are presented in 
Table II. There is, however, one maximal Bravais group in 
four dimensions which does not act on a root or weight lat-

Order of 
Bravais 
group 

2 

8 

12 

3 hexagonal, primitive 

cubic, primitive 

AX; + Itlx; + x2x, + x; I, A, It > 0 

A Ix; + x; + x; I, A> 0 

24 

48 

48 

48 

4 

1684 

cubic, face-centered IF I 

cubic, body-centered II I 

hexagonal tetragonal 

cubic orthogonal, 

F 12, 3, 41-centered 

cubic orthogonal, 

112, 3, 41-centered 

hypercubic, primitive 

hypercubic, Z-centered 

diisohexagonal orthogonal, 
primitive 

diisohexagonal orthogonal 

RR 2-centered 

icosahedral, primitive 

icosahedral, SN-centered 

A Ix; +x; +x; +x jx2+xlx3+xzX31, A>O 

A 13x; + 3x; + 3x; - 2x IX2 - 2x IX3 - 2x2x3 1, A> 0 

A Ix; +x;l+ltlx; +x3x.+x~l, A,It>O 

AX; + Itlx; + x; + x~ + x2x, + x 2x. + x,x.l, A, It> 0 

A Ix; + x; + x; + x~ I, A > 0 

A Ix; +x; +x; +x~ +XjX2+xlx.+x2x3-x3x.l, A>O 

Alxi -XIX2+X; +x; -x3x.+x~l, ,1>0 

A Ix; + x; + x; + x~ + XIX2 + XjX3 + XIX. + XzX3 + XzX. + x3x.l, A> 0 

A l2xi + 2x; + 2x; + 2x~ - XIX2 - XjX3 - XIX. - XzX3 - x2x. - x3x.l, A> 0 
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96 

96 

96 

384 

1152 

288 

144 

240 

240 
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TABLE II. Identifications oflattices and maximal Bravais groups as root lattices Q (R ) [weight lattices P = P (R V)] and as automorphism groups of root 
systems (R ) of semisimple Lie algebras. 

Dimension Lattice Lie algebra (R ) Dual algebra (R V) Bravais group Lattice type 

B, (=A, =Cd C, 

2 square, primitive B2 (= C2) C2 

hexagonal, primitive G2 G2 

3 hexagonal, primitive B, +G2 C, +G2 

cubic, primitive B3 C3 

cubic, face-centered C3 B3 

cubic, body-centered C3 B3 

4 hexagonal, tetragonal B2 + G2 C2+ G2 

cubic orthogonal, B, +C3 C, +B3 
F(2, 3, 4)-centered 

cubic orthogonal, B, +C3 C, +B3 
1(2, 3, 4)-centered 

hypercubic, primitive B. C. 

hypercubic, Z-centered F. F. 

diisohexagonal orthogonal, G2 + G2 G2 + G2 

primitive 

diisohexagonal orthogonal, 
RR 2-centered 

icosahedral, primitive A. A. 

icosahedral, SN-centered A. A. 

tice, as all the others do, but on a lattice in a tensor product of 
two root spaces. 

III. NORMAL PARTITIONS OF En (n.;;;4) 

Around any point of a lattice in the Euclidean space En, 
we can build its Dirichlet (or Voronoi) cell: It is the (closed) 
convex polyhedron whose points lie at a distance to the cho
sen lattice point, which is not larger than their distance to 
any other lattice point. For n = 3 these cells are also known 
in solid state physics as Wigner-Seitz cells. It is evident that 
the Dirichlet cells of a lattice give a normal partition of the 
Euclidean space; this partition is invariant under the Bravais 
group of the lattice, as well as under translation. 

It turns out that at least inE 1 ,E 2,E 3, andE 4 all normal 
partitions are affine images of Dirichlet partitions; in these 
spaces all parallelohedra are affine images of Dirichlet 
cells.22

•
23 The number of combinatorially distinct parallelo

hedra in En is 1, 2, 5, 52 for n = 1, 2, 3, 4, respectively. The 
purely geometric description of the parallelohedra for di
mensions n.;;; 4 is known for a relatively long time22 ; for n = 2 
the corresponding Dirichlet cells are the square and the re
gular hexagon, whereas for n = 3 they are the cube, the cu
boctahedron, the rhombic dodecahedron, the regular right 
hexagonal prism, and the elongated rhombic dodecahedron. 
The first four are the Dirichlet cells of the primitive, body
centered, and face-centered cubic lattice, and of the hexag
onallattice, respectively, which are lattices of maximal Bra
vais groups, whereas the fifth is not related to a maximal 
Bravais group. For maximal Bravais groups the only normal 
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A (B,) = W(B,) Q=pv 

A (B2) = W (B2) Q=pv 

A (G2) = W(G2) Q=pv 

A (B, + G2) = W(B,) . W(G2 ) Q=pv 

A (B3) = W(B3) Q=pv 

A (C3) = W(C3) Q 

A (B3) = W(B3) pV 

A (B2 + G2 ) = W(B2)' W(B2 ) Q=pv 

A (B, + C3) = W(B,) . W(C3) Q 

A (C, + B3) = W(C,)' W(B3) pV 

A (B.) = W(B.) Q=pv 

A (F.) = W(F.) Q=pv 

A (G2 + G2) Q=pv 

Q(A 2 )®Q(A 2) 

A (A.) Q 

A (A.) pV 

partitions invariant under the associated symmorphic space 
group are the Dirichlet partitions. This is generally not true 
for the other Bravais groups. 

As far as possible we shall derive the combinatorial 
properties of the Dirichlet cells by assembling them from 
fundamental domains of space groups. Thereby we can limit 
ourselves to the subgroups W· Q and W· P v of the Bravais 
(space) groups A . Q and A . P v, respectively. We shall start 
with the affine Weyl groups Wa = W· Q, because they are 
the simplest ones. The action of the groups W. P v reduces to 
them and to that of a finite factor group which describes the 
P-Iattice as a "centered" Q-Iattice. We shall also consider 
only irreducible groups (leaving no subspace invariant), 
which correspond to irreducible root systems, because for 
the reducible groups the Dirichlet cells are the (set theoretic) 
products of the cells of the irreducible components (as, e.g., 
the hexagonal prism is the product of a hexagon and a seg
ment). 

We have mentioned that the Dirichlet cell transforms 
into itself under the action of the Bravais group. Therefore, it 
consists of whole orbits of the Weyl group W(R). But since 
the cells transform into each other under the action oflattice 
translations Q (R ), they are sets of nonequivalent orbit points 
(fundamental domains) of the translation group. So they are, 
in fact, built out of a number I W I of fundamental domains 
(Weyl alcoves) of the affine Weyl group W(R ) . Q (R ), where 
by I W I we denote the order of the Weyl group W (R ). We 
refer to Ref. 16 for the background to the geometry of the 
affine Weyl groups and their fundamental domains, the 
Weyl alcoves. We will describe the minimum offacts we 
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need for the construction of the Dirichlet cells. 
We start from a reduced root system R in a real n-di

mensional Euclidean space V with scalar product ( " ), i.e., 
from a set R of vectors, which obeys the following condi
tions: 

(1) R is finite and generates V; 
(2) for any vector a E R there exists a vector a V in the 

dual space V * of V (which we often identify with V 
through the given scalar product), such that 
(a, a V

) = 2 and such that the automorphism 
x -~ x - (x, a V)a, a E R, of V transforms R into R; 

(3) (x, a V
) E Z for all a, x E R; 

(4) if a E R, then 2a EE R. 
The vectors a v are given by a v = 2a/(a,a) and form a 

root system R v, called dual to R. Further one defines the 
group A (R ) of all automorphisms of V, which transform R 
into itself, and its subgroup generated by reflections 
x - x - 2[(x,a)/(a,a)]a, x E V, a E R, the Weyl group 
W(R). The groups W(R) and W(R V) as well as the groups 
A (R ) and A (R v) are isomorphic. 

In the space V we consider the hyperplanes 
La = Ixl(x,a) = 0], X E V, a E R; the set V - ILa] consists 
of I W I connected pieces, which are simplicial cones, the 
Weyl chambers. One can choose in the root system R a basis 
B = I a 1,· .. ,an ], which spans Vand has the property that 

Ch=lxEVI(x,a,»O, i=l, ... ,n] (3.1) 

is a Weyl chamber. A basis has the property that any root 
vector can be expressed in terms of its vectors with integer, 
either all nonnegative or all nonpositive, coefficients. There 
is a maximal root a = L7~ 1 n,a, such that for any root 
L7~ I p,a, one has nj;;.p" l<i<n. 

We will exploit the facts that (a) the Weyl group W(R ) 

acts simply transitive on the set ofWeyl chambers and (b) the 

closure Ch ofa Weyl chamber is a fundamental domain of 
the Weyl group W(R ). But we are, in fact, interested in the 
fundamental domain of the affine Weyl group 
Wa = W(R). Q(R), where 

Q(R) = {x E V Ix = ,t1 n,a" n, E Z} = L n (a1,· .. ,an ) 

(3.2) 

is the (group ot) lattice (translations). This domain is the clo
sure C of the Weyl alcove C and is described by the set of 
inequalities 

(a" x);;'O, i = 1, ... , n (the closure Ch 

of the Weyl chamber Ch), 
(3.3) 

(av,x)<l, 

where aV is the maximal root of the dual root system R v, 

considered in the dual basis B v = I ai, ... , a~], 
a; = 2a,!(a"a,). Since (a" x) > 0 is equivalent to 
(a;, x) > 0, the Weyl alcove C is described by 

(a;, x) > 0, i = 1, ... , n, 

(a v, x) < 1, 

in terms of the dual root system R v. Its closure C is 
(a;, x);;'O, i = 1, ... , n, 

(a v, x)< 1. 

(3.4) 

(3.5) 

The geometric properties of the root systems R, with 
the maximal roots a added to the corresponding bases 
B = I a I,· .. ,an J, are given by the extended Dynkin diagrams 
(Table III). 

TABLE Ill. Extended Dynkin diagrams of simple Lie algebras. including the root bases I a , ..... a n l and the maximal roots a: two vertices are connected 
by h I = 1.2 or 31 lines if the corresponding roots are not orthogonal; one of the two roots is h times longer than the other (as the inequality sign on the 
lines shows). 

Type of Stability group 
R R V Extended Dynkin diagram (R I Order of W(R I Order of A (R I ofa in W(R I 

An. n)2 An 

~ 
(n + I)! 2[W(R)[ WIA n2 ) 

'----0-'" 
" " a 

n-, a 
n I 2 

A, A, -Ii ..--0 a 2 2 , 

B" n)3 Cn '~a a 
. I • ' 3 _ .. -CE:::c:on 

-.. -r{ a a 

2" . n! [WIRI[ W(A,)· WIB" 2 ) 

B2 Col =B2 ) 
, , 

8 8 W(A,) • ~ n ;:: [) 

C". n)2 B" 
~ ... -o::::co 

2n . n! [W(RI[ W(C" .,1 
-1 a a a a , 2 n-I n 

,~~a 2[WIRI[. 1l~4 
D". n)4 D" 

1 2 3 .~ n-Z n-j 2n -, . n! 
3[W(RI[. n=4 

WIAtl· WID"_2) 
-', ~an 

F. F. 
-ii a 

27 .32 =1152 [WIR)[ WIC31 , 2 3 

~ 

-a a a 
G, G, ...--~2 12 [WIRI[ WIA,) 
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The inequalities (3.4) describe simplexes in En: the first 
inequalities represent the positive orthant (a simplicial cone) 
and the last one reduces the cone by cutting it with the hyper
plane 

H(C): (a v, x) = 1. (3.6) 

The Dirichlet cell D Q = D Q (R ) of the lattice Q (R ) is 

DQ = U we. (3.7) 
WE W(R) 

Its combinatorics lies in its boundary aDQ , which is entirely 
described in terms of the hyperplanesH (wC),w E W(R ),gen
erated from H (C) by the Weyl group. The Dirichlet cell can 
be described analytically as 

(3.8) 
Dw(R) = Ixl(wa V

, x)<1j, 

the intersection of the half-spaces generated from (a v, x)< 1 
by the Weyl group. 

IV. COMBINATORIAL STRUCTURE OF THE DIRICHLET 
CELLS IN Q(R) 

(i) (n -1}-boundaries:Thenumberof(n - I)-boundar
ies [In - 1 )-faces] of the cell is equal to the number of distinct 
hyperplanes H (wC), i.e., to the numbers of vectors in the 
orbit of the maximal root a v under the Weyl group. Since the 
Weyl group acts transitively on the set of roots of equal 
length, the number of (n - 1 )-boundaries equals the number 
of roots of squared length (a v, a V), which is equal to the 
order I WI of the Weyl group divided by the order IG I of the 
stability group G of aV

: I Will G I. The stability group of aV 

can be read off the Dynkin diagrams. Namely, if w = wav, 
a V ER v, then 

(-v V) 
W v a V = a V _ 2 a ,a a V = a V *->- (aV,a V) = 0. (4.1) 

a (aV,aV) 

The subset of a root system R v, which lies in a subspace of 
En (here the space orthogonal to a V) is itself a (perhaps re
ducible) root system; its basis is given in our case by the 

TABLE IV. k-boundaries (F.) of Dirichlet cells DQ of the lattices Q(R). 

Dimension n Lattice Fo 

Q(B,) 2 

2 Q(B2 ) 4 4 
Q(Gz) 6 6 

3 Q(B, + G2 ) 12 18 
Q(B3 ) 8 12 
Q(C3 ) 14 24 

4 Q(B, + C3 ) 28 62 
Q(B2 + G2 ) 24 48 
Q(G2 + G2 ) 36 72 
Q(A4) 30 70 
Q(B4) 16 32 
Q(F4) 24 96 
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subset ofB (R v) = lai, ... ,a~J which obeys (av,an = 0. Gis 
the Weyl group of this root system. 

(ii) (n-2}-boundaries: These boundaries are deter
mined by two equalities of the type 

(wa;, x) = 0, i = 1, ... , n, WE W, 
(4.2) 

(waV,x) = 1, 

supplemented by the rest of inequalities 

(war, x»O, ) = 1, ... , n, }=j=i, 

of(3.5). Since the closed Weyl chamber Ch: (a;, x»O, 
i = 1, ... , n, is a fundamental domain of the Weyl group, the 

orbits of (a;, x) = ° and (a r, x) = ° will be distinct for i -=I-}' 
Therefore, we shall investigate successively the number of 
distinct pairs (4.2) for fixed values of i = 1, ... , n. But not all 
values have to be considered, since some of them disappear 
as boundaries because the simplexes they separate belong to 
the same (n - I)-boundary. Suppose that (av,an = 0; then 
(w va v, x) _ (a v, x) and (a;, x»O ---+ (w va;, x) 

aj a i 

= - (a;, x)<O and the contiguous Weyl alcoves C and 
w vC belong to the same {n - I)-boundary (a v, x) = 1. We a, 

need thus be concerned only with those ai's which are not 
orthogonal to aV

; these are very few: two for root systems of 
type A n and one for all the others. 

In order to determine the number of(n - 2)-boundaries 
we have first to determine the number of distinct pairs 

(wa;,x) =0, 
(4.3) 

{wa V
, x) = 1, WE W, 

and then divide it by the order of the equivalence classes of 
pairs corresponding to the same {n - 2)-boundaries. The 
number of equations (4.3) is I W(R V)I/IG {av,anl, where 
G {av,an = G (a V) n G (an is the stability group ofav,a; in 
W{R V). The equivalence class mentioned has two elements, 
corresponding to the Weyl group generated by aj. All these 
numbers can be read from the extended Dynkin diagram and 
the results are given in Table IV. 

(iii) (n -3}-boundaries: Similar reasoning is valid here; 

n _. I 

F. X,= I (- I}'Fk 
,{=o 

2 

0 
0 

8 2 
6 2 

12 2 

48 14 0 
34 10 0 
48 12 0 
60 20 0 
24 8 0 
96 24 0 
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TABLE V. Equivalence classes (Cd of k-boundaries of Dirichlet cells DQ and minimal numbers N of degrees offreedom of Kiihler fermions on the 
lattices Q (R ). g 

Dimensionn Lattice Co C, C2 

Q(B,) 

2 Q(B2 ) 2 
Q(G2 ) 2 3 

3 Q(B, + G2 ) 2 5 4 
Q(B,) 1 3 3 
Q(C,) 3 8 6 

4 Q(B, + C,) 3 11 14 
Q(B2 + G2 ) 2 7 9 
Q(G2 + G2 ) 4 12 13 
Q(A.) 4 15 20 
Q(B.) 1 4 6 
Q(F.) 3 24 32 

one only has to take those distinct pairs of ai.a!. i =tj for 
which (av.ai.aJ') does not fall into orthogonal subsystems. 
and one gets the number of such (i.j)-boundaries as 
I W(R vlI!(IG(av.ai.aJ')I·1 W(ai,aJ')I). where W(ai,aJ') is 
the Weyl group ofthe root system generated by ai.a! and 
G ("iiv,ai.an is the stability group of aV.ai,a! in W(R V). 
The group W (a i.a J') gives the size of the equivalence classes 
of hyperplanes 

(wav.x) = 1, 

(wai,x) =0. 

(wa!,x)=O, 

which correspond to the same (n - 3)-boundaries. 
(iv) (n - 4)-boundaries: Their number is given by 

I W(R vlI!(IG(av.ai,a!.afjll W(ai.a!,afjl). where the 
magnitudes involved are completely analogous to those de
scribed at the other dimensions. 

So far we have derived the combinatorial structure of 
the Dirichlet cells of the Q (R I-type lattices, looked upon 
from the spherical topology; the number Xs computed in 
Table IV equals the Euler characteristics of the sphereSn _ \ 

in En as it should. We will now be concerned. in addition. 
with the equivalence structure ofthe boundaries induced by 
the lattice translations of Q (R ). This structure is described. as 
can easily be seen, by a region homeomorphic to an open 
half-sphere of Sn _ \ . The lattice translations which realize 
the equivalences. are given by the set of roots of minimal 
length in the root system R which generates the lattice Q (R ). 
Namely. the vector which touches the hyperplane 
(a v, x) = 1 orthogonally is/3 = a V l(av.aV) = !(aV(. Since 
2f3 = (a V( E Rand (P, /3) = l/(av.iiV). aVbeing a root in 
R V of maximal length. a = 2f3 is of minimal length in 
(R V)v=R. 

The essential group theoretic property which comes 
into play here is the simple transitivity of the affine Weyl 
group on the alcoves and the fact that their closures are fun
damental domains. The necessary data for the equivalence 
calculations can be taken again from the extended Dynkin 
diagrams. 
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n n 

C, C. X= L (_I)kCk N= L Ck g 
k=O k=O 

0 2 

0 4 
0 6 

0 12 
0 8 
0 18 

7 0 36 
5 0 24 
6 0 36 

10 0 50 
4 0 16 

12 0 72 

(t) (n -I)-boundaries: Here we know already that any 
(n - I)-boundary is common to two Dirichlet cells; there
fore, the number of equivalence classes ofthese boundaries is 
half the number of boundaries. Group-theoretically. we 
would have to reason in the following way: the number of 
neighboring cells corresponding to a v is given by the order of 
the Weyl group W(a V). I W(aV)1 = 2. This gives the desired 
reduction factor. 

(it) (n - 2)-boundaries: Let us assume that such a 
boundary is given by (a v• x) = I. (ai, x) = O. From the ex
tended Dynkin diagram we compute the number of alcoves 
contiguous to this boundary as I W (a V.a il 1·1 G (a V.a il I, of 
which I W(aill·IG(av.aill belong to one cell. The number of 
cells contiguous at this boundary is thus 

I W(aV,aill/l W(aill· 

(iii') (n-k)-boundaries: The general result for any 
boundary of type aVai ... ai is that the number of conti-

I k- 1 

guous cells is given by I W(aVa[ ... aL, )1/1 War ... aL, )1· 
Combining this with the number of boundaries computed 
under (i)-(iv), we get for the number of equivalence classes of 
(n - k I-boundaries (k = 1, ...• n) of type aVai ... a/v : 

I k- 1 

I W(ai ... a~)I!(1 W(aVa[ ... aL ,l1·IG(aVa[ ... aL ,)Il· 
They are all collected in Table V. 

V. LATTICES OF TYPE P==. P(R) 

So far we have investigated the combinatorial proper
ties of the Dirichlet cells of the root lattice Q (R ) by starting 
from the fundamental domain of the affine Weyl group 
Wa = W (R ) . Q (R ), which is a simplex. Now we discuss the 
cells of the weight lattices P (R ). A lattice P (R ) is defined as 

Ln(w\,. .. ,wn) = {xix = .f n;w;}, 
1= 1 

(w;.aJ') = Dij' i,} = 1, ...• n, (5.1) 

where !ai, .... a,;} is the basis ofthedual rootsystemR v. The 
lattice Q (R ) is a sublattice of P (R ) and the group 
Wa = W(R)· Q(R) is a subgroup of W~ = W(R)· P(R). 
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TABLE VI. k-boundaries (Fk ) of Dirichlet cells Dp of the lattices P(R). 

Dimension n Lattice Fo F, 

3 P(B3) 24 36 

4 PIC, +B3) 48 96 
P(A.) 120 240 

The order Fofthe factor group W~/Wa [which is isomor
phic to P (R ) / Q (R )J gives the number of fundamental do
mains of W ~ in a Weyl alcove C (the fundamental domain of 
Wa ). The division of the alcove C into fundamental domains 
C p of W ~ is performed by the subgroup r e (or order!) of 
W ~, transforming C into itself, 

re = {YiIYi(C) = C}, Yi E W~. (5.2) 
Its! - 1 nontrivial elements Yi are described by 

Yi = t (Wi )WiWO' (5.3) 

where the index i exhausts the set I of values for which 
ni = 1 in the maximal root ('iv = l:7 = I n;a; of R v; Wo is the 
(unique) element of W (R ), which transforms the Weyl alcove 
C into - C, Wi is the same for the group W(Ri) [considered 
as a subgroup of W (R )] of the root system Ri determined by 
the Dynkin diagram of R, if the positive root a i is deleted. 
t (Wi) is the translation by the corresponding weight Wi' The 
weights Wi' i E I form a system of representatives of P (R )I 
Q (R )inP (R ). The operations Wi Wo are most simply displayed 
by the automorphism group they induce on the extended 
Dynkin diagram of R v. 

There are two cases we have to analyze: P(B3) andP(A4). 
P(B3 ): Since B j = C3 and ('i v = 2a i + 2af + aj, there 

is only one element in the set I: i = 3. The groupP (B3 )1Q (B3 ) 

is of order 2 (f = 2);w3isarepresentativeinP(B3)' The group 
operation induced by W3WO in B j = C3 is - ('iv ~ aj, 
a i ~ af. With these elements one easily observes that C p is 
given by 

Cp : 

(('iv, x)<I, 

(W3' x)<!(w3,w3), 

(ai,x):>O, 

(af,x):>O, 

(aj, x):>O. 

(5.4) 

n- , 

F2 F3 F. X,= L (-I)kFk 
k=O 

14 2 

64 16 0 
150 30 0 

Its boundary structure is as follows: 

I-boundaries: ai af, ai aj, af aj, ('ivaf, ('ivaj, 

ai W3' af W3, aj W3, ('iV W3; 

O-boundaries: ai af aj, 
(5.5) 

ai af W3, ai aj W3, ('ivaf W3' ('ivaj W3, 

expressed in terms of combinations of inequalities (5.4). 
P(~): Here we have A :- = A4 and 

('i = a I + a 2 + a 3 + a 4, so the set I includes all values 
i = 1, ... ,4 (f = 5) and we have WI "",W4 as representatives of 
P (A4)/ Q (A4) in P (A4)' The group operations Wi Wo induce on 
the extended Dynkin diagram cyclic permutations, whereby 
for a given i, - ('i ---+ a i. The domain C p is 

(Wi' X)<!(WjO Wi)' 

(aj , x):>O, i,j = 1, ... , n, 

with the boundary structure: 

2-boundaries: aiaj (i<j), 

aiwj (i=/=j), 

wiwj (i <j), 

I-boundaries: ai, ai, ai, (il < i2 < i3)' 

ai, ai, Wi, (i) <i2), 

ai, Wi, Wi, (i2 < i3), 

Wi, Wi, Wi, (i I < i2 < i3)' 

O-boundaries: a I a 2 a 3 a 4 , 

ai, ai, ai, Wi, (il < i2 < i3), 

ai, ai, Wi, Wi, (il < i2,i3 < i4), 

ai, Wi, Wi, Wi, (i2 < i3 < i4), 

WI W 2 W3 W 4, 

where im = 1, ... ,4, im =/=im,. 

(5.6) 

(5.7) 

TABLE VII. Equivalence classes (C. ) of k-boundaries of Dirichlet cells D p and minimal numbers N of degrees of freedom of Kahler fermions on the 
lattices P (R ). g 

Dimension n Lattice Co C, 

3 P(B3) 6 12 

4 PIC, +B3) 6 18 
P(A.) 24 60 
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C2 

7 

19 
50 

8 
15 

C. 
n 

X= L (- WC. 
k=O 

o 

o 
o 

26 

52 
150 
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TABLE VIII. k-boundaries (Fk ) of the Dirichlet cell DT of the lattice Q (A 2 ) 18> Q (A 2). 

Dimension n Lattice F, 

4 102 216 

The construction of the Dirichlet cell D p = D p (R ), 

(5.8) 

proceeds along the same lines as that of DQ(R ), only has one 
to take into account an additional set of hyperplanes (lU" x) 
= ~(lU;, lu;), besides or instead of (a v, x) = 1. The relevant 

orthogonality properties now also include (lu;, an = oij' The 
numbers Fk of k-boundaries of Dp are given in Table VI. 
These numbers already show that the cells Dp(B3) and 
Dp(A4) are primitive parallelohedra,15 i.e., any k-boundary 
(k = 0, ... , n) is contiguous to n - k + 1 cells; this gives the 
equivalence classes of k-boundaries of Table VII. 

VI. THE LATTICE Or = O(A2 ) ® O(A2 ) 

This is the diisohexagonal tetragonal RR2-centered lat
tice. It is, from the point of view of root systems, exceptional. 
The Weyl group oftheA2 root systems induce on this lattice 
an automorphism group (of rotations) of order 36. The full 
automorphism (point) group AT is of order 36·4 = 144; the 
additional generators are the reflection in one A2 and the 
permutation of the two A2 root systems. Instead of comput
ing the fundamental domain CT of the (symmorphic) lattice 
group AT . QT generated by AT and the lattice translations 
and deriving therefrom the combinatorial properties of the 
Dirichlet cell 

(6.1) 

we use results from the theory ofparallelohedra and ofposi
tive definite quadratic forms. 15 The quadratic form (metric) 
of the lattice, generated by R (A 2) X R (A 2) is, in the basis, 

el=al®al, 

e2 =a2 ® a2, 
e3 = a l ® a 2 , 

e4=a2 ® ai' 

(6.2) 

ctl x;e;Y = 2(2xi + 2xi + 2xi + 2x~ +x I x2 +X3X4 

- 2x1 X3 - 2x1 X4 - 2x2 X3 - 2x2 x4). (6.3) 

"-, 
x, = L (- l)kFk 

k=O 

144 30 o 

The parallelohedron corresponding to it turns out from this 
to be a limit case of a primitive parallelohedron of type III 
described in detail by Voronoi. 15 Its numbers of k-boundar
ies (k = 0, ... ,4) are listed in Table VIII and its equivalence 
classes of k-boundaries are given in Table IX. 

VII. COMPARISON WITH NAIVE FERMIONS 

The minimal number of naive fermions is related to the 
(equivalence class of) points on the Dirichlet cells, which 
belong to isolated orbits of the factor group of the crystallo
graphic group with respect to the lattice translations. These 
orbits can be particularly easily determined for those groups 
which are affine Weyl groups Wa = W(R). Q (R). Affine 
Weyl groups are generated by reflections on hyperplanes. 
Since their action on the alcoves is simply transitive, their 
isolated orbits are the extremal points, the O-boundaries of 
the alcoves. These are the images under the Weyl group of 
the points symbolized byai ... a: and byaVa[ ... a[_,. The 
first of these points is the center of the cell DQ and the others 
are on its boundaries. The orbit of the point a va [ '" a [_ , 
has I W(R v)/II W(a[ ... aL,)1 elements. If the set 
aVa[ ... a[ _, splits into (at most) two mutually orthogonal 
systems aVa; ... a,v and a; ... a; the orbit lies on the 

I k-I k. tI- I 

(n - k )-boundariesofDQ oftypeaVa[ ... aL, (k = 1, ... , n). 
The numbers Pn _ k of Table X come from all the nonequiva
lent (n - k I-boundaries of such types. 

If the group A (R ) . Q (R ) is larger than the affine Weyl 
group, as it happens for R = G2 + G2 and R = A4 , where 
IA III WI = 2, the fundamental domain is half the Weyl al
cove. We may, however, look simply at the fixed points ofthe 
factor group A . Q IW· Q on the Weyl alcove. 

For the root system A4 the nontrivial element of this 
group corresponds to the inversion a; ---> - a; (i = 1, ... ,4). 
Its fixed points are the images under Wof the point 
(ai' x) = !, (a4 , x) = ! on the aa2a 3-boundary. These are the 
centers of the 3-boundaries of D Q' Thus, for W· Q the points 
of isolated orbits are the center and the O-boundaries of DQ 
(the W-images of the O-boundaries of the Weyl alcove) and 
for A . Q the centers of the 3-boundaries add to them. 

In G2 + G2 the fundamental domain of the affine Weyl 
group is the product of two simplexes (triangles) with the 

TABLE IX. Equivalence classes (ek ) of k-boundaries (and of isolated orbit points) of the Dirichlet cell DT and minimal number N. of degrees of 
freedom of Kahler fermions on the lattice Q (A 2 ) 18> Q (A 2 ). 

Dimension n Lattice e, x = ± (- l)kek Ng = ± e k 
k=O k=O 

4 20 54 48 15 o 138 
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TABLE X. Equivalence classes (Pk) of isolated orbit points of the groups on k-boundaries of the Dirichlet cells D Q , i.e., on the Brillouin zones of the 
reciprocal lattices P (R v), compared to Ng of D p (R V). 

Dimension 
Lattice Bravais group Po p, 

n 

Q(Bd A(Bd= W(Bd 

2 Q(B2) A (B2) = W(B2) 2 
Q(G2) A (G2) = W(G2) 2 3 

3 Q(B,) + Q(G2) A = W(Bd' W(G2) 2 5 
Q(B)) A= W(B)) 1 3 
Q(C)) A = W(C,) 3 

4 Q(B,) + Q(C)) A = W(Bd' W(C,) 3 3 
Q(B2) + Q(G2) A = W(B2) . W(G2) 2 7 
Q(G2) + Q(G2) A (G2 + G2) 4 12 

Q(A.) A (A.) 4 

Q(B.) A = W(B.) 1 4 

Q(F.) A = W(F.) 3 24 

extreme points of higher stability group. The additional 
symmetry operation in A . Q is the interchange of the two 
root systems G2; it has no isolated fixed points. 

P2 

4 
3 
6 

6 
9 

13 

6 
32 

The corresponding numbers for A4 and G2 + G2 are, 
again, given in Table X. We consider now the groups A . P 
and start from their subgroups W· P. For B3 , where we have 
A = Wand where the factor group W· P /W· Q has order 2, 
we get the fixed points of W· Q and, in addition, the images 
of the points W3 ai a~ and aV 

W3 af. Thus, the points of iso
lated orbits are the center of the cell, those of its 2-boundar
ies, and its O-boundaries. 

In the fundamental domain of W· P (A4) the only fixed 
points of the factor group W· P / W . Q are a 1 a 2 a 3 a 4 and 
WI W 2 W3 W 4• The additional fixed points, coming from the 
group A . P /W· P,arew l a 2 a 3 a4,w2 a l a 3 a4,w3 a l a 2 a 4, 
andw4 a l a 2 a 3• The points of isolated orbits of the Dirichlet 
cell Dp(A4) thus are for W· P the center of the cell and its 0-
boundaries, whereas for A . P the centers of the 3-boundaries 
add to them. 

The numbers Pk for the cells Dp are given in Table XI. 
There remains the (self-reciprocal) lattice QT 

= Q (A 2 ) ® Q (A 2 ). From its full symmetry group we can de
termine, with a certain amount of computation, the stability 
groups of the various (inequivalent) k-boundaries of the Dir
ichlet cell D T • The result is that on any k-boundary 
(k = 0, ... ,4) there is precisely one point of an isolated orbit. 

n Reciprocal 
p) P. N c = LPk N g lattice k~O 

2 2 P(Cd =Q(B,) 

4 4 P(C2) =Q(B2) 
6 6 P(G2) =Q(G2) 

12 12 PIC,) + PIG2) = Q(Bd + Q(G2) 
8 8 PIC)) =Q(B,) 

10 26 P(B)) 

7 20 52 PIC,) + P(B,) 
5 24 24 P(C2) + P(G2) = Q(B2) + Q(G2) 
6 36 36 P(G2) + PIG2 ) = Q(G2) + Q(G2) 

10 15 150 P(A.) 
4 16 16 P(C.) =Q(B.) 

12 72 72 P(F.) = Q(F.) 

VIII. COMMENTS 

We have derived for the lattices of maximal symmetries 
in n = 1, ... ,4 dimensions the numbers Ng of degrees offree
dom of geometric fermions, which are connected with the 
translationally inequivalent k-boundaries (k = 0, ... , n) of 
their Dirichlet cells. These numbers, summarized in Tables 
V, VII, and IX, are minima by the construction of the cells 
from the fundamental domains of the symmorphic space 
groups associated to the maximal Bravais groups. The cells 
do not provide the unique minimal partition: the dual parti
tion, which corresponds to Ck +-+ Cn _ k (k = 0, ... , n) in these 
tables, is another such partition. It is given by the polyhedra 
which are the convex hulls of the centers of the Dirichlet 
cells contiguous at O-boundaries. The dual partitions can be 
described with the methods used in this paper. We only men
tion here that for the hexagonal lattice Q (G2 ), the body-cen
tered cubic lattice P (B3)' and the SN-centered icosahedral 
lattice P (A4) they are simplicial partitions (simpliciallat
tices). For fermions (either naive or geometric) the choice 
between Dirichlet or dual partition is not so important, but it 
is important for objects with degrees offreedom sitting on 
boundary elements of given order k, as, e.g., vector (gauge) 
bosons (k = 1). 

We have also determined, for the actions of the sym
morphic space groups corresponding to the maximal Bra-

TABLE XI. Equivalence classes (Pk) of isolated orbit points of the groups on k-boundaries of the Dirichlet cells Dp , i.e., on the Brillouin zones of the 
reciprocal lattices Q(R V

), compared to Ng of DQ(R v ). 

Dimension n Lattice Bravais group Po p, P2 

3 P(B,) A= W(B,) 6 7 

4 P(Cd+P(B,) A = W(Cd' W(B,) 6 6 7 
P(A.) A (A.) 24 

1691 J. Math. Phys., Vol. 25, No.6, June 1984 

8 
15 

P. N c = 
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L Pk 
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14 

28 
40 

Reciprocal 
N g lattice 

18 Q(C,) 

36 Q(Bd + Q(C,) 
50 Q(A.) 
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vais groups in n = 4 dimensions, the orbits which are isolat
ed in their strata. For reasons of completeness we have 
rederived these orbits here also for n<3. The points of these 
orbits (Tables X and XI) are minimal critical sets for any 
smooth invariant vector field on the Dirichlet celf4 and 
thereby give lower bounds Nc for the numbers of naive fer
mions on the reciprocal lattice, for which the Dirichlet cell 
plays the role of the Brillouin zone. 7 The physical (particle) 
interpretation of the vector field requires, however, that its 
critical points should not be degenerate. On several of the 
lattices which are not self-reciprocal, e.g., on those of type 
A4 , this requirement cannot be imposed on the minimal set of 
critical points since the orbit structure does not allow them 
to obey the Poincare-Hopf theorem. On them the lower 
bound Nc cannot be saturated by physically acceptable vec
tor fields. The minimal numbers of naive fermions for the 
corresponding groups are then necessarily higher than the 
numbers in Tables X and XI show; their precise values have 
to be determined from a detailed orbit analysis of the group 
action. Anyhow the location of these fermions on the Bril
louin zone will then no more be completely specified by sym
metry. This phenomenon has already been encountered for 
certain three-dimensional nonmaximal groups; the groups 
of the lattices Q (A 4 ), P (A4) are similar to the space groups 
T~, T~. 

On the self-reciprocal lattices the situation is much 
simpler. Here we have Pk = Ck and therefore the equality 
l:Z=o( - l)kPk = l:Lo( - l)kCk = 0, by which the Poin
care-Hopf theorem allows us to saturate the bound Nc by 
physically interesting vector fields with only nondegenerate 
critical points. For the maximal groups corresponding to the 
self-reciprocal lattices, one can therefore make a precise 
statement: the minimal numbers of naive fermions are given 
by Nc of Table X and the location of these fermions is on the 
centers of the (translationally inequivalent) k-boundaries of 
the Dirichlet cells ( = Brillouin zones); for these lattices 
Nc =Ng • 

In order to have the complete computational instru
ment (the appropriate [2-cohomologies) of a lattice theory, 
one has to know, in addition to the partitions giving the mini
mal degrees of freedom, also the incidence structure of the 
boundaries of the polyhedra and the appropriate scalar pro
duct for the (Hilbert) space oflinear functions defined on the 
boundaries. The incidence structure can easily be derived 
from the geometric insight gained by the Lie algebraic meth
ods used in this paper. The appropriate scalar product 
should be the one induced25.26 by that of the Euclidean space 
En. 

We have not discussed in this paper the continuum lim
it. It has been commented upon in Refs. 6 and 8, and a two-

el, 
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dimensional example has been worked out in Ref. 27. The 
mathematical background for a discussion can be traced 
from Refs. 26 and 28. 

There remains, finally, the problem of determining the 
minimal numbers of degrees of freedom for lattice fermions 
for the nonsymmorphic space groups corresponding to the 
maximal Bravais groups. We expect that, analogously to na
ive fermions, 7 one will get a strong increase of these numbers 
compared to the symmorphic groups. We illustrate in an 
appendix on the (single) two-dimensional case the situation 
to be expected generally. 
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APPENDIX 

The two-dimensional maximal Bravais groups are the 
Weylgroups W(B2 ) and W(G2 ). To W(G2 ) there corresponds 
a single space group, which is symmorphic, whereas to 
W(B2 ) there correspond two, one of which is nonsymmor
phic. Its factor group with respect to lattice translations may 
be represented by the four proper rotations (even number of 
Weyl reflections) and by the four improper rotations (odd 
number ofWeyl reflections) combined with a translation by 
the weight liJ2• In Fig. 1 we display the location of the mini
mal numbers Ng = 4 of degrees of geometric lattice fermions 
for the symmorphic group (Co = 1, C, = 2, C2 = 1) and in 
Fig. 2 the same for the nonsymmorphic group (Ng = 8: 
Co = 2, C, = 4, C2 = 2). 
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Orbit spaces of low-dimensional representations of simple compact 
connected Lie groups and extrema of a group-invariant scalar potentiala) 
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Orbit spaces of low-dimensional representations of classical and exceptional Lie groups are 
constructed and tabulated. We observe that the orbit spaces of some single irreducible 
representations (adjoints, second-rank symmetric and antisymmetric tensors of classical Lie 
groups, and the defining representations of F4 and E6 ) are warped polyhedrons with (locally) more 
protrudent boundaries corresponding to higher level little groups. The orbit spaces of two 
irreducible representations have different shapes. We observe that dimension and concavity of 
different strata are not sharply distinguished. We explain that the observed orbit space structure 
implies that a physical system tends to retain as much symmetry as possible in a symmetry 
breaking process. In Appendix A, we interpret our method of minimization in the orbit space in 
terms of conventional language and show how to find all the extrema (in the representation space) 
of a general group-invariant scalar potential monotonic in the orbit space. We also present the 
criterion to tell whether an extremum is a local minimum or maximum or an inflection point. In 
Appendix B, we show that the minimization problem can always be reduced to a two-dimensional 
one in the case of the most general Higgs potential for a single irreducible representation and to a 
three-dimensional one in the case of an even degree Higgs potential for two irreducible 
representations. We explain that the absolute minimum condition prompts the boundary 
conditions enough to determine the representation vector. 

PACS numbers: 02.20.Qs, IU5.Ex 

1. INTRODUCTION 

Since the discovery of the Higgs mechanism, I it has 
been employed almost exclusively in the gauge symmetry 
breaking problem because it breaks a local gauge symmetry 
without damaging the renormalizability.2 Though it is not 
the only known mechanism to do such a job, 3,4 certainly it is 
the only tractable one. Partly due to its tractability it drew 
considerable attention from theoretical physicists despite 
some ugly features. There is a consensus that, though it may 
not be a fundamental mechanism, it would describe the ef
fective phenomena arising from some unknown fundamen
tal interactions. It was applied to the unification of electro
magnetic and weak interactions5 with great success and 
subsequently to fancier grand unification theories.6 Here 
some major difficulties arose, namely, the gauge hierarchy 
problem 7 and proliferation of Higgs parameters, etc. The 
spontaneous symmetry breaking problem in supersymme
tric theories8 is one of the most popular problems these days. 
Since the spontaneous symmetry breaking mechanism was 
devised by Landau9 to explain continuous structural phase 
transitions in crystals, the mechanism has been widely em
ployed in condensed matter physics. 10 Spontaneous symme
try breaking is one of the most fundamental phenomena ob-

-) Work supported in part by the U. S. Department of Energy under Con
tract No. DE-AC-03-81-ER40050. 

hi Address after 1 September 1983: Department of Physics, Washington 
University, St. Louis, MO 63130, after 1 November 1983: Institute for 
Theoretical Physics, SUNY, Stony Brook, NY 11794, and after 1 January 
1984: Department of Physics, Johns Hopkins University, Baltimore, MD 
21218. 

served in nature. It is no wonder that there exist several 
extensive review articles on this subject. 11.12 

The technical problem of minimizing the scalar poten
tial or the thermodynamic potential and finding the symme
try of the vacuum or the equilibrium state has been consid
ered to be a formidable task among theoretical physicists. 
Unification theorists could only check the list of possible 
symmetry breaking directions without knowing whether 
and when the symmetry is broken in certain directions. Con
densed matter theorists had to use an abbreviated potential. 
Our geometrical method provides the most appropriate lan
guage for the problem. It gives accurate minimizing solu
tions for a general Higgs potential of single irreducible repre
sentations and for a general even-degree Higgs potential of 
two irreducible representations. We leave to an interested 
reader the analysis of a general even-degree Higgs potential 
of three irreducible representations, which will give needed 
solutions to some unification models, e.g., the E6 model with 
a Higgs assignment in 27, 78, and 351 representations. 13 

The geometrical method of minimizing the Landau
Higgs potentials, devised by the author, 14-17 reduces the 
problem to one of finding "contours" of directional minima. 
It is based on the observation 18 that the orbits and the conju
gacy classes of subgroups are the relevant quantities to de
scribe the minimum of the Landau-Higgs potential which is 
invariant under a linear transformation of a compact Lie 
group on the scalar fields (or a finite group on the order 
parameters). Hilbert l9 proved that there is a basic set of in
variants such that all other invariants are expressed as their 
polynomials and provided a systematic method to find all 
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the basic invariants. It has been known20 that invariants spe
cify orbits, i.e., one can view an orbit as a point in an (I + 1)
dimensional vector space, (I + I) being the number of in de
pendent basic invariants. How can we describe a direction in 
such a space? Indeed there is a set of parameters21 that can be 
used for such purpose. "Orbit parameters" are defined to be 
dimensionless ratios of invariant polynomials. These param
eters can be considered as some set of generalized angles 
specifying a direction in the representation space. Their 
ranges being bounded, they occupy a localized region (called 
the "orbit space") in the orbit parameter space, which can be 
regarded as an I-dimensional vector space. 

Since the scalar potential is a group invariant function, 
it can be expressed in terms of the basic invariants. But a 
classical Higgs potential is restricted to be a fourth-degree 
polynomial of the scalar fields due to renormalizability. Be
cause of this restriction it is normal that only a subset of all 
the basic invariants appear in the Higgs potential, and that 
the orbit parameters formed from this subset appear linear
ly.22 The potential can be written in terms of the norm of the 
field and a few orbit parameters. For a given set of orbit 
parameters we can survey the behavior, particularly ex
trema, of the potential along the corresponding direction in 
the field component space. By varying the orbit parameters, 
we can survey the whole space in search of the absolute mini
mum. Because of the linearity, the absolute minimum of the 
potential occurs on the most protrudent portions of the 
boundary of the orbit space formed from the fourth-degree 
Higgs potential, which is a projection of the complete orbit 
space. 

The potential can be minimized abstractly for a general 
representation of a general compact group. The difficult part 
of extremizing the potential in the conventional methods23.24 

has as its counterpart in our method the problem of finding 
the orbit space boundary, which is unique for each different 
representation. In our original works our method for con
structing the projected orbit space was empirical and we 
used the Michel-Radicati conjecture25 for one irreducible 
representation (irrep)26 and the Gell-Mann-Slansky conjec
ture27 for two irreps as a guide for finding the orbit space 
boundary. Then our results were tested with the boundary 
conditions. It was realized that we need not solve high degree 
algebraic equations to find orbit space boundaries. The pro
cedure is facilitated by some general mathematical re
sultS.28,29,16 Using these results, we look for branching 
rules27,3o and singlet forms of the given representation under 
various subgroups, starting from the highest level to succes
sively lower levels. In any case we need to know at least this 
much information to specify the absolute minimum, "Us
able boundaries" (where the potential may have a minimum) 
correspond to higher symmetry groups. In practice one finds 
the whole boundary before he reaches the lowest level. 

Much work has been done by mathematicians31 ,32,29 on 
the structure of the complete orbit space. Their results were 
originally derived from the properties of linear actions of 
compact transformation groups. However, Ref. 32 deals 
with the relationship between orbits and invariants. Recent
ly a comprehensive review article29 has been published for 
physicists. Our formalism is entirely based on the invariant 
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polynomials and requires less mathematical background, 
presenting a concrete and intuitive picture without losing 
generality. The main result is that the orbit space consists of 
some I-dimensional volume occupied by the generic stratum 
of the lowest level symmetry group with all the other strata 
of higher symmetries forming the singular boundaries. 
Equivalently, the generic stratum occupies an open, dense, 
topologically connected region and thus the boundaries 
must belong to the lower dimensional strata. It was explicitly 
shown 12,29 that a lower dimensional stratum of a higher sym
metry is a subspace which is spanned by the gradients of 
basic invariant polynomials. (This is equivalent to our 
boundary conditions. 16) 

In this paper we present concrete examples, showing 
that lower dimensional strata of higher symmetry groups 
always form the boundaries of higher dimensional strata of 
lower symmetry groups. We also observe that high symme
try strata are normally33 more protrudent than lower sym
metry ones, which was conjectured in our earlier works. 14-16 
This protrusiveness of orbit spaces (defined in terms of ratios 
of invariant polynomials) is important physically because it 
indicates that a physical system tries to retain the highest 
symmetries possible when the spontaneous symmetry break
ing takes place, which is the spirit of the Michel-Radicati 
and the Gell-Mann-Slansky conjectures. It also makes our 
method powerful. The hierarchy of protrusiveness on the 
boundaries is essential to predict how small the little groups 
can be in the presence of non monotonic orbit parameters. 17 

In Sec. 2, we briefly review the minimization problem in 
orbit space. In Sec. 3, we construct orbit spaces of adjoint 
representations. We observe that they form polyhedrons as 
conjectured in Ref. 16. In Sec. 4, second-rank symmetric and 
antisymmetric tensors of all the classical Lie groups and oth
er low-dimensional single irreps are analyzed. We observe 
that the tensors have the same orbit spaces as adjoint repre
sentations of other groups and that there is an interesting 
relationship between the number of maximal little groups 
and the degrees of basic invariants. We discuss the implica
tions of the observed properties in the minimization prob
lem. In Sec. 5, orbit spaces of two irreps are shown. We find 
that the generic stratum is semiclosed. It is shown that di
mension and concavity of different strata are not sharply 
distinguished. In Appendix A, we compare our method to 
the conventional one to help the reader to understand the 
workings of our method. We also show how to find all the 
extrema (in the representation space) of a general Higgs po
tential. If a Higgs potential contains more than four indepen
dent invariant polynomials it seems difficult to locate the 
absolute minimum visually. In Appendix B, we show that 
the minimization problem can always be reduced to a two
dimensional one in the case of the most general Higgs poten
tial for a single irrep and to a three-dimensional one in the 
case of an even-degree Higgs potential for two irreps. Thus 
we can visually minimize the Higgs potentials of these two 
types using the contours of directional minima we derived 
previously. 

Once the orbit space is constructed, the absolute mini
mum of the Landau-Higgs potential for a given representa
tion can be read off the list right away using the results de-
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rived in Refs. 14-16. 
2. HIGGS PROBLEM AND ORBIT PARAMETERS 

In a nonabelian gauge theory, where the scalar potential 
has a symmetry G X reflection and the scalars transform as 
an n-dimensional irreducible representation R of a semi-sim
ple compact Lie group G, the Higgs potential can be written 
as 

1 A f * * +'4 I ijk/({!;({!j({!k({!/ 

1 A * * + '4 zgijk/({! j ({!j({! k({!/ + .... 
V (({! ) is invariant under a group transformation, 

(1) 

({!j = }:7 = I T (1J )j;({!;' T (1J ) is an n X n matrix representing a 
group element. 34 It can be written in general, 
T(1J) = exp( - i }:;."= I 1JL XL ). XL are n Xn matrices repre
senting the generators of the group, and 1J L are real or com
plex parameters specifying an element of the group. Our ob
jective is to find the field configuration and the 
corresponding symmetry that yield the minimum energy. 
We set the scalar fields constant in space-time and minimize 
the resulting potential. 

We introduce some useful group theoretical concepts, 
nicely explained by O'Raifeartaigh. II The orbit of ({! a is de
fined to be the set of vectors ({! (a) that can be expressed as 
({!(a) = T(1J )({!a with T(1J) an element ofG. The little group of 
({!a is defined to be the subgroup G ~ of G that leaves ({!a 

invariant: T(1J )({!a = ({!a for T(1J )EG ~ CG. The vectors on 
an orbit are in one-to-one correspondence with the coset 
G IG ~ . It can easily be shown that the little group G ~ of any 
vector({!b on the orbit of ({!a is conjugate to G ~. If the T(1J) are 
unitary, then all the vectors ({!(a) have the same norm ({!:({!a' 

In general, there is a continuum of distinct orbits respecting 
the same little group up to conjugation. The set of all such 
orbits is called the stratum of the little group. Note that if the 
little groups of two orbits are distinct, then the orbits are 
distinct. However, the converse is not true, i.e., if two orbits 
are distinct, their little groups are not necessarily different. 

By definition an invariant polynomial is constant on an 
orbit and thus is a function of orbits. A classical Higgs poten
tial is a polynomial of some algebraically independent invar
iant polynomials. When we seek a solution to the Higgs 
problem, we are actually seeking the orbit that minimizes the 
potential, and its little group. 

However we need to find a better way to specify an 
orbit, because to an orbit there corresponds a trajectory of 
vectors in the ({!-space. Aronhold20 realized that invariant 
polynomials specify orbits, which we adopt for our purposes. 
One is naturally led to the fact that there are only a finite 
number of independent invariants because there are only a 
finite number of real parameters specifying a vector in the 
representation space. Mathematicians have more to say. Hil
bert l9 proved that there exists a set of invariant polynomials 
1a (({! ), called the integrity basis, such that every invariant 
polynomial P (({! ) can be expressed as a polynomial of 1a : 
P (<p ) = P [ 1a (({! )]. The invariants in the integrity basis are 
not necessarily independent, and indeed, for some represen
tations, called noncoregular representations, there are po-
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lynomial identities among them, called syzygies. We will call 
the complete set of lowest degree independent invariants, 
"basic invariants." The number (I + 1) of basic invariants is 
different for each different representation. We can visualize 
an orbit as a point in the (I. + 1 )-dimensional space of 1a. 

The dimensionless ratios of invariants to the magnitude 
of the ({! vector, for example, 

,..\, = hjk/({! ~({!j({! t({!/ttl <p ~({!; r ' (2) 

can be used to specify strata, and yield a powerful tool in the 
minimization problem. We will call the dimensionless ratios 
orbit parameters. They can be considered as a set of general
ized angles containing all the directional information. From 
the definition we can readily see that their ranges are bound
ed, and thus they occupy a localized region (called the orbit 
space)35 in the orbit parameter space, which can be regarded 
as an I-dimensional vector space. 

Our method reduces the minimization problem to one 
of finding "contours" of directional minima (the minimum 
of the potential in the direction specified by a set of orbit 
parameters). The "contour" for the most general Higgs po
tential of one irrep has been analyzed in Ref. 16. It is a curve 
somewhat similar to a parabola or a surface made by trans
lating the curve. The absolute minimum of the potential oc
curs at the most protrudent portions of the projected orbit 
space boundary, corresponding to higher level little groups. 
The "contour" for the most general even degree Higgs po
tential of two irreps has been analyzed in Ref. IS. It is a cone 
and again the absolute minimum occurs at the most protru
dent portions of the projected orbit space boundary. This 
result yields a powerful method for locating the absolute 
minimum. 

When the orbit space dimension is less than four, one 
can visually locate the absolute minimum. When the dimen
sion is higher than three, one would compare the potential 
values at different extremum points and pick the lowest one 
to find the absolute minimum. In Appendix A, we show, by 
derivation, that there are only a finite number of extrema (in 
the representation space) of a general Higgs potential, in
cluding the ones corresponding to lower level little groups. 
The absolute minimum normally occurs at the stratum of 
one of the maximal or maximaximallittle groups because 
they normally correspond to the most protrudent portions of 
the orbit space boundary. However, we can still visually lo
cate the potential minimum by projecting the orbit space 
further. In Appendix B, we show that the minimization 
problem can be reduced to a two-dimensional one in the case 
of the most general Higgs potential for a single irrep and to a 
three-dimensional one in the case of an even-degree Higgs 
potential for two irreps. 

When the potential is not monotonic in orbit param
eters, the situation is more complicated. We have shown 17 

that, in a nontrivial case, each time an orbit parameter ap
pears in the potential nonmonotonically the problem re
duces to the same form on the constraint "surface" intro
duced by the nonmonotonicity. Thus the absolute minimum 
is now most likely to occur on the less (by one level) protru
dent portions of the orbit space boundary. However, we can
not totally exclude trivial cases where the maximal or 
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maximaximallittle groups are still favored. 
Deeper knowledge of the orbit space structure is essen

tial to understand the Michel-Radicati and the Gell-Mann
Slansky conjectures on the minimal symmetry breaking 
principle and to see how the principle (not the conjectures 
themselves) works in the presence of non monotonic orbit 
parameters. The above conjectures seem to hold most of the 
time but counterexamples36

•
37

,17 have already been found re
cently. 

In the following we tabulate orbit spaces of all the core
gular representations that admit less than (or equal to) five 
independent basic invariants. Although the orbit space in its 
original sense is a uniquely defined mathematical object, 
there is some arbitrariness in defining it using invariant func
tions. Mathematicians would say that any (I + 1) indepen
dent smooth invariants would do the job. Physicists would 
try to be more specific and to make a definition useful for 
their own needs, preferably a visual and compact one. Our 
definition was formed in ignorance: dimensionless ratios of 
lowest degree independent invariant polynomials in the in
tegrity basis to the unique quadratic invariant. This set itself 
is not uniquely defined because any linear combinations of 
the same-degree invariant polynomials are equally qualified. 
Since the concavity of a geometrical object does not change 
upon linear transformations of the coordinates, our defini
tion is safe. 

3. COMPLETE ORBIT SPACES OF ADJOINT 
REPRESENTATIONS 

As we shall see, the orbit spaces of adjoint representa
tions are prototypes for many other representations. We de
scribe them in detail. Let us briefly review some group theo
retical results38 to set up our notation. For the algebra of 
order Nand rank (I + 1) we choose a Cartan-Weyl basis, so 
that the commutation relations assume the standard form: 

[HoHj] = 0, iJ = 1,2, ... ,(1 + 1) , (3a) 

[Hi,E±a] = ±ri(a)E±a' a= 1,2, ... ,(N-I-l)12,(3b) 
1+ 1 

[Ea,E_a] = L ri(a)Hi , (3c) 
i= I 

[ Ea ,Ep] = NapEa + p , (3d) 

where NaP #0 only ifr(a) + r( /3) is also a root. The Killing 
scalar products are 

(Hi,Hi) = 1, (Ea,E -a) = 1, (4) 

with all other scalar products being zero. Furthermore, the 
roots r(a) satisfy the condition 

(5) 
a 

Using the generalized Casimir operators derived by Ra
cah,39 Gruber and O'Raifeartaigh40 have derived forms for 
the Casimir invariants that are more useful in practice. [The 
field components can be reduced by a group transformation 
to (/ + 1) (number of rank) irreducible components which 
correspond to Hi's in the Cartan-Weyl basis. Utilizing these 
results, we can readily write down the tractable form of each 
invariant.] The complete set of invariant polynomials for ad-
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joint representations can be obtained by using the matrix 
form for the representation vector, 

N 

q; = L q;iXi' (6) 
;=1 

where q;i is the ith component of q; in vector notation and Xi 
is the matrix corresponding to the ith generator. Note that 
Xi can be based on any representation. Using the notation 

(7) 

we list the complete set of invariant polynomials in Table I 
along with other useful properties for each classical and ex
ceptional Lie group. The I ~ of S02n is of a form similar to A 5 

in Eq. (39) of Ref. 17. 
Using the convention 

1 +1 

q; = L q;iHi=[a l ,a2,"] , 
i= 1 

(8) 

where we have defined the square bracket as the diagonal 
elements of the matrix, we can directly write down the orbit 
parameters in the following generic form: 

am 
Trq;m 

(Tr q;2)m12 
(9a) 

a' 
2ma1a2···am 

m (Tr q;2)m/2 
(9b) 

A. Groups of rank two 

There is only one orbit parameter for the adjoint repre
sentation of a group of rank 2, and thus the orbit space is a 
line. 

SU(3) 

We choose the vector representation for the basis of the 
matrices. Then the generic stratum and the orbit parameter 
are represented as follows: 

U1XU1: 

q; = [a,b, - a - b ] , 
(10) 

a 3 = (a3 + b 3 - (a + b )3)/(a2 + b 2 + (a + b )2)3/2 . 

TABLE I. List of Casimir invariants, order and rank of classical and excep
tional Lie groups, 

Group 

SU.+, 
S02.+ , 

SP2. 
S02. 

G2 

F. 
E6 
E7 
E. 

Invariants 

12, 13 ,,,,'/. + , 

12 , 1.""'/2. 
12, I •• "''/2. 

12, /4' ... ,12" ~ 2' 1 ~ 
12,16 

12,16 , I., Il2 
12, Is. 16 , I., 19 , 1'2 

12, 16 , I •• 110, 1,2' I,., I,. 
12, I., 1]21 I,., I,., 120, 12., 130 

Order Rank 

n(n+2) n 
n(2n+ I) n 
n(2n + I) n 
n(2n - 1) n 

14 2 
52 4 
78 6 

133 7 
248 8 
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The stratum of each little group is represented as fol
lows: 

SU2XU1: 

3= 1[ -2] +2[1], 
(11) 

rp = [a,a, - 2a], a 3 = ± 11../6. 
The orbit space consists of two end points correspond

ing to [SU2 X U1] and the interior corresponding to 
[U1X UI]· 

50(5) and 5p(4) 

We choose the five-dimensional vector representation 
for the basis. The generic stratum and the orbit parameter 
are represented as follows: 

UIXUI: 

rp = [a, - a,b, - b,O] , 
(12) 

a4 = (2a4 + 2b 4)/(2a2 + 2b 2)2 • 

The stratum of each little group is represented as fol
lows: 

S03 XUI: 

5= 1[1] + 1[ -1] +3[0], 

rp = [a, - a,O,O,O] , a4 =!; 
SU2XU I : 

5= 1[0] +2[1] +2[ -1], 

rp = [a, - a,a, - a,O] , a4 = l. 

(13) 

(14) 

The orbit space consists of two end points correspond
ing to [S03 X UI ], [SU2 X UI ] and the interior corresponding 
to [U.X U.]. 

50(4) 

Although S04 can be considered to be a direct product 
group SU 2 X SU 2, we include it for completeness. We choose 
the vector representation for the basis. The generic stratum 
and the orbit parameter are represented as follows: 

U.XU.: 

rp = [a, - a,b, - b ] , 
(15) 

a 2 = 22ab /(2a2 + 2b 2) . 

The stratum of each little group is represented as fol
lows: 

SU2 XU.: 

(2,2) = 2 [ 1] + 2 [ - 1] , 
(16) 

rp = [a, - a,a, - a], a 2 = ± 1 . 

The orbit space consists of two end points correspond
ing to [SU2 XU1] and the interior corresponding to 
[U I XU.]. 

G(2) 

We choose the seven-dimensional representation for 
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the basis. The generic stratum and the orbit parameter are 
represented as follows: 

UIXUI: 

rp = [2a,0, - 2a,a + b,a - b, - a + b, - a - b ] , 
(17) 

2(2a)6 + 2(a + b)6 + 2(a _ b)6 
a---'--':---'---'--'--.!.:-""':"'''''!'''--'!',.--

6 - [2(2a)2 + 2(a + b f + 2(a - b )2F 

The stratum of each little group is represented as fol-
lows: 

S03 XU.: 

7=3[0] +2[1] +2[ -1], 

rp = [a, - a,a, - a,O,O,O] , (18) 

a6=~; 

SU2 XUI : 

7= 1[0] + 1[2] + 1[ -2] +2[1] +2[ -1], 

rp = [2a,0, - 2a,a, - a,a, - a,] , (19) 

a 6 =ffi· 
The orbit space consists of two end points correspond

ing to [S03 XU.], [SU2 X U.] and the interior corresponding 
to [U.X U.]. 

B. Groups of rank three 

There are two orbit parameters for the adjoint represen
tation of a Lie group of rank 3. The orbit space turns out to be 
a warped triangle. 

5U(4) 

We choose the four-dimensional representation for the 
basis of the matrices. The generic stratum and the orbit pa
rameters are represented as follows: 

UIXUIXUI: 

rp = [a,b,c, - a - b - c] , 

a3 + b 3 + c3 - (a + b + C)3 
~= ,~ 

[a 2 + b 2 + c2 + (a + b + C)2]3/2 

a4 + b 4 + c4 + (a + b + C)4 
a 4 = . 

[a2 + b 2 + c2 + (a + b + C)2]2 

The stratum of each little group is represented as fol
lows: 

SU3 XU I : 

4=1[-3]+3[1], 

rp = [a,a,a, - 3a] , 

a 3 = ± 11V3, a 4 = n ; 
SU2 XSU2X U.: 

4=(2,1)[1] +(1,2)[ -1], 

rp = [a,a, - a, - a] , 

a 3 = 0, a 4 = l; 
SU2 XU.XU.: 

4 = 1[1,1] + 1[1, -1] + 2[ - 1,0], 

rp = [a,a,b, - 2a - b ] . 
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The orbit space is shown in Fig. 1. It is a warped trian
gle. Two cusps ± PI of [SU 3 X U I] and cusp P2 of [SU 2 

XSU2 XUI] are connected by the curve of[SU2 XUI XUa. 
The cusps and the curve together form the boundary of the 
generic stratum of [U I X U I X U I] which occupies the interi
or. 

50(6) 

Since S06 is isomorphic to SU 4' the orbit spaces of their 
adjoints are identical up to scale factors and locations. Ifwe 
choose the vector representation for the basis, the generic 
stratum and the orbit parameters are represented as follows: 

UIXUIXUI: 

(jJ = [a, - a,b, - b,e, - e] , 

_ 2a4 + 2b 4 + 2c4 

a 4 = (2a2 + 2b 2 + 2e2)2 ' 
(20') 

_, 23abe 
a -

3 - (2a2 + 2b 2 + 2c2)3/2 

The stratum of each little group is represented as fol
lows: 

SU3 XUI: 

6=3[2]+3[-2], 

(jJ = [a, - a,a, - a,a, - a] , 

(24 = i, (2; = ± 4/3vtc> ; 

SU2 XSU2 X UI: 

6 = (1,1)[2] + (1,1)[ - 2] + (2,2)[0] , 

(jJ = [a, - a,O,O,O,O] , 

- 1 -, ° a 4 = 2' a3 = ; 

SU2 XUI XUI: 

6 = 1 [2,0] + 1 [ - 2,0] + 2 [0,1] + 2 [0, - 1] , 

(jJ = [a, - a,a, - a,b, - b ] . 

(21') 

(22') 

(23') 

The orbit space of the S06 adjoint is obtained from that 
ofSU4 by the following substitutions: (24 = - a4 + i and 
(2; = - a3(4/3v2). 

-PI 
Q4 +PI 

CI 
0.5 

CI CI 

±PI:SU3XU1 
P2: SU 2 X SU2 X U1 
CI: SU 2 XU 1XU 1 P2 

j 
I Q 3 I 

-0.75 0.0 0.75 

FIG. 1. The orbit space of the SU. (S06) adjoint representation. 
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50(7) 

We choose the vector representation for the basis. The 
generic stratum and the orbit parameters are represented as 
follows: 

UIXUIXUI: 

(jJ = [a, - a,b, - b,e, - e,O] , 

2a4 + 2b 4 + 2c4 

a -
4 - (2a2 + 2b 2 + 2c2)2 ' 

2a6 + 2b 6 + 2e6 

a6 = (2a2 + 2b 2 + 2c2f . 

(24) 

The stratum of each little group is represented as fol-
lows: 

SOsXUI: 

7= 1[1] + 1[ -1] +5[0], 

(jJ = [a, - a,O,O,O,O,O] , 

SU2 XS03 X UI: 

7 = (1,3)[0] + (2,1)[ 1] + (2,1)[ - 1] , 

(jJ = [a, - a,a, - a,O,O,O] , 

a4 = !, a6 = to ; 
SU3 XUI: 

7= 1[0] +3[1] +3[ -1], 

(jJ = [a, - a,a, - a,a, - a,O] , 

a 4 =i, a 6 = ft.,; 

SU2 XUI XUI: 

7= 1[0,0] + 1[0,1] + 1[0,-1] +2[1,0] 

+ 2[ - 1,0] , 

(jJ = [a, - a,a, - a,b, - b,O] ; 

S03 XUI XUI: 

7 = 1[1,1] + 1[1, -1] + 1[ - 1,1] 

+ i[ -I, -1] + 3[0,0], 

(jJ = [a, - a,b, - b,O,O,O] . 

(25) 

(26) 

(27) 

(28) 

(29) 

The orbit space is shown in Fig. 2. It is again a warped 
triangle. Cusp PI of [SOs X U I] and cusp P2 of [SU 2 
X S03 X U I] are connected by straight line L 1 of 
[S03 X U I X U I]' All three cusps including cusp P3 of 

0.3 

PI:S05 XU 1 
P2: SU 2 X S03x u 1 
P3: SU3XU1 
LI:S03xU 1xu 1 
C2: SU 2 XU 1XU

1 

P3 

PI 

0.5 

FIG. 2. The orbit space of the S07 adjoint representation. 
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[SU3 X U I] are connected by curve C2 of [SU2 X U I X U I]' 

All the cusps and L 1 and C2 together form the boundary of 
the generic stratum [U I X U I X U I] which occupies the inte
rior. 

Sp(6) 

We choose the vector representation for the basis. The 
generic stratum and the orbit parameters are represented as 
follows: 

UIXUIXUI: 

q:; = [a, - a,b, - b,e, - e] , 

2a4 + 2b 4 + 2e4 
a - --:--:.....--.:....-__ 

4 - (2a2 + 2b 2 + 2c2)2 ' 
(30) 

2a6 + 2b 6 + 2e6 

a 6 = . 
(2a2 + 2b 2 + 2e2)3 

The stratum of each little group is represented as fol
lows: 

SP4 XUI: 

6= 1[1] + 1[ -1] +4[0], 

q:; = [a, - a,O,O,O,O] , 

SU2 XSU2 X UI: 

6=(2,1)[0] +(1,2)[1] +(1,2)[ -1], 

q:; = [a, - a,a, - a,O,O] , 

SU3 X UI : 

6=3[1]+3[-1], 

q:; = [a, - a,a, - a,a, - a] , 

a 4 = i ' a 6 = 10 ; 
SU2 XU l xUM ): 

6 = 1[0,1] + 1[0, -1] + 2[1,0] + 2[ -1,0], 

q:; = [a, - a,a, - a,b, - b] . 

SU2 X UI X UI(B): 

6= 1[1,1] + 1[1, -1] + 1[ -1,1] 

+ 1 [ - 1, - 1] + 2 [0,0] , 

q:; = [a, - a,b, - b,O,O] . 

(31) 

(32) 

(33) 

(34) 

(35) 

The orbit space is shown in Fig. 3. As we can see from 
Figs. 2 and 3 the orbit space of the SP6 adjoint is identical to 

0.3 

PI: SP4 xu, 
P2: SU2 xSU2 xU, 
P3: su3 xu, 
L I: sU3 XU,XU,(SJ 
C2: su3 xu,xu, (AJ 

P3 

PI 

0.5 

FIG. 3. The orbit space of the SP6 adjoint representation. 
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that of the S07 adjoint. This identity persists between the 
SP2n adjoint and the S02n + I adjoint for any n because the 
orbit parameters are identically defined. Only the labeling of 
the little groups is different. 

c. Groups of rank four 

There are three orbit parameters for the adjoint repre
sentation of a Lie group of rank 4. The orbit space turns out 
to be a warped tetrahedron. 

SU(5) 

We choose the vector representation for the basis of the 
matrices. The generic stratum and the orbit parameters are 
represented as follows: 

UIXUjXUIXUj: 

q:; = [a,b,e,d, - a - b - e - d] , 

a 3 + b 3 + e3 + d 3 - (a + b + e + d f 

a5= [a 2 +b 2 +e2 +d 2+(a+b+e+d)2]5/2' 

The stratum of each little group is represented as fol
lows: 

SU4 XUI: 

5=1[-4]+4[1], 

q:; = [a,a,a,a, - 4a] , 

3 13 
a 3 = ±--, a 4 =-, 

20 215 
SU3 XSU2 X U j: 

5=(3,1)[2] +(1,2)[ -3], 

51 
a 5 = ±--; 

4~ 

(37) 

q:; = [2a,2a,2a, - 3a, - 3a] , (38) 

1 7 13 
a 3 = ±--, a4 =-, a 5 = ±--; 

,j36 30 30,j36 

SU3 XUI XUI: 

5 = 1[0,1] + 1[ - 3, -1] + 3[1,0], (39) 

q:; = [a,a,a,b, - 3a - b ] ; 

SU2 XSU2 X UIX UI: 

5 = (1,1)[ - 2, - 2] + (1,2)[1,0] + (2,1)[0,1] , 

q:; = [a,a,b,b, - 2a - 2b ] ; 

SUz X UI X UI X UI: 

5 = 1[0,1,0] + 1[0,0,1] + 1[ - 2, - 1, -1] 

+ 2[ 1,0,0] , 

q:; = [a,a,b,e, - 2a - b - e] . 

(40) 

(41) 

The orbit space is shown in Fig. 4. It is a thin warped 
tetrahedron. Cusps ± PI of [SU 4 X U I] and cusps ± P2 of 
[SU3 X SUz X U I] are connected by both curves Cl of 
[SU3 XU I XU I ] and curves C2 of[SU2 XSUzXU I XU I]. 
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-PI 

CI 

+P2 

-PI 

CI 

a. 

+PI 

+PI 

-P2 

C2 

+P2 

8=60' 
1/1=30' 

-0.6 

0.6 

aa 

The two curves lie on the warped surfaces of 

-PI 

-PI 

[SU 2 X U I X U I xU d. All these cusps, curves, and surfaces 
together form the boundary of the generic stratum 
[U I X U I X U I X U I] which occupies the interior. 

The curves are all concave. One of the principal curva
tures of each surface is zero (the surface is flat in this direc
tion) and the other is negative (the surface is concave in this 
direction). 

SO(9) 

We choose the vector representation for the basis. The 
generic stratum and the orbit parameters are represented as 
follows: 

UIXUIXUIXUI: 

({J = [a, - a,b, - b,c, - c,d, - d,O] , 

2a4 + 2b 4 + 2c4 + 2d 4 

a - --::---'---:,......:.--::--'--~-:-
4 - (2a2 + 2b 2 + 2c2 + 2d 2)2 ' 

2a6 + 2b 6 + 2c6 + 2d 6 a - --::---'----:,......:.--::---~-:-

6 - (2a2 + 2b 2 + 2c2 + 2d 2)3 ' 

2a8 + 2b 8 + 2c8 + 2d 8 
a = --::------,--.,...---...,.. 

8 (2a2 + 2b2 + 2c2 + 2d 2)4 . 

(42) 

The stratum of each little group is represented as fol
lows: 

S07 XUI: 

9= 1[1] + I[ -I] +7[0], 

({J = [a, - a,O,O,O,O,O,O,O] , (43) 
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+PI 

FIG. 4. The complete orbit space of 
the SU 5 adjoint representation. 
Shown at the upper left corner is a 
view from the direction oriented 30" 
from the a, axis and 60' from the a. 
axis. The numbers in the square 
brackets are the relative ratios of 
scale. Each projection is a view from 
the positive direction of the axis not 
shown in the picture. The dotted 
curves represent edges on the back 
(hidden) side of the orbit space. 

+PI 

S05XSU2X UI: 

9 = (5,1)[0] + (1,2)[ 1] + (1,2)[ - 1] , 

({J = [a, - a,a, - a,O,O,O,O,O] , 

a 4 = ~, a 6 = to, as = -A ; 
SU3 XSU2X UI: 

9 = (3,1)[1] + (3,1)[ - 1] + (1,3)[0] , 

({J = [a, - a,a, - a,a, - a,O,O,O] , 

a 4 = !, a 6 = -h, as = 1h ; 
SU4 XUI: 

9 = 1 [0] + 4[ 1] + 4[ - 1] , 

({J = [a, - a,a, - a,a, - a,a, - a,O] , 

a 4 = A, a 6 = -A, a 8 = m ; 
SU3 XUI XUI: 

9 = 1[0,0] + 1[0,1] + 1[0, -1] 

+ 3[1,0] + 3[ - 1,0] , 

({J = [a, - a,a, - a,a, - a,b, - b,O] ; 

SU2XSU2XUI XUI: 

9 = (1,1)[0,0] + (2,1)[1,0] + (2,1)[ - 1,0] 

+ (1,2)[0,1] + (1,2)[0, - 1] , 

({J = [a, - a,a, - a,b, - b,b, - b,O] ; 

SU2XS03 X UI X UI: 

9 = (1,1)[0,1] + (1,1)[0, - 1] + (2,1)[1,0] 

+ (2,1)[ - 1,0] + (1,3)[0,0] , 

({J = [a, - a,a, - a,b, - b,O,O,O] ; 
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S05 XUI XUI: 

9 = 1[1,0] + 1[ -1,0] + 1[0,1] 

+ 1 [0, - 1] + 5 [0,0] , 

rp = [a, - a,b, - b,O,O,O,O,O] . 

SU2 X UI X UI X UM ): 

9 = 1 [0,0,0] + 1 [0,1,0] + 1 [0, - 1,0] 

+ 1 [0,0,1] + 1 [0,0, - 1] 

+ 2[ 1,0,0] + 2[ - 1,0,0] , 

rp = [a, - a,a, - a,b, - b,c, - c,O] ; 

SU2 X U1 X UI X UI(B): 

(50) 

(51) 

9 = 1 [1,0,0] + 1 [ - 1,0,0] + 1 [0,1,0] + 1 [0, - 1,0] 

+ 1[0,0,1] + 1[0,0, -1] + 3[0,0,0], (52) 

rp = [a, - a,b, - b,c, - c,O,O,O] . 
The orbit space is shown in Fig. 5. It is a thin and sharp 

tetrahedron. Cusp PI of [S07 X V I] and cusp P2 of [S05 
XSV2 XV1] are connected by curve Cl Of[S05XVI XVI]' 
Cusp P3 of[SV3XSV2 XV1] and cusp P4 of [SV4 XVI] are 
connected by curve C2 of [SV 3 X V 1 X V 1] which connects 
also PI and P4. P2 and P4 are connected by curve C3 of 
[SV2 XSV2 XVI XVI]' PI, P2, and P3 are connected by 
curve C4 of [SV2 X S03 X VI X VI]' The stratum of 
[SV 2 X VI X V I X VI (B )] occupies the warped triangular sur
face PI-P2-P3 bounded by Cl and C4. The stratum of 
[SV 2 X V 1 X V 1 X V I (A )] closes the rest of the boundary of 
the generic stratum [VI X VI X VI X V I] which occupies the 
interior. 

a.(I] 

A 
ael l ] ael'] 
9=55° 
;_55° 

PI 

PI 

P2 

Pl: SO.,xtJ, 
P2: S0eXSUaXU, 
P3: su.,xsuaXU, 
P4: SU,XU, 
Cl: SO,XU,XU, 
C2: SUaXU,XU, 
C3: SursUaXU,XU, 
C4: Surso,xu,XU, 

C2 

P4 

C3 

0.25 

Cle 
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a. 
0.5 

C4 

P3~"f11Io--C3 

C2 

0.25 

Cle 

Curves Cl and C3 are convex plane-curves and curves 
C2 and C4 are concave space-curves. Surface PI-P2-P3 is 
convex along its length but it meets with a a 4 = const plane 
along a straight line. All the other surfaces meet with a 
a 4 = const plane along concave curves. Surface PI-P3-P4 
is totally concave. Each of the surfaces P2-P3-P4 and Pl
P2-P4 have two principal curvatures of opposite sign, i.e., 
the surfaces are saddle-shaped. 

Sp(8) 

We choose the vector representation for the basis. The 
generic stratum and the orbit parameters are represented as 
follows: 

UIXUIXU1XU1: 

rp = [a, - a,b, - b,c, - c,d, - d) , 

2a4 + 2b 4 + 2c4 + 2d 4 

a - ---------.,-
4 - (2a2 + 2b 2 + 2c2 + 2d 2)2 ' 

2a6 + 2b 6 + 2c6 + 2d 6 

a - --;:-----::--=---::-:-

(53) 

6 - (2a2 + 2b 2 + 2c2 + 2d 2)3 ' 

2a8 + 2b 8 + 2c8 + 2d 8 
a = --:-----"...----

8 (2a2 + 2b 2 + 2c2 + 2d 2)4 • 

The stratum of each little group is represented as fol-
lows: 

SP6XUI: 

8= 1[1] + 1[ -1] +6[0], 

rp = [a, - a,O,O,O,O,O,O] , 

PI 

0.125 

P.4~"----'-_. 
:/'P3 "'\ 

\.. C4 ) 
........ P2 ,,/ 

~'" -. -----

PI 

(54) 

FIG. 5. The complete orbit space of 
the S09 adjoint representation. 
Shown at the upper left corner is a 
view from the direction oriented 55° 
from the a6 axis and 55° from the a. 
axis. The numbers in the square 
brackets are the relative ratios of 
scale. Each projection is a view from 
the positive direction of the axis not 
shown in the picture. The dotted 
curves represent edges on the back 
(hiddenl side of the orbit space. 
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Sp4XSU2X U1: 

8 = (4,1)[0] + (1,2)[1] + (1,2)[ -1] , 

q:; = [a, - a,a, - a,O,O,O,O] , 

a4 = A, a6 = -fc;, as = t!a ; 
SU3 XSU2X U1: 

8=(3,1)[1] +(3,1)[ -1] +(1,2)[0], 

q:; = [a, - a,a, - a,a, - a,O,O] , 

a4 = i ' a6 = to, as = rtD ; 
SU4XU1: 

8=4[1] +4[ -1], 

q:; = [a, - a,a, - a,a, - a,a, - a] , 

a4 = k, a6 = A, as = m ; 
SU3 XUI XU1: 

(55) 

(56) 

(57) 

8 = 1[0,1] + 1[0, -1] + 3[1,0] + 3[ -1,0], (58) 

q:; = [a, - a,a, - a,a, - a,b, - b] ; 

SU2XSU2X U1 X UM): 

8=(1,2)[1,0] +(1,2)[ -1,0] +(2,1)[0,1] 

+ (2,1)[ 0, - 1] , 

q:; = [a, - a,a, - a,b, - b,b, - b ] ; 

SU2XSU2X U1X U1(B): 

8 = (1,1)[0,1] + (1,1)[0, - 1] + (1,2)[0,0] 

+ (2,1)[ 1,0] + (2,1)[ - 1,0] , 

q:; = [a, - a,a, - a,b, - b,O,O] ; 

SP4 XU1XU1: 

8 = 1[1,0] + 1[ -1,0] + 1[0,1] 

(59) 

(60) 

+ 1 [0, - 1] + 4[0,0] , (61) 

q:; = [a, - a,b, - b,O,O,O,O] ; 

SU2XU1XU1XU1(A ): 

8 = [0,1,0] + 1[0, -1,0] + 1[0,0,1] 

+ 1[0,0, -1] + 2[1,0,0] + 2[ -1,0,0], (62) 

q:; = [a, - a,a, - a,b, - b,c, - c] ; 

SU2X U1X U1X U1(B): 

8 = 1[1,0,0] + 1[ -1,0,0] + 1[0,1,0] 

+ 1[0, -1,0] + 1[0,0,1] + 1[0,0, -1] 

+ 2[0,0,0] , (63) 

q:; = [a, - a,b, - b,c, - c,O,O] . 

The orbit space of the Sps adjoint is identical to the S09 
case except for the labeling of the little groups. 

SO(8) 

We choose the vector representation for the basis. The 
generic stratum and the orbit parameters are represented as 
follows: 
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U1XU1XUIXU1: 

q:; = [a, - a,b, - b,c, - c,d, - d] , 

2a4 + 2b 4 + 2c4 + 2d 4 

a 4 = (2a2 + 2b 2 + 2c2 + 2d 2)2 ' 

2a6 + 2b 6 + 2c6 + 2d 6 
a - -~--:--'---~--=-:-

6 - (2a2 + 2b 2 + 2c2 + 2d 2)3 ' 

, 24abcd a -
4 - (2a2 + 2b2 + 2c2 + 2d 2)2 

(64) 

The stratum of each little group is represented as fol
lows: 

S06 XUI: 

8 = 1 [1] + 1 [ - 1] + 6[0] , 

q:; = [a, - a,O,O,O,O,O,O] , 

S04XSU2X U1: 

8 = (2,1,1)[1] + (2,1,1)[ - 1] + (1,2,2)[0] , 

q:; = [a, - a,a, - a,O,O,O,O] , 

SU4 XU1: 

8=4[1]+4[-1], 

q:; = [a, - a,a, - a,a, - a,a, - a] , 

a4 = l, a 6 = t!a ' a~ = ± L 
SU3 XU1XU1: 

8 = 1[0,1] + 1[0, -1] + 3[1,0] + 3[ - 1,0], 

q:; = [a, - a,a, - a,a, - a,b, - b ] ; 

SU2XSU2 X U1X U1: 

8=(2,1)[1,0] +(2,1)[ -1,0] +(1,2)[0,1] 

+ (1,2)[0, - 1] , 

q:; = [a, - a,a, - a,b, - b,b, - b ] ; 

S04 XU\XU\: 

8 = (1,1)[1,0] + (1,1)[ - 1,0] + (1,1)[0,1] 

+ (1,1)[0, - 1] + (2,2)[0,0] , 

q:; = [a, - a,b, - b,O,O,O,O] ; 

SU2XU\XU\XU\: 

(65) 

(66) 

(67) 

(68) 

(69) 

(70) 

8 = 1[0,1,0] + 1[0, - 1,0] + 1 [0,0,1] + 1[0,0, - 1] 

+ 2[ 1,0,0] + 2[ - 1,0,0] , (71) 

q:; = [a, - a,a, - a,b, - b,c, - c] . 

The orbit space is shown in Fig. 6. It is a warped tetrahe
dron. Cusp PI of [S06X U1] and cusp P2 of [S04 
XSU2 XU1] are connected by line LI of [S04XUl XUI]. 
Cusps ± P3 of [SU 4 X U I] and P2 are connected by line L2 
of[SU2 XSU2 XUIXU1]. PI and ± P3 are connected by 
curve C3 of [SU3 X U I X U I]. The stratum of 
[SU 2 X U I X U I X U I] closes the boundary of the generic stra
tum [U I X U I xU 1 X U a which occupies the interior. 

The projected orbit space a 4 - a6 is not closed by the 
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+P3 +P3 
a~!] 

I 
a.e!] aef!] L2 

8=90' 
;=32' 

P2 PI C3 
L2 

P1: S0eXUl 
P2: SO,X5UeXUl 

± P3: SU,XU1 
L1: SO,XU XU 
12: su.xs6~lxul 

-P3 
C3: SUaXU1XU1 -P3 

0.3 

a' 

L2 L2 

C3 
surface 

0.5 

one-dimensional strata Ll, L2, and C3. The concave punc
tured portion belongs to the two-dimensional stratum. This 
is related to the fact that the triangular surface P2- + P3-
- P3 is convex in the direction + P3_ - P3 but concave 

in the direction normal to it. All the surfaces that contain 
cusp P2 are saddle-shaped. Surface Pl- + P3- - P3 is to
tally concave. 

F(4) 

We choose the 26-dimensional representation for the 
basis. The generic stratum and the orbit parameters are rep
resented as follows: 

U1XU1XU1XU1: 

qJ = [20,0, - 2o,2e,0, - 2e,b + d,b - d, - b + d, 

- b - d,a + b + e,a + b - e,a - b + e, - a + b + e, 

- a - b - e, - a - b + e, - a + b - e,a - b - e, 

a + e + d,a + e - d,a - e + d, - a + e + d, 

- a - e - d, - a - e + d, - a + c - d,a - e - d ] , 
(72) 

26 26 26 

L qJ~ L qJ~ L qJ J2 
;=1 ;=1 ;=1 

a 6 = 
[;~I qJ;f ' 

a s = 
[;~I qJ;r ' 

a 12 = 
[ 26 r L qJ; 
;= 1 

The stratum of each little group is represented as fol
lows: 
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PI 0.3 

aa 

0.3 

aa 

FIG. 6. The complete orbit space of 
the SO. adjoint representation. 
Shown at the upper left comer is a 
view from the direction oriented 32' 
from the a. axis and 90' from the a~ 
axis. The numbers in the square 
brackets are the relative ratios of 
scale. Each projection is a view from 
the positive direction of the axis not 
shown in the picture except for the 
one viewed from the - a 6 axis. The 
dotted curve represents the edge on 
the back (hidden) side of the orbit 
space. 

PI 

S07 XU I: 

26 = 1 [0] + 1 [2] + 1 [ - 2] + 7 [0] + 8 [ 1) + 8 [ - 1) , 

qJ = [2a, - 20,8 a's ,8 (- a)'s ,80's) , (73) 

a6 = ~, as = i>M-2' a 12 = ~8 ; 

SP6 XUI: 

26 = 6 [ 1) + 6 [ - 1] + 14 [ 0) , 

qJ = [6 a's, 6 (- a)'s, 140's) , 

a 6 = rh, a g = sk, a 12 = ~6 ; 

SU3 XSU2 X UM ): 

26=(8,1)[0) +(3,2)[1] +(3,1)[ -2] 

+ (3,2)[ - 1) + (3,1)[2) , 

(74) 

qJ = [6 a's, 6 (- aI's, 3 (2a)'s, 3 (- 2o)'s, 80's] , 
(75) 

a 6 = 11/1296, a g = 43/46 656 , 

a 12 = 683/60 466 176 ; 

SU3 XSU2 X UI(B): 

26=(1,1)[0) +(1,2)[3) +(1,2)[ -3] 

+ (1,3)[0) + (3,1)[ - 2) + (3,2)[1) 

+ (3,1)[2] + (3,2)[ - 1] , 
qJ = [2 (3a)'s, 2 ( - 3a)'s, 6 a's, 6 ( - aI's , 

3 (20)'s, 3 (- 2o)'s, 40's], (76) 

a 6 = 23/2592, a g = 193/186624, 

a l2 = 14933/967458816; 
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26 = 1[0,0] + 1 [2,0] + 1 [ - 2,0] + 1 [0,2] 

+ 1[0,-2] +5[0,0] +4[1,1] +4[1,-1] 

+4[-1,1]+4[-1,-1], (77) 

q; = [20, - 2a,2b, - 2b,6 O's, 

4 (a + b )'s, 4 (a - b )'s , 

4 ( - a + b)'s, 4 (- a - b )'s] ; 

26 = (1,1)[2,0] + (1,1)[0,0] + (1,1)[ - 2,0] + (1,3)[0,0] 

+ (2,1)[0,1] + (2,1)[0, - 1] + (1,2)[1,1] 

+ (1,2)[1, -1] + (2,2)[1,0] + (1,2)[ -1,1] 

+ (1,2)[ - 1, - 1] + (2,2)[ - 1,0] , 

q; = [2a, - 2a,b,b, - b, - b,(a + b ),(a + b ),(a - b), 

(a - b ),( - a + b ),( - a + b ),( - a - b ), 

( - a - b ), 4 a's, 4 ( - a)'s ,40's] ; 

26 = 3 [ 1, 1] + 3 [ 1, - 1] + 3 [ - 1, 1] + 3 [ - 1, - 1] 

+ 3[0, - 2] + 3[0,2] + 8[0,0] , 

q; = [3 (a + b )'s, 3 (a - b )'s, 3 (- a + b )'s, 

3 (- a - b)'s ,3 (2a)'s, 3 (- 2a)'s, 80's] ; 

SU3 X U I X UI(B): 

26 = 1 [2,0] + 1 [0,0] + 1 [ - 2,0] + 1 [0,0] + 3[0,2] 

+3[0,-2] + 1[1,3] +3[1,-1] + 1[1,-3] 

+ 3[1,1] + 1[ -1,3] + 3[ -1, -1] 

(78) 

(79) 

+ 1[ -1,-3] +3[ -1,1], (80) 

q; = [20,0, - 20,0,3 (2b )'s, 3 (- 2b)'s , 

(a + 3b ), 3 (a - b )'s,(a - 3b ), 3 (a + b )'s, 

( - a + 3b ), 3 (- a - b )'s,( - a - 3b ), 

3 (- a + b )'s] , 

SU2 X UIX UIX UI(A): 

26 = 1 [2,0,0] + 1 [0,0,0] + 1 [ - 2,0,0] + 3 [0,0,0] 

+ 1 [0,1,1] + 1 [0,1, - 1] + 1 [0, - 1,1] 

1705 

+ 1[0, -1, -1] + 2[1,1,0] + 2[1, -1,0] 

+ 2[ 1,0,1] + 2[ 1,0, - 1] + 2[ - 1,1,0] 

+ 2[ - 1, - 1,0] + 2[ - 1,0,1] + 2[ - 1,0, - 1] ; 
(81) 
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26 = 1 [2,0,0] + 1 [0,0,0] + 1 [ - 2,0,0] + 1 [0,0,2] 

+ 1 [0,0,0] + 1 [0,0, - 2] + 2[0,1,0] + 2[0, - 1,0] 

+ 1[1,1,1] + 1[1,1, -1] + 1[1, -1,1] 

+ 1[1, - 1, - 1] + 2[1,0,1] + 2[1,0, - 1] 

+ 1[ -1,1,1] + 1[ -1,1, -1] + 1[ - 1, -1,1] 

+ 1[ -1, -1, -1] + 2[ -1,0,1] 

+ 2 [ - 1,0, - 1] . (82) 

The unspecified components of q; in Eqs. (81) and (82) can be 
obtained as follows: in order to get q;i> multiply the first 
number in the ith square bracket by a, the second by b, the 
third by c, and sum all three. 

The orbit space is shown in Fig. 7. It is a very thin 
warped tetrahedron. Cusp PI of [S07 X V I] and cusp P2 of 
[SP6 X V I] are connected by curve C 1 of [SOs X V I X V I]. 
Cusp P2 and cusp P3 of [SV 3 X SV 2 X V I (A )] are connected 
by curve C2 of[SV3XVI xVM )]. Cusp PI and cusp P4 of 
[SV 3 X SV 2 X V I (B )] are connected by curve C3 of 
[SV3 XV I XVI(B )]. All the cusps are connected bycurveC4 
of [SVZ XSV2 XVI XVI]. Surface 81 (PI-P2-P3) and sur
face 82 (P2-P3-P4) belong to the stratum of 
[SV2 XV I XVI xVM)]' Surface 83 (P1-P3-P4) and sur
face 84 (P1-P2-P4) belong to the stratum of 
[SV 2 X V I X V I X V I (B )]. The interior is occupied by the gen
eric stratum of [VI XVI XVI XU I]. 

C2 and C3 are convex plane-curves. C1 and the portion 
of C4 between P3 and P4 are concave space-curves. The 
other portions ofC4 are convex space-curves. Surface P1-
P3-P4 is totally concave. All the other surfaces are saddle
shaped. 

4. SINGLE IRREDUCIBLE REPRESENTATIONS WITH 
LOW-DIMENSIONAL ORBIT SPACES 

In this section we tabulate orbit spaces of all the single 
coregular irreducible representations which allow less than 
(or equal to)41 five independent basic invariant polynomials. 
Since all the generators that do not leave a generic orbit in
variant are consumed in simplifying the scalar fields through 
a global gauge transformation, the number I of independent 
basic invariants is given by 

1= D - (dim G - dim Gg ), (83) 

where D is the dimension of the representation, dim G the 
number of generators of the symmetry group G, and dim G g 

the number of generators of the little group of the generic 
orbit. The little group of the generic orbit is trivial for most 
irreps. Hsiang and Hsiang31 listed the nontrivial little groups 
of generic strata of all the single irreps of compact connected 
Lie groups. 

It is a nontrivial job to construct the invariant polyno
mials in the integrity basis for a given representation. Al
though there exists a systematic method42 for constructing 
them, it is excessively laborious to build high degree invar
iant polynomials. However, we do have practical methods 
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P3 

P2 

a,[IO] 

A PI: 
P2: 

a,[U] P3: 
P4: 
Cl: 

6=50· C2: 
.,=45· C3: PI C4: 

1. 10- 2 

a, 
P2 

PI 

so.,xu, 
Sp.,xU, 
SU;'xsUaXU'~A) 
SU;'xsUaXU, B) 
SO.,xU,xU, 
SU~U,XU,(A) 
SU~U,XU,(B) 
SUaXSUaXUIXU, 

0.4 

f 0" 

10-' 

1.5 

10- 2 

P2 

0.4 

o. 

t. 

0.51 

10-' 

1.5 
a. 

for some representations such as the examples considered in 
this paper. 

Some valuable hints are available in the mathematical 
literature. Reference 32 lists the degrees and symmetry prop
erties of the polynomials for coregular representations. Non
coregular representations admit polynomial identities (syzy
gies) among the members of the integrity basis. Patera and 
Sharp43 developed a powerful method for finding character 
generating functions of finite group representations, which 
can be used for finding the degrees of polynomials in an in
tegrity basis and the degrees of the syzygies among them. 

It is convenient to have tables of maximal little groups44 
in carrying out classification of little groups. 

A. Symmetric tensor representations 

1. Symmetric tensors of SU(N) 

Symmetric tensors tPij of SV N can be diagonalized 
through a group transformation, tPij = Uid g)~l( g)tPw 
where Uij( g) is a unitary matrix representing a group ele
ment. We abbreviate the diagonal elements as 
tPij = diag(tPl,tP2,· .. ,tPN) exp(i8) with tPi real. Thus there are 
N + 1 independent basic invariants. They are given by 

ij ~ U 
12 = tPijtP, 14 = tPijifJ tPkltP ,"', 

1 ' -ij--.kl,l. ,I. ,I. ,I. N = e' 'rli'r2j''''r(N-I)k'rNI' (84) 

1~* = €ij ... kltPli~j· .. tP(N-I)k~/. 

We shall see that the cross section ofthe orbit space of 
an SV N symmetric tensor at any phase angle is identical, 
except for different scale factors, to the orbit space of the 
S02N adjoint representation. 
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PI 

CI 

FIG. 7. The complete orbit space of 
the F4 adjoint representation. Shown 
at the upper left corner is a view from 
the direction oriented 45· from the 

a ,• a. axis and 50· from the a 6 axis. The 
10- 4 0.4 numbers in the square brackets are 

the relative ratios of scale. Each pro-

10- 4 0.4 
jection is a view from the positive di-
rection of the axis not shown in the 

a ,• picture. The dotted curves represent 
edges on the back (hidden) side of the 
orbit space. The unlabeled curves are 
all portions of C 4. 

PI 

SU (3) symmetric tensor 6 + 6: The generic stratum is 
invariant under a finite group, [Z2 XZ2], (Z2: a finite group 
of order 2) and is represented by tPij = diag(a,b,c) exp(i8). Or
bit parameters are defined as follows: 

a 4 = (a4 + b 4 + c4 )/(a2 + b 2 + C 2
)2 , 

a; = exp(3i8)abc/(a2 + b 2 + C2)3/2 , (85) 

a;* = exp( - 3i8)abc/(a2 + b 2 + C2)3/2 • 

Each stratum and its little group are represented as fol
lows: 

S03: 3 = 3: 

tP = diag(a,a,a) exp(i8) , 

a 4 = j, a; = exp(3i8)1v'J ; 

SV2 XZ2 : 3 = I + 2: 

tP = diag(a,O,O) exp(i8) , 
a 4 = 1, a; = 0; 

V t XZ2 : 

tP = diag(a,b,b ) exp(i8) . 

(86) 

(87) 

(88) 

The cross section of the orbit space at any angle 8 is 
identical, except for different scale factors and locations, to 
the orbit space of the S06 adjoint representation (Fig. I) with 
[S03] at ± PI, [SV2 XZ2] at P2, and [VI XZ2] at CI. 

SU (4) symmetric tensor 10 + 10: The generic stratum 
is invariant under a finite group, [Z2 X Z2 X Z2]' and is repre
sented by tPij = diag(a,b,c,d ) exp(i8). Orbit parameters are 
defined as follows: 
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a 4 = (a4 + b 4 + C4 + d 4)/(a2 + b 2 + C
2 + d 2)2 , 

a 6 = (a6 + b 6 + C6 + d 6)1(a2 + b 2 + C2 + d 2)3 , 

a~ = exp(4i8)abcd l(a2 + b 2 + c2 + d 2)2, 

a~* = exp( - 4i8)abcd l(a2 + b 2 + c2 + d 2)2 . 

(89) 

Each stratum and its little group are represented as fol-
lows: 

SV3 XZ2 : 

4=1+3, 

tP = diag(a,O,O,O) exp(i8) , 

a 4 = 1, a 6 = 1, a~ = 0; 

SV2 XV I XZ2 : 

4= 1[1] + 1[ -1] +2[0], 

tP = diag(a,a,O,O) exp(i8) , 

SV2 XSV 2 : 

4=(2,2), 

(90) 

(91) 

tP = diag(a,a,a,a) exp(i8) , (92) 

a 4 =!, a 6 = T6' a~ = exp(4i8)/16; 

SV2 XZ2 XZ2 : 

4=1+1+2, 

tP = diag(a,b,O,O) exp(i8); (93) 

V I XV I XZ2 : 

4 = 1[1,0] + 1[ - 1,0] + 1[0,1] + 1[0, -1], 

tP = diag(a,a,b,b ) exp(i8) ; (94) 

S03 XZ2: 

4=1+3, 

tP = diag(a,b,b,b) exp(i8) ; (95) 

V I XZ2 XZ2 : 

4= 1[0] + 1[0] + 1[1] + 1[ -1], 

tP = diag(a,b,c,c) exp(i8) . (96) 

The cross section of the orbit space at any angle 8 is 
identical, except for different scale factors, to the orbit space 
of the SOs adjoint representation (Fig. 6) with [SV3 XZ2] at 
PI, [SV2XVI XZ2] at P2, [SV2X SV2] at ± P3, 
[SV2 XZ2 XZz] at Ll, [VI XVI XZ2] at L2, [S03XZ2] at 
C3, and [V I X Z2 X Z2] on the surfaces. 

2. Symmetric traceless tensors of SO(N) 

Symmetric traceless tensors tPij of SON can be diagona
lized through a group transformation, 

tPij = 0ik( g)Op( g)tPkl' where 0ij( g) is a real orthogonal ma
trix representing a group element. We abbreviate the diag
onal elements as tPij = diag(tPI,tP2, ... ,tPN) with tPi real. The 
traceless condition is given by 
8ijtPij = tPl + tPz + .. , + tPN = 0. Thus there are N - 1 inde
pendent basic invariants. They are given by 
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12 = tPijtPij' 13 = tPijtPjktPki' 14 = tPijtPjktPkltPli,. .. · 
(97) 

We immediately see that the orbit space of an SON symmet
ric traceless tensor is identical to that of the SV N adjoint 
representation. 

SO (3) symmetric traceless tensor 5: The orbit space is 
identical to that ofSV3 adjoint: 

VI XZ2 [3 = 1(0) + 1(1) + 1( - 1)), a 3 = ± 11..[6, 

Z2XZ2 occupying the interior. 

SO (5) symmetric traceless tensor 14: Without going into 
details we identify various portions of the orbit space (Fig. 4) 
as follows: 

SV2 XSV2 XZ2 [5 = (1,1) + (2,2)] at ± PI, 

S03XVIXZ2 [5 = 1(2) + 1( - 2) + 3(0)] at ± P2, 

S03XZ2XZ2 [5 = 1 + 1 + 3] at Cl , 

VI XVI XZ2XZ2 at C2, 

V I X Z2 X Z2 X Z2 on the surfaces, and 

Z2XZ2XZ2XZ2 occupying the interior. 

Embedding of each subgroup is indicated by the branching 
rule given in the square bracket. 

3. Symmetric tensors of Sp(2N) 

Symmetric tensors tPij ofSp2N are adjoint representa
tions. 

B. Antisymmetric tensor representations 

1. Antisymmetric tensors of SU(N) 

Antisymmetric tensors, ({J ij' of SV N can be skew-dia
gonalized through a group transformation, 
({Jij = Uid g)UjJ( g)({Jkl' Each diagonal element consists of a 
real number for odd N and it comes with an overall phase 
factor for even N. Thus there are (N - 1 )/2 for odd N (N I 
2 + 1 for even N) independent basic invariants. They are 
given by 

12 = ({Jij({J ij, 

12 = ({Jij({Jij, 

for odd N, (98a) 

(98b) 

I ' ...ij •.. kl 
N12 = e' ({Jij"'({Jkl' 

1 '* - ij kl fi N N 12 - Eij ... kl({J "'({J , or even . 

We immediately see that (the cross section at any angle 
8 of) the orbit space of an SV N antisymmetric tensor is iden
tical to that of the SON adjoint for N > 4. In the following we 
match various portions of each pair of orbit spaces. 

SU (5) antisymmetric tensor 10 + 10: The orbit space is 
identical to that of the S05 adjoint, with 

SV2 XSV3 [5 = (2,1) + (1,3)] replacing S03XVI' 

Sp4 [5 = 1 + 4] replacing SV2 X V I' and 

SV2 XSV2 [5 = (1,1) + (2,1) + (1,2)] replacing VI XVI' 

SU (6) antisymmetric tensor 15 + 15: The cross section 
of the orbit space at any angle 8 is identical to that of the S06 
adjoint, with 
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SP 6 [6 = 6] at ± PI' 

SU2X SU4 [6 = (2,1) + (1,4)] at P2, 

SU2XSP4 [6 = (2,1) + (1,4)] at Cl, and 

SU2XSU2XSU2 [6 = (2,1,1) + (1,2,1) + (1,1,2)] 
occupying the interior. 

SU (7)antisymmetric tensor 21 + 21: The orbit space is 
identical to that of the S07 adjoint (Fig. 2), with 

SU2XSUS [7 = (2,1) + (1,5)] at PI, 

SU3XSp4 [7 = (3,1) + (1,4)] at P2, 

SP6 [7 = 1 + 6] at P3, 

SU3XSU2XSU2 [7 = (3,1,1) + (1,2,1) + (1,1,2)] at Ll, 

SU2X SP4 [7 = (1,1) + (2,1) + (1,4)] at C2, and 

SU2XSU2XSU2 [7 = (1,1,1) + (2,1,1) + (1,2,1) 
+ (1,1,2)] occupying the interior. 

SU (8) antisymmetric tensor 28 + 28: The cross section 
of the orbit space at any angle /) is identical to that of the SOg 
adjoint (Fig. 6), with 

SU2XSU6 [8 = (2,1) + (1,6)] at PI, 

SP4X SU4 [8 = (4,1) + (1,4)] at P2, 

Sps [8 = 8] at ± P3, 

SU2XSU2XSU4 [8 = (2,1,1) + (1,2,1) + (1,1,4)] at Ll, 

Sp4XSp4 [8 = (4,1) + (1,4)] at L2, 

SU2XSP6 [8 = (2,1) + (1,6)] at C3, 

SU2 X SU2 X Sp4 [8 = (2,1,1) + (1,2,1) + (1,1,4)] on the 
surfaces, and 

SU2XSU2XSU2XSU2 [8 = (2,1,1,1) + (1,2,1,1) 
+ (1,1,2,1) + (1,1,1,2)] occupying the interior. 

SU (9) antisymmetric tensor 36 + 36: The orbit space is 
identical to that of the S09 adjoint (Fig. 5), with 

SU2X SU7 [9 = (2,1) + (1,7)] at PI, 

SP4XSUS [9 = (4,1) + (1,5)] at P2, 

SP6XSU3 [9 = (6,1) + (1,3)] at P3, 

SPs [9 = 1 + 8] at P4, 

SU2XSU2XSUS [9 = (2,1,1) + (1,2,1) + (1,1,5)] at Cl, 

SP6XSU2 [9 = (6,1) + (1,2) + (1,1)] at C2, 

SP4XSP4 [9 = (4,1) + (1,4) + (1,1)] at C3, 

SP4XSU2XSU3 [9 = (4,1,1) + (1,2,1) + (1,1,3)] at C4, 

SU2XSU2XSU2XSU3 [9 = (2,1,1,1) + (1,2,1,1) 
+ (1,1,2,1) + (1,1,1,3)] occupying the warped 

triangular surface P 1-P2-P3 bounded by C 1 and C2, 

Sp4X SU2XSU2 [9 = (4,1,1) + (1,2,1) + (1,1,2)] closing 
the rest of the boundary of the generic stratum, 

SU2XSU2XSU2XSU2 [9 = (1,1,1,1) + (2,1,1,1) 
+ (1,2,1,1) + (1,1,2,1) + (1,1,1,2)] occupying the 

interior. 

2. Antisymmetric tensors of SO(N) 

Antisymmetric tensors 'Pij of SON are adjoint represen
tations. 
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3. Antisymmetric traceless tensors of Sp(2N) 

Antisymmetric traceless tensors 'Pij ofSp2N are skew
diagonalized through a group transformation, 
'Pij = Sid g)Sj/( g)'Pk/' where Sij( g) is a simplectic matrix sa
tisfying SkiS lj fk/ = fij' We abbreviate the skew-diagonal ele
ments as 'Pij = skew-diag('PI,'P2, ... ,'PN) with 'Pi real. In this 
notationhj = skew-diag(l, 1, ... , 1). The traceless condition is 
given by fij'Pij = 2('P1 + 'P2 + ... + 'PN) = O. Thus there are 
N - 1 independent basic invariants: 

12 =hkfjl'Pij'Pk/, 13 =h/Jjmfkn 'Pim'Pjn'Pk/'··. (99) 

We shall see that the orbit space of an antisymmetric 
traceless tensor ofSp2N is identical, except for different scale 
factors, to that of the SUN adjoint representation. 

Sp(6) antisymmetric tensor 14: The generic stratum is 
invariant under [SP2 X SP2 X Sp2]' The orbit parameter is de
fined as follows: 

a 3 = (2a3 + 2b 3 - 2(a + b )3)1 

(2a2 + 2b 2 + 2(a + b f)3/2 . (100) 
Each stratum and its little group are represented as fol-

lows: 
Sp2 XSP4: 

6 = (2,1) + (1,4), 

'P = skew-diag(a,a, - 2a) , 

a 3 = ± 1/2v'J. 

(101) 

The orbit space is identical, except for different scale 
factors, to that of the SU3 adjoint. 

Sp(8) antisymmetric traceless tensor 27: The generic 
stratum is invariant under [Sp2 X SP2 X SP2 X Sp2]' The orbit 
parameters are defined as follows: 

a 3 = (2a3 + 2b 3 + 2c3 - 2(a + b + C)3)1 

(2a2 + 2b 2 + 2c2 + 2(a + b + cff/2 , 

a 4 = (204 + 2b 4 + 2c4 + 2(a + b + C)4)1 

(202 + 2b 2 + 2c2 + 2(a + b + C)2)2 . 

(102) 

Each stratum and its little group are represented as fol-
lows: 

Sp2 XSP6: 

8 = (2,1) + (1,6), 

'P = skew-diag(a,a,a, - 3a) , 

a 3 = ±1/v'6, a 4 =7/24; 

SP4 XSP4: 

8 = (4,1) + (1,4), 

'P = skew-diag(a,a, - a, - a) , 

a 3 = 0, a 4 = 1/8 ; 

Sp2 X SP2 X Sp4: 

8 = (2,1,1) + (1,2,1) + (1,1,4), 

'P = skew-diag(a,a,b, - 20 - b) . 

(103) 

(104) 

(105) 

The orbit space is identical, except for different scale 
factors, to that of the SU 4 adjoint (Fig. 1). Identifications are: 
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[SP2 x SP6] at ± PI, [Sp4 X SP4] at P2, and [Sp2 X SP2 X SP4] 
at Cl. 

Sp(JO) antisymmetric traceless tensor 44: The generic 
stratum is invariant under [SP2 X Sp2 X Sp2 X Sp2 X Sp2]. The 
orbit parameters are defined as follows: 

(203 + 2b 3 + 2c3 + 2d 3 _ 2(a + b + c + d )3) 
a3= , 

(202 + 2b 2 + 2c2 + 2d 2 + 2(a + b + c + d )2)3/2 

a
4 

= (204 + 2b 4 + 2c4 + 2d 4 + 2(a + b + c + d )4) , (106) 
(202 + 2b 2 + 2c2 + 2d 2 + 2(a + b + c + d )2f 

(loS + 2b s + 2cs + 2d s - 2(a + b + c + d )S) 
as = (202 + 2b 2 + 2c2 + 2d 2 + 2(a + b + c + d )2)SI2 . 

Each stratum and its little group are represented as fol-
lows: 

SP2 XSPS: 

10 = (2,1) + (1,8), 

q; = skew-diag(a,a,a,a, - 4a) , (107) 

a 3 = ± 3/2v'fO, a 4 = 13/40, as = ± 51/8ov'f(i; 

SP4 XSP6: 

10 = (4,1) + (1,6), 

q; = skew-diag(2a,2a,2a, - 3a, - 3a), (108) 

a 3 = ± 1I2yTI, a4 = 7/60, as = ± 13/120Jf5; 

SP2 X SP2 X SP6: 

10 = (2,1,1) + (1,2,1) + (1,1,6), 

q; = skew-diag(a,a,a,b, - 3a - b ) ; (109) 

SP2 X SP4 X SP4: 

10 = (2,1,1) + (1,4,1) + (1,1,4), 

q; = skew-diag(a,a,b,b, - 20 - 2b ); (110) 

Sp2 X SP2 X SP2 X SP4: 

10 = (2,1,1,1) + (1,2,1,1) + (1,1,2,1) + (1,1,1,4), 

q; = skew-diag(a,a,b,c, - 20 - b - c) . (111) 

The orbit space is identical, except for different scale 
factors, to that of the SUs adjoint (Fig. 4). Identifications are: 
[SP2XSPS] at ± PI, [Sp4XSP6] at ± P2, [SP2XSP2XSp6] 
at C 1, [SP2 X Sp4 X SP4] at C2, and [SP2 X Sp2 X SP2 X SP4] on 
the surfaces. 

C. Other low-dimensional Irreducible representations 

The remaining irreps that allow less than four-dimen
sional orbit spaces (or the cross sections at arbitrary phase 
angles) are the defining representations of various groups, 
spinor representations of SON' and S03 representations. 

The defining representations of classical Lie groups and 
G2 yield single quadratic invariants only and their orbit 
spaces are trivial. Their little groups are 

1709 

SUN_ 1 (N)2) for N + N of SUN , 

SON_l (N)3) for NofSON , 

SP2N _ 2 (N)3) for 2N + 2N of SP2N' and 

SU3 for 7 of G2• 
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The spinor representations of SON for low N( < 10) also 
yield single quadratic invariants only. Their little groups are 

Sp2 for 4 + 4 of SOs, 

SU3 for 4 + 4 of S06' 

G2 for 8 of S07' 

SO? for 8 of SOs, 

SO? for 16 of S09' 

The spinor representation of SOlO' the defining repre
sentations of F4 and E6 , and low-dimensional (less than 8) 
S03 representations yield nontrivial low-dimensional orbit 
spaces. 

Spinorrepresentation of SO(10) 16 + 16 

The 16 component complex spinor of SOlO is left invar
iant under SU4 and is reduced, through an SOlO transforma
tion generated by the 30 non-SU4 generators made out of 45 
O"-matrices O"ij,23 to two real components, say, f/!4 and f/!6' 
Two independent basic invariant polynomials exist: 

12 = # = 2(f/!tf/!4 + t/l:f/!6) , 

14 = ~ji1i'Yjf/! = ~si1i'Ysf/! + ~1Of/!~IOf/! (112) 

= 16f/!tf/!4t/1:f/!6 , 

where we left the complex conjugate intact to show the con
traction of f/!'s between r matrices. 

Each stratum and its little group are represented as fol-
lows: 

SUs: 

16 = 1 + 5 + 10, (113) 

f/!4=a, f/!6=0, a 4=0; 

S07: 

16 = 1 + 7 + 8, (114) 

f/!4 = a, f/!6 = a, a 4 = 1 . 

Defining representation of F(4) 26 

The representation spaces of exceptional groups are 
naturally described on the octonionic basis. We refer the 
reader to Refs. 45 and 46 for further details. 

The 26-dimensional defining representation of F4 is rep
resented by a 3 X 3 real, symmetric, and traceless matrix over 
octonions: 

(115) 

where a,b,c are real numbers satisfying a + b + c = 0 and 
a, {J,r are real octonions (the bar denotes octonionic conju
gation), It is left invariant under an SOs transformation 
(26 = 1 + 1 + 8u + 8, + 8e ). The dimension formula (83) 
yields 2 = 26 - 52 + 28, which is the number of indepen
dent basic invariants. They are given by 

12 =!Tr(q;t'q;), 13=~Tr[(q;xq;)·q;], (116) 

where the dot represents the Jordan product (half the anti-
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commutator) and cp X cp is the Freudenthal product: 

cpXcp = cp(cp - Tr cp) -! Tr[cp(cp - Tflp)) . 

An F4 transformation involving those generators not 
included in SOs reduces cp to a diagonal matrix containing 
two real parameters: 

° b 

° 
~ ) [a,b, - (a + b)) . 

-(a+b) 

(117) 

Written in terms of these two real parameters, the invariant 
polynomials are 

12 = !(a2 + b 2 + (a + b )2), 13 = ± ab (a + b) . (118) 

Each stratum and its little group are represented as fol
lows: 

S09: 

26 = 1 + 9 + 16, 
(119) 

t/J= [a,a,-2a) , a 3 =±2/3v3. 

Defining representation of £(6) 27 + 27 

The 27-dimensional complex defining representation of 
E6 is represented by a 3 X 3 complex, Hermitian, octonionic 
matrix 

(120) 

where a,b,e are complex numbers and a, {3,y are complex 
octonions. It is left invariant under an SOs transformation 
(27 = 1 + I + I + 8v + 8s + 8c ). The dimension formula 
(83) yields 4 = 27 + 27 - 78 + 28, which is the number of 
independent basic invariants. They are given by46 

12 =! Tr(cpt . cp), 14 =! Tr[(cpxcp)t . (cpXcp)) , 
(121) 

I 3 =!Tr[(cpXcp)·cp) , IT = complex conjugate of 13 , 

An E6 transformation involving those generators not 
included in SOs reduces cp to a diagonal matrix containing 
four real parameters: 

° b 

° 
(122) 

Written in terms of these four real parameters the invariant 
polynomials are 

12 = !(a2 + b 2 + e2), 14 = !(a2b 2 + b 2e2 + e2a2) , 

13 = exp(3io)abe . (123) 

Each stratum and its little group are represented as fol-
lows: 

F4 : 

27 = 1 + 26, 

cp = exp(io)[a,a,a) , (124) 

a 4 = j, a 3 = exp(3io)(2/3)3/2 ; 
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SOlO: 

27 = 1 + 10 + 16, 

cp = exp(io)[a,O,O] , 

a 4 = 0, a 3 = 0; 

S09: 

27 = 1 + 1 + 9 + 8 + 8 , 

cp = exp(io)[a,b,b ] . 

(125) 

(I26) 

The cross section of the orbit space at an arbitrary phase 
angle () is shown in Fig. 8. It is again a warped triangle. 

The generic strata ofSU2 representations 4 + 4 and 
6 + 6 have trivial little groups and thus their orbit spaces are 
four- and eight-dimensional. The S03 seven-dimensional 
representation (totally symmetric traceless third-rank ten
sor) is non-coregular and has five invariants of degree 2, 4, 6, 
10, and 15 in the integrity basis and a syzygy. They are listed 
in Ref. 47. Its maximal little groupsl2,4S are U1, T, D3, and 

D 2• 

D.Comments 
Our observations for single irreps are summarized as 

follows: 
(1) The orbit spaces for the adjoint representations of 

Lie groups of the same rank all have similar geometrical 
shapes, namely, straight line for groups of rank two, triangle 
for groups of rank three, tetrahedron for groups of rank four, 
and so on. (This pattern was evident in the examples of Ref. 
16.) 

This implies that there is an interesting relationship 
between the degrees of polynomial invariants, the number of 
maximal little groups, and the shape of the orbit space. For 
example, the SUs adjoint has only two maximal little groups 
but odd degree invariants such as 13 and Is duplicate the 
cusps providing the third and fourth cusps needed to build a 
tetrahedron. For the adjoint representations of all the other 
groups of rank four there are four maximal little groups and 
their invariants are of even degree yielding only four cusps, 
again just enough to build a tetrahedron. 

-PI 

±P I: F4 
P2: SOlO 

C I: S09 

-0.75 

CI 

CI 

P2 

-0. 25l 
FIG. 8. The orbit space of 27 + 27 of E6 • 

+PI 

CI 
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However, this relationship does not seem to hold in the 
case of non-coregular representations. The S03 seven-di
mensional representation has four maximal little groups. If 
its orbit space is built out of polynomials of degree 2, 4, 6, and 
10, then it is a warped tetrahedron. If it is built out of 2nd, 
4th, 6th, and 15th degree polynomials, then some cusps may 
be duplicated and the orbit space may even become a warped 
octahedron. It will be interesting to see if the orbit space built 
out of all five polynomials and the syzygy has indeed a tetra
gonal shape. 

(2) The orbit spaces (or the cross sections at an arbitrary 
phase angle) of symmetric and antisymmetric tensor repre
sentations are identical, up to scale factors, to those of ad
joint representations. 

Giirsey suggested that this similarity among the orbit 
spaces of adjoints, symmetric and antisymmetric second
rank tensors results from deeper mathematical roots.49 

These representations all have definite exchange symmetries 

among the tensor indices. Even the 27 + 27 of E6 has such 
symmetry: it is a Hermitian matrix (over octonions). 

Michel 12 pointed out that the orbit spaces of the vector 
representations ofWeyl groups are, up to scale factors, iden
tical to those of corresponding adjoint representations. We 
quote two examples given in Ref. 50. The orbit spaces for the 
vector representations of the tetrahedral groups T and Td 
are identical to that of S06 adjoint. The orbit spaces for the 
vector representations of the tetrahedral group Th and the 
octahedral groups 0 and Oh is identical to that of S07 ad
joint. 

(3) Lower-dimensional strata of higher symmetries 
form the boundaries of higher-dimensional strata of lower 
symmetries in an orderly way. The hierarchy of protrusive
ness on the orbit space boundary is not a global property (a 
poorly defined concept in any case) but a local property, 
which is shown by the saddle-shaped surfaces in most three
dimensional orbit spaces. 

The last observation is not what we like because it may 
lead to a counterexample to the minimal symmetry breaking 
principle. However, none of the cases we have considered 
makes a counterexample. 

In our formalism we take the singlet form for a given 
subgroup as the definition of a stratum. Its equation is ob
tained by putting the singlet form into the invariant polyno
mials and is thus parametric. In order to obtain the singlet 
form, which is the minimum information needed to specify 
an extremum point in any case, we have to find the matrix 
elements of group generators over the given representation 
and require that the subgroup generators annihilate the rep
resentation vector. 

It is convenient to have non parametric equations for 
strata. Since there are fewer independent parameters than 
basic invariants for all the strata except for the generic stra
tum, we should have some identities among the basic invar
iants on these strata. Like syzygies they are polynomials. It is 
not easy, though possible in principle, to derive these identi
ties from our parametric equations. Abud and Sartori29 de
vised a general method for finding nonparametric equations 
of orbits. It is a good tractable method usable also for the 
projected orbit space associated with a Higgs potential. It 
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requires only the knowledge of invariant polynomials. One 
can obtain the singlet forms (though not the little groups) 
from the nonparametric orbit equations by solving high de
gree algebraic equations. This is as difficult as minimizing a 
Higgs potential using a conventional method. The method 
outlined in the previous paragraph is the only tractable way 
for finding the little groups and singlet forms, as far as we 
know. Jari6so devised another elegant nonparametric meth
od for representations of finite groups which can be used for 
adjoint representations oflow rank compact Lie groups. He 
provided both singlet forms and nonparametric equations 
for orbits. However, its applicability seems to be limited to 
only a small number of representations. It will be interesting 
to see if his method can be extended to more complicated 
cases. 

In a Higgs potential there appear invariant polynomials 
only up to fourth degree. Thus we deal with a projected orbit 
space. Due to the projection some cusps are buried inside the 
projected space, as shown in SON and SP2N examples. These 
buried cusps cannot yield the absolute minimum, though 
they correspond to maximal little groups. A similar pheno
menon was noticed earlier in the examples of SON adjoint 
+ vector representations. 17 As a matter of fact, it was ob

served much earlier by Li. 23 This implies that, in unification 
theories, simple-minded classification of possible symmetry
breaking directions based on maximal or maximaximallittle 
groups is not enough. One should check if the symmetry 
breaking really occurs in the desired direction. 

5. TWO IRREDUCIBLE REPRESENTATIONS 

The orbit spaces of two irreducible representations are 
normally high-dimensional because after one of the repre
sentations is simplified only a small number of group param
eters are left for further simplification of the other represen
tation. We have found two cases where the orbit space is 
three-dimensional, SU3 adjoint + vector and SOs adjoint 
+ vector. 

A. SU(3) adjoint + vector representations 

Using the same notation as in Ref. 15, the orbit param
eters are 

The stratum of each little group is represented as follows: 

SU2 : 

8 = 1 + 2 + 2 + 3, 3 = 1 + 2 , 

q; = [a,a, - 2a], X = [O,O,c] , (129) 
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U,: 

cp = [a,b, - a - b ], X = [O,O,e] , 

a 3 = (a 3 + b 3 - (a + b )3)/(a2 + b 2 + (a + b )2)3/2 , 

(130) 
fl, = - (a + b )/(a2 + b 2 + (a + b f)1I2 , 

fl2 = (a + b )2/(a2 + b 2 + (a + b )2) . 

The generic stratum is represented by Eqs. (127)-(128) and 
its little group is the null group. Can a curve confine a three
dimensional volume? The answer is no, and thus the stratum 
of the null group must confine itself. The volume is extre
mized when either X, or X 2 is equal to zero with all the other 
components nonzero. The orbit space is shown in Fig. 9. The 
strata of SU 2' namely, the cusps, are the most protrudent as 
we might guess from the fact that they satisfy the most singu
lar boundary conditions. The stratum ofU" namely, the 
curve, is the next most singular. This may lead us to expect 
that such a hierarchical relationship would be a prominent 
feature of the orbit space of two irreps. But, as we shall see in 
the next example, the strata of a lower level little group can 
be as singular as the higher level ones. 

B. 50(5) adjoint + vector representations 

Using the same notation as in Ref. 17, the orbit param
eters are 

SUI 
8-72° 
;=18° 

(131) 

PI 
0.75 

(132) 

where i runs from 1 to 2. The stratum of each little group is 
represented as follows: 

S03: 

10=1+3+3+3, 5=1+1+3, 

cp = [a,O] , X = [e,O,O] , (133) 

SU2 x U,: 

10 = 1(0) + 1(2) + 1( - 2) + 3(0) + 2(1) + 2( - 1), 

5 = 1 (0) + 2( 1) + 2( - 1) , 

cp= [a,a] , X= [O,O,c] , 

a 4 = !, fl2 = 0, fl4 = a ; 

U,XU,: 

cp= [a,b], X= [O,O,e] , 

(134) 

(135) 
a 4 = (2a4 + 2b 4)/(2a2 + 2b 2f, fl2 = 0, fl4 = a ; 

SUI 

~'-"-~-r=\----aall1 
SUI 

~--~--+--=~--~a. 
0.5 

FIG. 9. The complete orbit space of 
the SU3 adjoint + vector. Shown at 
the upper left comer is a view from 
the direction oriented 18' from the p, 
axis and 72' from the P2 axis. The 
dotted lines are hidden lines. The 
numbers in the square brackets are 
the relative ratios of scale. Each pro
jection is a view from the positive di
rection of the axis not shown in the 
picture. Here the dotted lines are 
portions of the boundary belonging 
to the null group stratum. Thus the 
hidden curves are drawn solidly. 

PI~--~--~--~---
0.75 

0.75 

SUI 

SUI 

~ __ ~~~ __ ~-+~a. 
0.5 

0.75 
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U1: 

q; = [a,b ], X = [O,c,d] , 

a4 = (2a4 + 2b 4)1(2a2 + 2b 2f , 

f32 = (b 2C
2)/(2a2 + 2b 2)(C

2 + d 2) , 

f34 = (b 4c2 )/(2a2 + 2b 2
)2(C

2 + d 2
). 

(136) 

The generic stratum is represented by Eqs. (131)-(132) and 
its little group is the null group. The stratum of V 1 is two
dimensional and thus has a chance to enclose the whole vol
ume. The V! stratum occupies the surfaces represented by 
dotted lines in Fig. 10, but the surface represented by solid 
lines is a part of the generic stratum. This is in contrast to the 
case of one irrep where there was no mixture of this kind. 
That is, equally singular surfaces consist of both the stratum 
of a maximaximallittIe group and a lower level one. Though 
the portion of the surface belonging to the null group is more 
singular than the interior, there is no way to distinguish them 
because there is no more subgroup left. The volume is extre
mized when either X2 is equal to zero (V I) or X3 is zero (the 
null group) with all the other components nonzero. 

C.Comments 
Contrary to the case of one irrep where the strata of 

successively lower level little groups occupy successively 
higher-dimensional and less singular (locally less protru
dent) surfaces on the orbit space boundary, the orbit space 
boundary of two irreps is more complex and things are pretty 
much mixed. Whereas orbit parameters associated with each 

U\ 

U\XU\ 

SUzXU\ 

a. 

1713 

a,,[lj 

l 
112[1] II.[Z] 

SU,xul 

so. 

S03 

8=80· 
q,=20· 

0.5 

fJ. 

a. 

0.5 

U\XU\ 

SUaXUl 

SUzXU 1 

U\XU1 

0.5 

fJ. 
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irrep tend to form warped concave boundary surfaces, orbit 
parameters associated with both irreps tend to destroy such 
behavior. With the representation vector of one irrep fixed 
(consequently, orbit parameters associated with that irrep 
fixed), one can rotate the vector ofthe other irrep creating a 
volume traced by pencils. 

It is notable that the generic strata in both examples are 
not totally open as in an irrep case. They close themselves 
partially. The same is true for lower-dimensional strata. 

In the case ofSV3 adjoint + vector (Fig. 9) we find that 
the maximaximallittle groups, SV2 and V I' occupy the most 
protrudent portions of the boundary. But in the case ofS05 

adjoint + vector (Fig. 10) we find that the V 1 stratum occu
pies the boundary planes indicated by the dotted lines and 
the stratum of the null group occupies the boundary plane 
indicated by the solid lines. That is, there is no sharp distinc
tion between the maximaximallittle group V 1 and the lower 
level little group, the null group, in terms of dimensionality 
and concavity. 

Another interesting point is that the little groups alone 
cannot distinguish the fine structure of the orbit space. In 
both of the above-mentioned examples we see that the null 
group strata consist of two-dimensional surface and three
dimensional volume. In the S05 case the strata of V 1 consists 
of an edge curve and two-dimensional surfaces. This indis
tinguishability comes from the fact that, whereas for a given 
group there are only a finite number of subgroups, there is no 
limit to the dimension of a representation. As we see from 
Eq. (83) the orbit space dimension can be arbitrarily high. On 

SOa 

U1 

fJ. 
0.25 

0.25 

fJ" 

so. 

FIG. 10. The complete orbit space of 
the SOs adjoint + vector. Shown at 
the upper left comer is a view from 
the direction orien ted 20' from the /32 

axis and 80' from the a. axis. The 
dotted lines are hidden lines. The 
numbers in the square brackets are 
the relative ratios of scale. Each pro
jection is a view from the positive di
rection of the axis not shown in the 
picture. Here the hidden curves and 
lines are drawn solidly. 
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the other hand, the number of subgroups is too small to clas
sify all the dimensions of the orbit space. Thus the indistin
guishability is inevitable in both cases. 
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APPENDIX A 

Some people might doubt that the minimization can be 
achieved so cheaply. To remove a possible doubt, we inter
pret our method of minimization in the orbit space in terms 
of conventional language. We show how to find all the ex
trema (in the representation space) ofa smooth group-invar
iant function which is monotonic in the orbit parameters. 
We also explain how to tell the type of an extremum, i.e., a 
local minimum or an inflection point. 

1. Single irreducible representation 

Let us consider a group invariant smooth function, 
P (qJ )_F (12".1, I,AZ"')' which is a monotonic function of orbit 
parameters Aa in the projected orbit space. In order to find 
an extremum of P in the representation space, we need to 
find the solution of the equation 

ap =~ aF +aA I aF +aAz aF + ... =0, (AI) 
aqJi aqJi ar aqJi aA 1 aqJi aAz 

with r = 1 ~/2. Due to the assumed monotonicity, all aF laAa 
are nonzero in the projected orbit space. 

Case (i):aF /ar = 0 

There are two ways to satisfy Eq. (AI): 

aAalaqJi = ° for all a and i. (A2) 

This is satisfied at all the cusps (including buried ones) corre
sponding to maximal little groupsZ8,Z9.16 with phase angles of 
complex invariants not counted 

(
aA I aA2 ... ) 1 (aF aF ... ) for all i. (A3) 
aqJj , aqJj , aA

I 
' aAz ' 

This is satisfied when the contour of directional extrema 
contacts the orbit space boundary tangentially. Thus ex-
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trema of P with respect to qJj may occur at points on the 
curves, two dimensional surfaces, etc. Notice that the tan
gential contact can occur. 

It is laborious to check signs of a Hessian matrix in 
order to find the extremum type. However, once the orbit 
space is constructed, we can easily tell the type of an extre
mum from the way the contour of directional extremum 
meets the orbit space. For example, in the case ofS08 adjoint 
(Fig. 11) there are only five extrema consisting of four cusps 
and one tangential contact point on the boundary curve. 
Two of the cusps are local minima because the contour has 
the lowest values at the cusps in their neighborhoods. (The 
contour touching the upper cusp passes through the lower 
right portion of the orbit space. However, the cusp is isolated 
from that portion.) The lower right one is the absolute mini
mum. On the other hand, the lower left one is a saddle point 
and the remaining two extrema are inflection points. 

As we showed in Ref. 16, the contour of directional 
minima for a most general fourth-degree Higgs potential is 
flat or concave in the direction of increasing equipotential. 
Thus unless higher-dimensional strata are more protrudent 
than cusps, the absolute minimum will occur at cusps on the 
boundary of the projected orbit space. For a general smooth 
group-invariant function the contour may be convex in the 
direction of increasing equipotential. The cusps will still be 
the most likely points for the absolute minimum to occur. 
However, higher-dimensional strata will now have a better 
chance for becoming an absolute minimum. 
Case (ii): aF/ar;;60 

(~, aA) , aA z , •• ) 1 (aF , aF, aF , ... ) for all i. (A4) 
aqJi aqJj aqJj ar aA I aAz 

One of the equations cannot be satisfied, namely, 

aAa aAb 
E b ----••• = const 
a··· aqJi aqJj 

(of a and i) aF . 
ar 

(AS) 

On the boundary the lhs ofEq. (AS) is identically zero. Thus 
Eq. (AS) can only be satisfied inside the projected orbit space, 
where the vectors, (aAalaqJj' aAblaqJi''')' are independent. 

Z projected orbit space 

FIG. 11. The projected orbit space of the complete orbit space of the SO. 
adjoint is further projected onto a line with the contour of directional mini
ma projected onto a point. Some cusps are projected onto the extreme 
boundary points; others into the interior. 
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The smallest number of independent vectors is the dimen
sion of the projected orbit space. Now too many independent 
vectors have to be perpendicular to a fixed vector, the rhs of 
(A4). Therefore, Eq. (A4) cannot be satisfied at any point of 
the orbit space. 

In fact, Michel l2 showed that a fourth degree Higgs 
potential cannot have an extremum in the generic stratum. 
We have extended his result to include more general cases. 
We have shown that a group-invariant function of a single 
irreducible representation monotonic in the projected orbit 
space can have an extremum only on the boundary of the 
projected orbit space with aF I ar = o. 

2. Two Irreducible representations 

Let us consider a group-invariant smooth function, 
P(QW) F(I2,al,a2; J2,YI'Y2; fll' fl2)' which is a monotonic 
function of orbit parameters, (aa,Ye,flb)' in the projected 
orbit space. We have omitted further orbit parameters for 
the sake of saving space. It will not affect the generality of the 
following argument. In order to find an extremum of P in the 
representation space, we need to find the solution of the 
equation: 

ap = ~ aF + aa l aF + aa2 aF 
arpj arpj ar arpj aa l arpj aa2 

+ afll aF + afl2 aF ==0, (A6a) 
Jrp j Jfll Jrp j Jfl2 

JP = ~ JF + JYI JF + JY2 JF 
JXj JXj Js JXj JYI aXj JY2 

+ Jfll JF + Jfl2 JF ==0, (A6b) 
JXj Jfll JXj Jfl2 

with r = I r2, s = J ~12. Due to the assumed monotonicity, 
all aF laaa, aF laYe' aF IJflb are nonzero in the projected 
orbit space. 

Case (i): JF/Jr = 0 and JF/Js = 0 

There are many ways to satisfy Eqs. (A6): 

Jaa Jflb 
-- = 0, -- = 0, for all a,b,i, (A7a) 
arpj arpj 

Jyc =0 Jflb =0 , , for all c,b,j, (A7b) 
JXj JXj 

( 
Jal Ja2 Jfll Jfl2 00) 
Jrpj , Jrpj 'Jrpj' Jrpj , , 

1 (JF , aF JF aF JF aF) for all i, 
Jal aa2 ' afll ' afl2 ' Jy! ' aY2 

(A8a) 

(A8b) 

Any combination of (Ala) and (Alb) with I,J = 7,8 will yield 
a solution to Eqs. (A6a) and (A6b). However, Eqs. (A 7) are 
less frequently satisfied than in a single irrep case. The extre-
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mum conditions (A 7) can also be satisfied partially in con
trast to the single irrep case where all the orbit parameters 
are extremized simultaneously (with phase angles of com
plex invariants not counted). The points satisfying these con
ditions may be at cusps, on curves, on two dimensional sur
faces, etc., on the orbit space boundary. They are all 
tangential contact points of the contour of directional ex
trema with the orbit space boundary. Again there are only 
finitely many extrema. 

Since an orbit space for two irreps is formed from two 
independent spaces through the joint invariants, the Jacobi
an determinane2.!6 contains many zero elements. The di
mension of a boundary portion is still given by the rank of the 
Jacobian. 

Case (ii):JF/Jr~O and/or JF/Js~O 

This condition again takes us into the projected orbit 
space and yields too many vectors to be perpendicular to a 
fixed vector. 

Again we have shown that a group invariant function of 
two irreducible representations monotonic in the projected 
orbit space can have an extremum point only on the bound
ary of the projected orbit space with JF I ar = 0 and JF I 
Js=O. 
APPENDIXB 

When the Higgs potential contains more than four inde
pendent invariant polynomials, it seems difficult to visually 
minimize the potential. We show how to find the absolute 
minima of these potentials. Let us consider a Higgs potential 
for a single irrep containing two third-degree invariants and 
three fourth-degree invariants. Call the associated orbit pa
rameters, fll' fl2,a)oa2,a3. Consider the following two-di
mensional projected space of the five-dimensional orbit 
space: 

fl B l fll+B2fl2' a==Alal+A2a2+A3a3' (Bl) 
where B 's and A 's are the coupling coefficients of the corre
sponding invariant polynomials in the Higgs potential. No
tice thatflis proportional to the distance of the point (fll' fl2) 
from thefl = 0 line perpendicular to the vector (B I,B2), and 
that a is proportional to the distance of the point (a!,a2,a3) 
from the a = 0 plane perpendicular to the vector (A 1.A2,A3)' 

In thefl-a space the absolute minimum of the potential 
can be found using the formula previously derived in Ref. 16. 
Now one necessarily asks whether we can uniquely deter
mine (fll' fl2) and (a l,a2,a3) from a given set of (fl,a). From 
the geometrical meaning of fl and a, we see that there is a 
continuous range of orbit parameters satisfying Eq. (B 1) for a 
given set of( fl,a). However, the absolute minimum occurs at 
a unique point on the orbit space boundary, most protrudent 
to the direction of decreasing directional minimum. Thus we 
have a unique solution to Eq. (Bl) at the absolute minimum. 
If the absolute minimum occurs on a concave portion of the 
orbit space boundary,5! then there is a continuum of points 
satisfying Eq. (B 1) and we have to stay in the five-dimension
al orbit space. We have illustrated the mechanism in Fig. 11. 

This raises the question: Is it safe to work in the project
ed orbit space which is dimensionally smaller than the repre
sentation vector space? Let us reconsider the significance of 
the boundary conditions: 
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JAa 
-- = 0 for all a and i, 
Jq:;i 

(B2a) 

JAa JAb 
E b ---- = 0 for all (a,b) and (i,j),.··. (B2b) 
a Jq:; i Jq:;j 

Equation (B2a) implies that, at a cusp corresponding to a null 
dimensional stratum, if we specify one orbit parameter, then 
all the other orbit parameters are determined. Equation 
(B2b) implies that, on a singular curve corresponding to a 
one-dimensional stratum, if we specify two orbit parameters, 
then all the other orbit parameters are determined, and so 
on. 

The boundary conditions are strong enough to let us 
determine all the components of the scalar field (a vector in 
the representation space) at the absolute minimum from the 
knowledge of the norm and a small number of orbit param
eters. The absolute minimum condition prompts the bound
ary condition, which in tum determines the whole vector. 

Without further arguments we state that for an even 
degree Higgs potential of two irreps, we can safely work in 
the projected space, (a, (J,y), of the possibly high-dimension
al projected orbit space of the complete orbit space. 

However, in the process of further projection we lose 
the detailed extremum structure of the invariant function. 
This is evident in Fig. 11: we see five extrema before the 
projection and only two extrema afterwards. As far as we are 
looking for the absolute minimum only, the projection is 
harmless. 
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In this paper we calculate two of three simple integrals which are present neither in Bateman nor 
in Gradshtein and Ryzhik. These integrals are useful to treat some specific physics problems. 

PACS numbers: 02.30.Bi, 02.30.Qy 

1. INTRODUCTION 

In the heyday of the Regge + absorption phenomeno
logy we have been led I to consider the integral correspond
ing to the absorption of the form Inn' = S J v (xy)x2n + v + I 

L ~,+ n(¥2)e - x'/2 with n #- n'. The integral with n = n' is al
ready known2 but not the general one for n #- n'. The purpose 
of our second part is to give the full proof of the result. On the 
other hand, quite recently we have been obliged to calculate 
the convolution integral involving two Iv./-, (x) functions. The 
convolution with a weight xv./-, with v integer and positive is 
already known3 (with an error in Ref. 3) but we needed in our 
work4 to calculate the analogous convolution when V,/-l are 
negative integers. This is the purpose ofthe third part ofthis 
paper. 

2. CALCULATION OF 

This integral in the special case n = n' is well known2 

namely Inn = y2n + ve - y'12 L ~ + n(~ y2). In this work we show 
that it is possible to get a similar result for n #- n'. 

Indeed 

L ~,+ n(¥2) = _r~(n_+-,--n_' ...:..,+_v_+-,--l-'-.) _ 
r(n' + 1)F(n + v + 1) 

X IFI( - n', n + v + 1, ~2).5 ( 1) 

where IFI(a,b,c,x) is the confluent hypergeometric function 

r(n+n'+v+l) ex'/2 

r(n' + l)r(n + v + 1) 

X IFI( n + v + 1 + n', n + v + 1, _ ~2).6 

so that 

e - x'12L ~,+ n(}x2) 

r(n+n'+v+l) 

r(n' + 1)F(n + v + 1) 

X IFI( n + n' + v + 1, n + v + 1, _ ~2). 

I ,= _1_ r(n+n'+v+ 1) 
nn ,[y r(n' + 1)F(n + v + 1) 

xf X2n+v+ 112 

X IF{n+n'+v+l,n+v+l, _ ~2) 
X JiYJv(xy)dx. 

From Bateman,7 the Hankel transform of 

x 2{3- v - 312 IFI(a,(3, - A.X2) is 

22{3 - 2a - v-I 
________ y2a - 2{3 + v + 112 

rIa - (3 + v + l)A. a 

X IF{a, 1 +a-(3+v, - :~). 
0< Re(3 <l + Re(a + ~), ReA. > O. 

By identification, 

a = n + n' + v + I, 
(3 = n + v + 1, 

A. = ~ 
so that, 

and 

2(3 - v - ~ = 2n + v + ~, 
2(3 - 2a - v-I = - 2n' - v-I, 

2a - 2(3 + v + ! = + 2n' + v + !, 

I r(n+n'+v+l) 
I ,= - ----'--------'-

nn ,[y r(n' + 1)F(n + v + 1) 
X r (n + v + 1) 2n - ny2n' + v + 1/2 

r(n' + v+ 1) 

X IFI( n + n' + v + 1, n' + v + 1, - y; ). 
I . =y2n'+v2n- n' r(n + 1) e-y'/2L v+n'(~y2). (2) 

nn r (n' + 1) n 2 

By putting n = n' we recover at once the well-known result. 
We note that there is one inversion ofthe indices nand n' 
between formula (1) and (2). 

3. FINITE INTEGRALS INVOLVING BESSEL FUNCTIONS 
OF THE CONVOLUTION TYPE 

These definite integrals may be evaluated by means of 
the convolution formula of the Laplace transform. 
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For instance let 

F.a = i'F(V)G (t - v)dv, 

I(s) = L" r SIF(t )dt = L (F), 
(3) 

the Laplace transform of F, 

g(s) = 100 

e-SIG(t)dt = L (G). 

thus L (F.G ) = I(s).g(s). Let 

In this letter we want to find a similar convolution integral 

1= iT t -I-'J2II-'(atI/2)(r-t)-v12Iv(b(r-t)1/2)dt, 

where v and Jl are real positive integers. 

Let 

FI-' (a,t ) = a -Ilt (J-l/2) J
il 

(a t I 12)Re Jl > - I, 
F~ = t - v12Iv(2a 1/2t 1/2), 

L (Fa) = pV- lealp y(v,alp) a - v/2 9 

v F(~' 

where 

( 
a2 + b 2 ) 

X exp - 4s Re V,Jl > - 1 
for v integer ;;;'1, 

L (F~ .Fb) = pV + Il- 2e(a+ blip y(v,alp) y{J-l,b Ip) 
I-' F(v) F{J-l) 

As a straightforward consequence A little bit of algebra yields 

L (F~ XF!) = pV+ Il - 2ela + blIP { 1 _ e- alp viI (!!-.)n ~} {I _ e - blp Il i l (!!... )n' _1_, } 
n = 0 p n! n' = 0 p n! 

=pv+ Il -2ela+b)/p 1_e-la+bllp I ~ -,-, 
[ 

V+Il-2( b )n" 1 

n" =0 p n ! 

+ e-Ia+bllp I _a__ --" 
{

V + Il- 2 ( + b )n" 1 

n" =0 p n ! 

+ I - - I - - _eblp !!-. _pv+ Il -2 v -I ( a )n 1 Il - I ( b )n' 1 }] v -I ( )n 1 
n=O p n!n'=O p n'! n.?o p n! 

L (F~ XF!) = pV+Il-2ela+b)/p r(v + Jl- 1,(a + b )Ip)) 
F(v+Jl-l) 

+ pV+Il-2 I _a__ _,_, 
{

V + Il- 2 ( + b )n" 1 

n" =0 p n ! 

1719 

v - I ( a )n 1 Il- I ( b )n' 1 } +I--I--
n=O p n! n'=O p n'! 

~ ,pv+ Il -2-nebIP 1 - e- blp I !!... ~ v - I an [ v + Il - 2 - n( )a ] 

n-O n. a=O p a! 

{

V - I ( a )n 1 v + Il - 2 - n( b )a 1 } - I - - I - - pv+ Il -2 
n=O p n! a=O p a! 

~ -" pV+ Il -2+n'ealp 1-e- alp I !!-. + Il - Ibn' [ v + Il - 2 - n ( )a' ] 

n = 0 n . a' = 0 p a ! 

{ 
Il - I ( b )n' 1 v + Il - 2 - n'( a )a' 1 } - I - -, I - - pV+ Il -2 
n'=O p n! a'=O pa'! 

= pV + Il- 2ela + p)/p r(v + Jl - 1,(a + b )lp) 
F(v+Jl-l) 
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V~lan Y+~-2-n blp r(v+p-l-n,blp) 
~ -p e 

n=onl r(v+p-l-n) 
~~l b n' v+~-2-n' alp y(v+p-l-n',alp) 
~ -p e 

n'=O n'l r(v+p-l-n') 

4 ~ - 1 ( b )n' 1 y + ~ - 2 - n'( a )a' 1 
Spy = n~o P 7! p'5;o P 71' 

Without loss of generality we may assume v-I >11- - 1 >0. 
The different domains Di of summation read (see Fig. 

1). From inspection, 

Dl =A +B+ C, D2=A Dl +D2 =2A +B+ C, 

D3 = A + B, D4 = A + C D3 + D4 = 2A + B + c. 
Thus trivially S~v = 0 and 

L(F~XF!) 
= py+p-2e(a+bllp y(v +11- - l,(a + b )/p) 

r(v+I1--1) 
v~lan Y+~-2-n blp r(v+I1--1-n,(b/p)) 
~ -p e 

n=onl r(v+I1--1-n) 
~ ~ 1 b n' Y+~ _ 2 _ n' alp y(V + 11- - 1 - n',(a/p)) (4) 
-~-p e . 

n'=on'l r(v+I1--1-n') 

0, y ~ 

V-1 V-1 

A A 
B 

• ~-1 V+~-2 n ~-1 n' 

03 04 
n' 
V+~-2 

v-1 

A A 
B 

~-1 V+\l-2 a ~-1 a: 

FIG. 1. Description of the domain Di corresponding to the double summa
tionS~v' DomainAcorrespondstoO<ai<Jl- I,O";Pi<v - I, and domain 
B tOJl- I<ai<v + Jl- 2. 
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I 

By performing the Laplace inverse transform we get 

1'-1 (a 2 )i 1 [IP ](y+p-I-iI/2 
-" - - - I 1(1 't) ~ 4 'f 4 v+p-I-i'l-''1' 

i= 0 I. t 

V-I(fP)j 1 [a 2 ](V+p-I-J1I2 
} L - - - Ip+v- I_j(af!) . 

j=O 4 J1 4t 
(5) 
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Explicit expressions of the nth gradient of 1/r 
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Explicit expressions of the nth gradient tensor and partial derivatives of the function 1/r are given, 
in the absolute and in the local bases associated, respectively, with the Cartesian and the spherical 
coordinates of space. They may be used in various multipolar developments of r- I interaction 
energies. 

PACS numbers: 02.30.Gp 

I. INTRODUCTION 

The nth gradient of the function 1/ r is useful notably for 
the calculation of electric 1/r interactions, when multipolar 
developments of the systems of charges are considered. The 
nth gradient tensor vn( 1/r) occurs (in two places sometimes) 
within the nth term of the corresponding series development 
of the interaction energy. 1-3 In many cases, the series con
verges slowly, which means that terms up to high values of n 
must be taken into account. 

Because of their relation to the spherical harmonics, 
several properties of the nth gradients have been studied,4-7 
but explicit expressions of the nth gradient and derivatives of 
r- I are not easily deduced from them, nor from Hobson's 
theorem. 8

•
9 A simple formula [see (15) further on] is known 

for the three diagonal terms of vn( 1/r), and an explicit 
expression of any nth partial derivative of 1/r may be ob
tained as a particular case of Maxwell's Theory of Poles. 10,11 

But in some physical calculations, a tensorial expression of 
the nth gradient as a whole is needed, which is not provided 
simply by known results. In addition, an extrapolation from 
the first computed gradients is difficult, because of a great 
number of permuted terms which appear. 

Notations: throughout, the tensorial product is written 
without a multiplicative sign, and (?) means a tensorial con
traction of multiplicity q. 

II. TENSORIAL EXPRESSION OF \In(1/r) VERSUS 
VECTOR r 

First it is proposed to establish the following explicit 
expression of the nth gradient tensor of r- I : 

vn~= (-lr .y [P (1.-)] 
r rn+ 1 n n ~ , (1) 

where, in the Legendre polynomial Pn (5), the (n - 2q)th 
power 5 n - 2q of 5 (50 included) symbolically stands for the 
3n-tensor 5 n - 2q = ((fl)rn)I~. Here 12 is the second-order iden
tity tensor, and .Y n : Tf---+ol:"uT the nth-order symmetriza
tion operator, 12 sum of the n! permutations. 

The way in which (1) has been obtained is indicated in a 
shortened form in the Appendix. We will now give a faster 
derivation suggested by one referee. 

A Taylor's development of the function/(r) = r- I at 
point r may be written, using for instance the exponential 
mapping 13 

1 I 00 1 In) I I I I (exp~·V)- = I _~n.vn_ =- , 
r r n = 0 n! r r r r +; 

(2) 

that is, for any increase - ~ ofr, 

00 ( l)n (n) 1 I _-__ ~n. vn_= (~- 2r· ~ +t2)-1/2. (3) 
n =0 n! r 

Let us denote the integer part of a number x by E (x), and 
by 

_ n (- I)q(2n - 2q)! 
anq = 2 , 

, (n - 2q)!q!(n - q)! 
(4) 

the coefficients of the Legendre polynomial Pn • When trans
formed into the generating function 

00 

(I_2xy+y2)-1/2= I Pn(x)yn (O<y<l) (5) 
n=O 

of the Pn's, the right-hand side of (3) becomes, for t < r, 

(6) 

(7) 

In (7), 
Iq) In) 

(r • ~r - 2q~qt 2q = ( . rn)l~ . ~n • (8) 

Thus, Eq. (3) may be expressed 

00 ( I)n 1 (n) 00 1 In) I _-_vn_ .~n= I -P (5)·~n 
n = 0 n! r n = 0 ~n + In' 

(9) 

with the same meaning of 5 as in (1). When ~ varies, ~n linear
ly generates the space of symmetric 3n-tensors; identification 
in (9) gives 

.Y (( - 1 r vn ~ __ 1_ P (5)) = 0 (10) 
n n! r ~n + In' 

which leads to (1) since V n(1/r) is symmetric. 

III. CARTESIAN PARTIAL DERIVATIVES OF 1/r 

It is easy to deduce from (1) the following expression of 
the Cartesian nth partial derivatives: for any a, {J,y 
(a + {J + y = n), 
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an .! = (- It a!p!y! EI 2) (_ I)q (2n - 2q)! r2q 
axaayfJazr r rr2n+ 1 q=O (n -q)! 

Ela/2) ElfJl2) Elr/2) 1 
X L L L xa-2SyfJ-2bzr-2/-< 

s=O b=O /-<=0 S!;!,u!(a- 2s)!(P-2;)!(y-2,u)! 
(11) 

Let Yx, ... xn be any coordinate ofvn(1/r), where every 
xI, ... ,xn is either x or y or z. Its value drawn from (1), 

(12) 

depends only on the numbers a, P, y of times that x, y, z, 
respectively, occur among xI, ... ,xn' 

Here, A = 8x x ••• 8x x x2q + 1···Xn is different from 
122q-12q 

zero for any permutation u of x I"'X n such that 
U(xd = u(X2)"'" u(x2q _ I) = u(x2q ), and then A takes the val
ue u(x2q + I ) ..• u(xn)· Let us count 2S,2;,2,u as the respective 
numbers of x, y, z among u(x d, ... ,u(x2q ). 

0<s<E(a/2), O<;<E(P12), 0<,u<E(y/2), 
(13) 

s+;+,u=q· 

Then A is equal to xa - 2s y fJ - 2bzr - 2/-<, and the number of 
permutations u which correspond to the same triplet (S,;, ,u) 
is 

B = (q)(q - s)(n - 2q)(n - 2q - a + 2s)a! P !y! 
S ; a- 2s P-2; 

q!(n - 2q)!a! P !y! 

s!;! ,u!(a - 2S )!( P - 2; )!(y - 2,u)! 
(14) 

This justifies the conversion of(I2) into (11). 
It is also possible to verify that (11) is in full agreement 

with Maxwell's general expression for a surface harmonic 
with given poles [Ref. 10, Chap. IX, (43)]. 

The diagonal term2, 10 a = P = 0, y = n, 

an 1 
--= (- I)nn!r- n-IPn(cos 0) (15) 
azn r 

(Ois the angle ofr with thez axis) is easily recovered from (1), 
since (1) implies 

~.!= (_I)n n!Pn(s), 
azn r r2n+ I 

where S n - 2q = ,n(cos 0 )n - 2q . 

IV. TENSORIAL EXPRESSION OF V n(1/r) IN THE LOCAL 
BASIS ASSOCIATED WITH THE SPHERICAL 
COORDINATES 

Let (e l,e2,e3 ) be the orthonormal local basis associated 
with the spherical coordinates (r,O,<p ). Let us show that the 
tensor vn( 1/r) can be explicitly expressed as 

Vn .! = ( - Itn! y Eln/2) ( - I)P 
r ,n + I n p ~o 22P(n _ 2p)!P!2 

Xe~-2P(e~ + e~)p, (16) 
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~here Y n still represents the nth-order symmetrization op
erator. 

The gradient operator in spherical coordinates 

a 1 a 1 a v = e l - + ez - - + e3 -----
ar r ao r sin 0 a<p 

may be applied to el ,eZ,e3 to give the tensors 

Vel = (1/r)(e~ + e~) = vir, (I7a) 

Ve2 = (1/r)( - eze l + e~ cot 0), (I7b) 

Ve3 = - (1/r)(e3el + e3e2 cot 0). (I7c) 

On using (17), the gradient of v = e~ + e~ verifies 

Y 3Vv = - (21r)Y3(e lv). (18) 

For the first values of n, vn( 1/r) may be easily obtained 
as a function of rand (e l,eZ,e3), by repeated application of 
(I7a) and (18), Consideration of the values obtained up to 
n = 4 leads to the search ofvn(1/r) in the form 

1 Eln!2) 
vn_=r-n-I(_I)ny ~ (-I)Pb en-ZPv p 

n ~ n,p 1 , 
r P=O 

(19) 

where bn,p is a coefficient to be determined. 
With the help of relations (I7a) and (18), let us calculate 

vn + 1(1/r) = VVn(1/r) as a function of the coefficients bn,ps, 
which will lead to a recursive relation between the bn + l,pS 

and the bn,ps. 
Here, V(e7 - ZPv P) has the same symmetric transform 

through Y n + I as 

(1/r)[ (n - 2p)e7 - Zp - IV p + 1_ 2pe7 - 2p + IVP] . 

This and (19) give, after some rearrangements, 

1 (I)n+1 [E 1n/2) ( 2) vn + I _ = - Y ~ (- 1 \P 1 + -p-
..n+2 n+1 £.. I +1 r, p=o n 

Eln!2 + I) 

Xbn,pe~ + I - 2Pvp + L ( - I)q 
q= I 

X n - 2q + 2 b en + I - 2Qvq ] • (20) 
n + 1 n,q-I I 

Comparison of (20) with (19) written to the order n + 1, 
implies the recursive relation 

( 1 +~) +bn,P_1 
n+I 

for p = I, ... ,E(n/2), 

for p = 0, 

n-2p+2 

n+I 

n-2p+2 

n + 1 

for p=E(n12+ 1)#E(n/2). 
(21) 
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The resolution of(21) is not obvious, but the solution 

b = n! __ (22) 
n,p (n _ 2p)! 22p p!2 

arises after some attempts. Its substitution into (19) gives 

(16). 
In this derivation, the existence of (19) has been sup

posed, and the uniqueness of (22) is not shown. However, 
once (16) is found, the precedent reasoning can serve, almost 
without change, as an inductive demonstration. 

Note that substitution of 

Iq - (e2 + e2 + e2 )q= f (e2 + e2te2q-2m q! 
2 - 1 2 3 - mL;:o 2 3 1 m!(q _ m)! 

(last equality modulo a symmetrization by Y 2q) in (1), leads 
to the expression 

1 ( l)n Eln/2) 1 
vn_= ----Yn " -e7-2m(e~ + ej)m 

r r"+12n mL;:om! 

Eln/2) (_ W(2n - 2q)! 

X q~m (n - 2q)!(n - q)!(q - m)! 

The equality 

EI 2) ( - W(2n - 2q)! 

q ~ m (n - 2q)!(n - q)!(q - m)! 

( _ 1)mn!2n - 2m 

(n -2m)!m! 

(23) 

(24) 

results from (16) and (23), but no other very much simpler 
derivation of (24) seems to exist. 

V. nth PARTIAL DERIVATIVES ALONG THE LOCAL 
AXES 

Let x', y', z' be the three coordinates of space in the local 
basis (e l,el ,e3). The nth partial derivatives of r- I along the 
axes e l,e2,e3 are the coordinates Zx; ... x~ of the tensor vn(1lr) 

in the product basis { e i , ... e i.}, in which e i , , ... ,e i • run inde

pendently over the three vectors e l,el ,e3 . Since vn(lIr) is a 
symmetric tensor, Zx; ... x~ only depends on the numbers 

a, {3,y oftimes that x', y', z', respectively, occur among 

xi , ... ,x~: Z, . = Z ,a ,/3 'r = ZaPy, 
XI"·X" X Y z 

Let us prove that for any a, {3, y, a + {3 + y = n, 

an 
ax,a ay' P az'Y r 

{

a, if {3 or y is odd, 
n! ( - 1 )13n - a)l2{3 !y! 

= r" + I r - a(j3 /2)!(yI2)![ ({3 + y)/2]! ' 

if {3 and yare even. 

Being symmetric, vn(1lr) is equal to 

The comparison of (26) with the development of (16), 

vn 1 _ ( - Itn! Eln/2) ( - 1Y' 
-;: - r" + I p~o 22p(n - 2p)!P! 

X f 1 Yn(e7-2Pe~te~P-2t), 
t ~ 0 t !( P - t )! 
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(25) 

(26) 

(27) 

shows that Za pyla! {3!y! is the coefficient appearing in (27) 
corresponding to the values p = (n - a)/2 and t = {312. This 
gives the value (25) of Za PY' As expected, (25) is symmetric 
with respect to {3 and y, not a. 

VI. CONCLUSION 

The explicit expressions (1), (11), (16), and (25) may be 
used for the nth gradient and partial derivatives of the func
tion r- I, in the absolute and the local bases associated, re
spectively, with the Cartesian and the spherical coordinates 
of space. The linear decomposition ofvn(lIr) on fixed bases 
of2n + 1 tensors [that generate an irreducible linear repre
sentation of the SO(3) groupl4-16] has not been considered 
here, but will be elsewhere. 

These calculations have been performed for dealing 
with electric interactions at the molecular scale [as an exam
ple, (1) may be used to express Buckingham's mUltipolar mo
ments l as functions of the ordinary Cartesian moments]. 
However, it is possible that they could be applied also in 
other parts of physics concerned with r- I interactions. 

APPENDIX: ORIGINAL DERIVATION OF EXPRESSION 
(1) 

Internal contraction ofvn(lIr) leads to a null tensor: 

(AI) 

Apart from this, examination of the first orders n show that 
( - 1t[2nn!l(2n)!]rn + Ivn(lIr) and rn are equivalent in the 
following sense: for any harmonic function f/>, 

2n , 1 In) In) 

( - tr --.!!:... r N + IVn - . Vnf/> = rn . Vnf/> . (A2) 
(2n)! r 

Expression (1) may be derived by constructing a tensor 
A which could be substituted to V n(lIr) both in (AI) and 
(A2). 

It is not hard to see first that the contracted product 
rnl~)vnf/> is unchanged when adding to rn any linear combina
tion of terms of the type Y n (Bin - 2)1 2), where Bin - 2) is any 

tensor of order n - 2. So it is considered to subtract from rn a 
series S of the type 

S = L Cn,qY n [liC)rn)] . 
q 

A recursive construction of the Cn,qS, to satisfy to·S = 0, 
leads to (1). For a rigorous proofof(I), induction may then be 
used. 
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A recursive generation of local higher-order sine-Gordon equations and their 
Backlund transformation 
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A new hierarchy of local nonlinear evolution equations is generated by a recursion operator and 
its explicit inverse. It is shown that this hierarchy satisfies a canonical geometrical scheme and 
that it contains as special cases the sine-Gordon and Liouville equations in laboratory 
coordinates. A generalization of the well-known Backlund transformation and nonlinear 
superposition formula for the sine-Gordon equation is also obtained. 

PACS numbers: 02.30.1r, 03.4D.Kf 

I. INTRODUCTION 

The inverse spectral transform (1ST) has been success
fully used to solve many interesting nonlinear evolution 
equations (NEE's for short). 1 These NEE's usually appear as 
members of an infinite hierarchy of partial differential equa
tions generated by an integrodifferential operator, the so
called recursion operator, that is associated with an eigen
value problem. Among all these 1ST -solvable NEE's there is 
one famous equation that does not belong to a hierarchy: the 
sine-Gordon equation (SG) in laboratory coordinates (also 
called the "physical sine-Gordon equation") 

WIt - Wxx + sin w = 0, w = w(x,t), xER, tER (1.1) 

(subscripts x and t mean partial derivative) that arises in 
many physical systems. z According to the AKNS method 
this equation has been obtained3 as the integrability condi
tion written in terms of the one-form {} 

d{}-{}A{} =0, (1.2) 

or as a Lax-pair representation written in terms of the spec
tral operators U and V 

U, - Vx + [U,v] = 0, (1.3) 

for the isospectral eigenvalue (A ) problem 

dP = {}P, {} = U(w;A, )dx + V(w;A, )dt, (1.4a) 

U(w;A, ) = - i.- 0"3(Wx + w,) + iO"z(A __ 1_ exp[i0"3W ]), 
4 16,1-

(I.4b) 

V(w;A) = - i.- 0"3(wx + w,) + iO"z(A + _1_ exp[i0"3w ]), 
4 16,1 

(I.4c) 

where the O"j'S are the Pauli matrices. 
Usually an infinite hierarchy oflST-solvable NEE's re

lated to a single operator U is obtained by choosing infinitely 
many different V satisfying the Lax-pair representation (1.3). 
However, it seems that the above given structure of U (w;A, ) is 

a) Permanent address: Dipartimento di Fisica dell'Universita, 1-73100 
Leece, Italy. 

b) Equipe de recherche associee au Centre National de la Recherche Scienti
fique, ERA 154, Montpellier, France. 

compatible only with the particular choice (I.4c) of V [no 
higher powers of A and A -I are allowed for Vin (1.3), see Sec. 
V]. 

In order to overcome this difficulty, we use the fact that 
a NEE in one field can be written as a system of two coupled 
NEE's in two fields and we search for a convenient spectral 
problem involving two independent potentials (fields). 

Then we are able to exhibit the sine-Gordon equation 
as a member of a NEE hierarchy, to find the recursion opera
tor for the hierarchy and moreover to provide the geometri
cal (Hamiltonian) structure for this new hierarchy. We also 
derive the Backlund transformation and the nonlinear su
perposition formula (double Backlund transformation) for 
the equations in the hierarchy. Both of them are a nontrivial 
generalization of the corresponding ones found by Backlund 
and by Bianchi for the sine-Gordon equation. 

We use as a starting point the spectral problem recently 
introduced4

: 

Px = UP, U = - iA0"3 + UO"I + (il A )(S0"3 + ivO"z), 
(1.5) 

together with the so-called auxiliary spectral problem 
n p 

P, = VP, V = I fjA n - j + I UjA j - p - I. (1.6) 
j~O j~O 

The main point is the fact that the three potentials u(x,t), 
u(x,t ), and s(x,t ) will be shown to obey the following one
parameter family of compatible reductions5

: 

(1.7) 

Two main hierarchies of (reduced) NEE's then follow from 
(1.3) in which U and V are now given by (1.5) and (1.6): one 
for So =I- 0 which includes the sine-Gordon equation and 
some generalizations, the other for So = 0 which includes the 
Liouville equation (and generalizations) and has already 
been investigated, in the case Uj = 0 in (1.6), in a slightly 
different way.6 

We do not deal here with the sine-Gordon equation in 
the light-cone coordinates (wx, = sin w) which is related to 
the Zakharov-Shabat spectral problem generalized by 
Ablowitz et al. 7 for which the recursion operator and geo
metrical structure have been found. 8 In that case the hierar
chy of NEE's is integrodifferential (for a spectral operator V 
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with negative powers of A. ) and there arise local and nonlocal 
conservation laws. Whereas for the "physical" case (1.1) an 
infinite sequence oflocal conservation laws exists,9,JO and we 
exhibit here the hierarchy of NEE's which are shown to be 
purely differential. 

We will make our study in the frame of the geometrical 
scheme developed by many authors, 11-17 and use the nota
tions of Ref. 17. In this scheme it will be shown that the 
hierarchy corresponding to (1.5) and (1.6) is generated by an 
operator L + and its (explicit) inverse (L +) - I which are both 
(i) coupled to a cosymplectic operator J, (ii) Nijenhuis opera
tors (or hereditary symmetries), and (iii) recursion operators 
(or strong symmetries). We then use the machinery detailed 
in Ref. 17 to establish the eigenvalue problems for L, to de
rive the Hamiltonian character of the NEE's ofthe hierarchy 
and to find the recursion relations that allow us to compute 
the explicit forms of the infinitely many conserved quantities 
(which are in involution). 

We recall hereafter some of the definitions and nota
tions used in this paper: q(x,t ) denotes a vector valued field 
function with COO components qj(x,t) decaying "rapidly 
enough" (to zero or to a constant) as Ixl-oo (see Ref. 18). As 
a function ofthe x coordinate only, q can be considered as a 
point in a linear normed space M. With each point we associ
ate a tangent space Tq of smooth vector fields a(x,t) (contro
variant fields) with the same asymptotic behavior as q. The 
cotangent space T: of covariant fields /3 (x,t) is defined 
through the symmetric bilinear form: 

J
+OO 

(/3,a) = -t _ 00 dx /3j(x,t )aj(x,t). (1.8) 

The directional derivative (or Gateaux derivative) of a func
tional G( q,qx,qxx"") is given by 

(1.9) 

An operator y: M-T: is called a potential operator iff 

3F: M_C IF'( q)[a] = (y,a), (1.10) 

or, equivalently, iff 

3F: M-C Iy = (oloq)F( q), (1.11) 

where the variational derivative oloq is defined as follows: 

with 

d 
D=-, 

dx 

a a·=--. 
J a(Dj q) 

(1.12) 

(1.13) 

As the inverse of the D operator we choose the integral oper
ator I: 

that satisfies 

1+ = -I. 

(1.14) 

(1.15) 

[The notation A + means adjoint of operator A according to 
the bilinear form (1.8).] 
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II. HIERARCHY OF NONLINEAR EVOLUTION 
EQUATIONS 

To derive the explicit form of the recursion operators L 
and L -I we solve the equation (1.3) in which U and Vare 
given in (1.5) and (1.6). Since U is traceless, we consider a 
traceless auxiliary spectral operator Vand make the follow
ing two alternative choices for V: 

(2.Ia) 
V;(x,t)-O, 

V; (x,t ) = dj(x,t )£73 + ~ej(x,t )£71 - !f;(x,t )£72 , 

»j(x,t )-0. 
(2.Ib) 

By equating to zero the coefficients of given powers of A. in 
(1.3) for the first choice (2.Ia) we get the following set of 
recursion relations: 

bo=O, 

SCo = - 2ivao, 

sb l = ~co,x - 2iuao, 

(2.2) 

(2.3) 

(2.4) 

vb l = - iao,x + UCo, (2.5) 

vbj + I = - iaj,x + UCj' } 

sbj ~ = bj =-1 I + ~Cj,x = 2~Uaj' j = I, ... ,p, (2.6) 
sCj - cj _ 2 'ibj _ I,x 2waj , 

where we have introduced for convenience bp + I • In the 
same way we get for the second choice (2.1 b) the set of recur
sion relations for V;: 

eo = 0, e l = 2iudo, 

do,x = 0, 

10=/1 =0, 
dj,x = - iuf; + ivej _ I, 

ej + I = sej _ I - ~f;,x + 2iudj , 

f; + I = sf; - I +! ej,x + 2ivdj - I , 

(2.7) 

(2.8) 

(2.9) 

j = I,2, ... ,n, } 
~: I,2, ... ,n - 1, 
f - I,2, ... ,n, 

(2.10) 

where again we have introducedln + I' Now, by inspection of 
the coefficients of A. ° and A. - lone obtains the corresponding 
two evolutions: 

u,=ln+I> u,=-cP ' 

v, = - sen' v, = sbp + I , 

S, = -Ven' s, =vbp + I ' 

Note that both evolutions imply 

(2.Ila) 

(2.11b) 

(2.llc) 

soSo" = ss, - vv, = 0. (2.IId) 

The method consists now in solving explicitly the recur
sion relations (2.2) -;.- 6 and (2.7) -;.-10 for u, v, and s satisfying 
the constraint 

SoSo,x = SSx - vVx = 0, 

and the following asymptotic behaviors 18: 

u-o, v-o, as Ixl-oo, 
S-So, as Ixl-oo, 

(2.12) 

(2.13) 

(2.14) 

which are compatible with the reduction (2.12). Moreover 
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we choose the particular solutions of (2.3) and (2.8) as 

ao = - is (implies Co = - 2v), 

do = - i, 

which are still compatible with (2.12). 

(2.15) 

(2.16) 

By inserting now (2.15) and (2.16), respectively, into 
(2.6) and (2.10) we may consistently set 

(2.17) 

a2k + 1 = C2k + 1 = 0, 12k + 1 = o. 
We postpone the study of the case So = 0 to Sec. VII and first 
look at the case so#O which allows us to deal with the sine
Gordon equation in laboratory coordinates. 

The relations (2.2)-(2.5) and (2.7)-(2.9) together with the 
solutions (2.12) and (2.13) can be written 

( Iz) = (Ux + 2V), (2.18) 
-se l - 2us 

( -Co) (2V ) 
sb

l 
- - Vx - 2us . 

(2.19) 

Moreover, the recursion relations (2.10) with a convenient 
choice of the constants of integration can be cast into 

('Jj+I) +( fj-I) . 35 =L , J= , , ... ,n. 
- sej - sej _ 2 

(2.20) 

dj = - iJ(ufj - vej _ I), j = 2,4, ... ,n - 1, (2.21) 

with 

(

- ~D 2 + (U x + 2v)Iu + U2 + s - ~D + uv + (Ux + 2V)I!!.) 
L+= 4 2 s s, 

!sD - 2sulu s - 2suI(vls) 

(2.22) 

and n = 2m + 1. For n even, one would have chosen do = 0 and d l #0. 
In the same way, and using (1.7) for so#O, the system (2.6) can be written 

( -C
j 

)=M+(-b Cj
_

2
), j=2,4, ... ,p,. 

sbj + 1 s j_ 1 

(2.23) 

aj = i ~ 1((V - wx)bj _ 1 - +WCj _ 2 ). j = 2,4, ... ,p, (2.24) 

with 

(

s - vlw 

M+=~ 
~ ~ s( - D + wlw) 

1 1 (v 1 1) ) -sD--2vI -+-wD-
2 s s 4 s 

1 21 vii' 
s--sD -+SWI(-+-WD-) 

4 s s 4 s 

(2.25) 

where 

W = (vxls) + 2u, (2.26) 

and p = 2k. Before going further one should notice that (2.6) 
can also be written 

L + ) - )-( -Co) (-Co 2) 
sbj + 1 - sbj _ 1 ' 

(2.27) 

which naturally comes from the fact that recursion relations 
(2.6) are obtained for negative powers of A whereas (2.10) are 
obtained for positive powers of A. Equations (2.23) and (2.27) 
suggest the relevant fact that L + can be explicitly inverted 
and indeed one can check directly that 

L +M+ =M+L + = 1. (2.28) 

Therefore we shall write indifferently M + or (L +) -I. Using 
now (2.25) and defining 

J = ( _ ~ ~). (2.29) 

the relations (2.18) and (2.19) become 

( Iz) _J(U ) 
-se l - vis' (2.30) 

( -Co) _ soJL _I(U ) 
sb l - vis' (2.31) 
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whereL -I is the adjoint of(L +)-1 with respect to the bilin
ear form defined by (1.8). Finally the evolution equations 
(1.11) for n = 2m + 1 andp = 2k are 

(U
I

) _ JL m(U ) 
VI - vis' (

U
I

) = soJL _ (k + II(U ), 
VI vis 

so#O. (2.32) 

The generalIST -solvable NEE related to the spectral opera
tor U is obtained by taking a linear combination of these 
equations with arbitrary time-dependent coefficients. 

III. CANONICAL STRUCTURE 

The tools described and developed in Ref. 17 can now 
be applied for the set of NEE's (2.32) to derive the properties 
of Land L - 1 and to exhibit the canonical structure of these 
equations. 

The operator J defined by (2.29) is skew symmetric with 
respect to the bilinear form (1.8) 

J+ = -J, (3.1) 

and the bracket (a being a contravariant field of Tq and{3 and 
y covariant fields of T:) 

{a,{3,y} = (a,J'[J{3 ]y) (3.2) 

satisfies the Jacobi identity 
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{a"B,y} + {B,y,a} + {y,a"B} = o. (3.3) 

Then J is called a cosymplectic operator and can be used to 
define a Poisson bracket for any two functionals F and G: 
M-Cvia 

{FG} = (DF J DG) 
, Dq' Dq' 

(3.4) 

which is skew symmetric and satisfies the Jacobi identity. 
Now J and L satisfy the first coupling condition 

JL = L + J, (3.5) 

and consequently also J and L - I. 

Moreover we can prove (directly or by using results of 
Ref. 4) that L + is a Nijenhuis operator (or hereditary sym
metry), that is, 

(3.6) 

is symmetric with respect to any a"BETq • Now, starting from 
(3.6) and using the identity 

L +'[a) = - L +(M +'[a))L +, (3.7) 

which immediately follows from (2.28) [for simplicity ofno
tations we use againM + insteadof(L +)-1] one obtains from 
(3.6) that 

L +2(M+M+'[D)y-M+'[M+D]y), (3.8a) 

with 

D = L +a, y = L +{3, (3.8b) 

is symmetric in D,y, that is, M + [or (L +)-1] is a Nijenhuis 
operator. 

Applying now the results of Ref. 4 to the reduced opera
tor L +, it is easy to prove that L + and J also satisfy the 
second coupling condition: 

(a,L +'[y)J{3) - (a,L +'[J{3 )y) + ({3,L +'[Ja)y) 

+ ({3,L + J'[y)a) - ({3,J'[L +y)a) = O. (3.9) 

The above property together with identity (3.7) and the fact 
that (L +) - I is a Nijenhuis operator also give that (L +) - I and 
J satisfy the second coupling condition and consequently L + 

and (L +) - I are strong symmetries 11.17 for all the equations of 
the hierarchies (2.32) and they generate infinitely many com
muting symmetries. 

Therefore, according to the general theorem by Ma
gri, II since 

I( q) = (~/J L +/( q), (L +)-I/( q) 

are potentials operators [see (1.10)] the NEE's in (2.32) are 
Hamiltonian systems with commuting flows. They can be 
written as follows: 

DHI+) 
q,=J __ m_, 

Dq 

DH~-) 
q, =J---, 

Dq 

where 
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q = (~), ( D) D DU 

Dq = ~+~~' 
DV s EJs 
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(3.10) 

(3.11) 

J is given in (2.29) and H ~~J are convenient functionals to be 
determined. 

However, by using the general method proposed in Ref. 
17, it is possible to derive the Hamiltonian structure of the 
considered NEE's without using the hereditary symmetry 
property of L + and (L +) -I, and to relate explicitly the Ham
iltonians in (3.9) to the infinitely many conserved quantities 
for the hierarchy. 

In the next section we shall show that a convenient con
served quantity H (q;A ) can be asymptotically expanded at 
the same time in powers of A - I and A: 

00 

H(q;A)= I A ~nH~±)(q), A ~I-o. (3.12) 
n=O 

Also, that its gradient DH I Dq satisfies the eigenvalue spectral 
equation for the operator L: 

L DH = A 2 DH _ iA (u ). 
Dq Dq vis 

(3.13) 

By inserting successively the two asymptotic expan
sions (3.12) into (3.13) and by equating to zero the coeffi
cients of successive powers of A-I and A we get the following 
recursion relations: 

DHb±) =0, DHi±) = +iLI-1±1)/2(U ) 
Dq Dq - vis ' 

DH I ± ) DH I ± ) 
n+2 =L ±I __ n_ 

Dq Dq 

These can be explicitly solved furnishing 

DHI±) 
__ 2_n_=0 

Dq , 
2m ± 1 = + iL ± m U • 

DHI±) ( ) 
Dq - vis 

(3.14) 

(3.15) 

(3.16) 

The above equations prove the Hamiltonian character 
of the considered NEE's and relate the Hamiltonians to the 
conserved quantities generated by H ( q;A ). 

The generaliST -solvable NEE related to the spectral 
operator U, in the reduced case so" = so,x = 0, can be written 
as follows: 

(U,) = i f-l) + )JLj (u ) + ± f-l)-lJ 
v, j~O vis j~O 

k DHI-) +." I-)J 2j+1 
I £.. f-lj , 
j= 0 Dq 

(3.17) 

where the coefficients f-l) ± ) are arbitrary functions of t. 
In the next section we shall show that the conserved 

densities related to the H ~ ± ) are local and, therefore, it fol
lows that the NEE'S in (3.17) are purely differential. Notice 
that, for the Zakharov-Shabat case7 within the reduction 
r = - q (which leads to the sine-Gordon equation in light
cone coordinates), an explicit inverse of the recursion opera
tor has been obtained8 but the hierarchy of NEE's is a set of 
integrodifferential equations (except for the first one). The 
same remark can be made about the Kaup-Newell spectral 
problem for which an explicit inverse still exists but the 
NEE's are also integrodifferential. 19,20 Thus it seems that the 
case considered here is the first showing this nice property. 
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IV. CONSERVED DENSITIES 

Applying the general procedure l6 in the way used in 
Ref. 17 we transform the spectral problem (1.5) into a Riccati 
equation for the projective variable 

,q'(x,t) = t/!2(X,t )/t/!I(x,t), (4.1) 

where (t/!I,t/!2)T is a solution of( 1.5). The equation for ,q' then 
reads 

,q' x = [u - (i/A )u] + 2[iA - (ilA )s],q' 

- [u + (ilA )U],q'2. 

Given a solution ,q' of (4.2), the quantity 

JY' = - iA + (i/A)S + [u + (ilA )u],q' 

is a conserved density and, consequently, 

J
+ 00 

H = _ 00 dx JY'(x,t ) 

(4.2) 

(4.3) 

(4.4) 

is a constant of the motion for all NEE's obtained by solving 
the Lax-pair representation (1.3) for any choice of the spec
tral operator V including the nonreduced case. 

To derive explicit A-independent conserved densities 
we look for asymptotic expansions aSA-+ 00 and ..1.--0 for the 
solution ,q'1 ± I of (4.2): 

00 00 

,q'1 + I = I A - n ,q'~ + I, ,q'1 - I = I A n,q'~ - I, (4.5) 
n=O n=O 

which are both allowed by the structure of the Riccati equa
tion (4.2).9.21 Inserting (4.5) into (4.2) one gets the following 
recursion relations for ,q'1 ± I: 

,q'b + 1= 0, ,q'~ + 1= (iI2)u, ,q'~ + 1= !(ux + 2u), (4.6a) 

,q'~+1 
. . n-I 

- ~ ,q'1 + I + s,q'1 + I - ~ U " ,q'1 + 1,q'1 + I n-Ix n-2 £.. k n-k-I 
2' 2 k=O 

n-2 
+ .!!... " m'1 + I m'1 + I '3 

2 
£.. .;z k .;z n-k-2' n", 

k=O 
(4.6b) 

,q'b-I=~, ,q'~_I=_I_' [,q'o.>: +u(,q'~ -1)], (4.7a) 
s + So 2s0 

m'1 - I = J... ( m'1 - I + iu ~ ,q'1 - I m'1 - I .;zn+1 .;zn_1 2 £.. k .;zn_k 
So k=O 

_.!!... ~ m'1 - I m'1 - I + i....- m'1 - I) 2 
2 

£.. .;z k .;z n - k + 1 2.;z n.x , n>. 
k=1 

(4.7b) 

Then, we define the sequences JV1n ± I of A-independent con
served densities through 

00 

JV1 + 1= - iA. + I A - n JV1
n 
+ I, (4.8) 

n=O 

(4.9) 

and, using (4.3) and the recursion relations for the ,q'~. ± I, 
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JV10 + 1= 0, JV11 + I = is + (iI2)u 2, 

JV1n + I = u,q'~ + I + iu,q'~ ~I I' n>2, 

JV10 - 1= - HsJ(s + so)], 

JV1n - I = u,q'~ - I + iu,q'~ ~I I' n> 1. 
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(4. lOa) 

(4. lOb) 

(4.11a) 

(4.11b) 

Note that, up to this point, we have not used the reduc
tion condition SO,t = so.x = 0. Therefore the two sets 
{JV1n ± I} furnish the conserved densities for reduced and 
nonreduced NEE's related to the spectral operator U. In 
order to relate the conserv«l quantities JV1n ± I to the Hamil
tonians of the NEE's (3.17) we need to prove that both 
8H I + 1/8q and 8H I - I 18q are eigenfunctions of the operator 
L via Eq. (3.13). 

For 8H I + 1/8q this can be easily obtained from the cor
responding eigenvalue equation derived in Ref. 4 for the 
nonreduced case. One only needs to check that the asympto
tic behavior 

8HI+I -+iA -I(~), as Ixl-+oo, 
8r 1 

(4.12) 

where 

i.- (~i.i.)T 
8r - 8u '8u'as ' 

(4.13) 

derived in Ref. 4 [note the misprint in formula (5.8) of Ref. 4], 
does not change if one imposes on u, u, and s the asymptotic 
behaviors given in (2.13) and (2.14). 

Then 8H I - 1/8q will also be eigenfunction of L if one 
can prove that 

8HI+I 8HI-I 
--=--, (4.14) 

8q 8q 
or that HI + I = HI - I. To that purpose it is convenient to go 
back to the nonreduced case (where the fields u, u, and s are 
independent) and prove that 

8HI+I 8HI-I 
----- (4.15) 8r - 8r . 

Since it has been proved4 that 8HI ± 1/8r obeys to the first
order linear matrix differential equation 

(
8HI±I) = (_ U -~(A 2 -s) 

8r x ,,~ -2 
-~ U 

-2U) 
2u 

° 8HI±1 
x--

8r ' 

a sufficient condition for (4.15) is that 8HI + 1/8r and 

(4.16) 

8HI -1/8rpossess the same behaviors as Ixl-+oo. From (4.9) 
and (4.4) one gets 

8H I - I i (0) 00 n 8H ~ - I 
--=- -u + I A --, 

8r ASo n = 0 8r 
s 

(4.17) 

and one can easily verify that 8H ~ - 1/8r goes asymptotically 
to zero for u, u, and s obeying the boundary conditions (4.13), 
(4.14), and, consequently, derive that (4.15), and thus (4.14), 
hold. 

To end this section we list below the first two nonzero 
Hamiltonians in the reduced case, 

(4.18) 
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iH\ - I = dx S - So + _U2 + - -...:.. -...:.. + 4u , J + 00 [ 1 1 v (V)] 
-00 2 8 S S 

and two examples ofIST-so1vable NEE's (3.17): (i) 
m = k = 0, Jlb + I = 1, Jlb - I = so, Jl) ± I = 0 U> 1), 

(4.19) 

u, = Ux + 4v, (4.20) 

V, = - Vx - 4us; (4.21) 

and (ii) m =k= 1,Jl\+I= 1,Jl\-I= -S6, 
JlJ± 1= 0 U = OJ>2), 

u, = - !uxxx + ~U2ux + 3uxs -lvx(sx/s), (4.22) 

1 (Vx) 3 (Vx ) V, = --s - +-uvx -+ 2u 
4 Sxx 4 s 

V. THE SINE-GORDON EQUATION AND 
GENERALIZATIONS 

(4.23) 

We are now able to examine the sine-Gordon equation 
(SG) (1.1) within the scheme developed in the preceeding 
sections. Indeed, introducing the new function w(x,t ) via 

V = iso sin w, (5.1) 

s = So cos w, (5.2) 

Eq. (4.21) gives u(x,t ) in terms of w(x,t ) through 

u = - (i/4)(wx + w,), (5.3) 

and thus (4.20) reads 

Wtt - Wxx + 16s0 sin w = 0 (5.4) 

[which is (1.1) for So = -h]. Note that (1.5) is then equiva
lent to (1.4) via a constant gauge transformation. 

So we see that the sine-Gordon equation in laboratory 
coordinates appears as a member of the (purely differential) 
hierarchy of NEE's (3.17) under the choice (5.1) and (5.2) for 
the solution of the reduction (1.7). The first two conserved 
quantities H \ ± I can be connected to the physical conserved 
quantities for the sine-Gordon equation9

,1O: the momentum 
p and the energy E given by 

J
+OO 

P = _ '" wxw, dx, (5.5) 

E = - (U7 + - w; + 1 - cos w dx. f +OO(l 1 ) 
_ 00 2 2 

(5.6) 

In fact, (4.18) and (4.19) give for So =-h: 

-iH\+I= __ l_(E+p), 
16 

(5.7) 

iHI-I = __ I_(E_p) 
1 16 

(5.8) 

(note that, as for E, see Ref. 10, H \ + I has to be renormalized 
by defining ~lii I = ~l + I - iso). 

A "second-order sine-Gordon equation" can be ob
tained by decoupling the two equations (4.22) and (4.23) by 
use of(5.1) and (5.2). Equation (4.23) then becomes 
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2 i I 2 1 Wxxx 2 w, 0 
u + - Wx U - ---{j)x + 2 cos w - - -- - - - = , 

2 12 6 (ux 3 Wx 
(5.9) 

which can be explicitly solved for u in terms of w(x,t ). Insert
ing the solution in (4.22) we get a second-order sine-Gordon 
equation: 

1 A -1 -1 A 3 2 - 311 2 
- 2wx, ± LI, - gWxxxx + 4L1xxx + l>4wxwxx + TI""x{Ux 

3 + A 3 2 . - iWxx cos W _ Llx cos (U - i{Ux sm w, 
(5.10) 

where 

L1 2 = 8 cos w - i2w; - ~ (wxxx/{Ux) - ~((U,Iwx). (5.11) 

Let us now make two remarks. 
(i) Although higher-order SG equations [that is, any 

equation of the hierarchy (3.17) for V and s given by (5.1) and 
(5.2)] may not be an explicit one-field equation, the inverse 
spectral transform allows us to give explicit soliton solu
tions. However, one would need to solve the direct and in
verse spectral problems for (1.5) which will be the purpose of 
a future work. 

(ii) The transformation (5.1),(5.2) explicitly decouples 
both equations (4.20) and (4.21) and (4.22) and (4.23) but fur
nishes different relations between u and (u. In general it is not 
possible to decouple the equations explicitly. That explains 
why, in order to get a hierarchy containing the sine-Gordon 
equation, one needs to study NEE's with two coupled fields. 

A generalized 1ST -solvable sine-Gordon equation is 
obtained by choosing k = m = 0 in (3.17) and 

Jlo+(t)=a(t), Jlb-l(t)=so,B(t), Jlj±I=O U>l), (5.12) 

and by setting 

v = iso sin {u, s = So cos {u. (5.13) 

Then one gets the following relation that solves one of the 
two coupled NEE's (for a +,B #0): 

u = - [i/2(a +,B)](w, +,B{Uxl. (5.14) 

Also one gets the equation 

{Utt - a,B {Uxx - (a -,B ){UX, + 4so(a +,B )2sin {U 

= (a + ,B }f(x,t ), 

f(x,t) = - (_1 ) (u, - (~,B) W x ' 
a+,B, a+, 

(5.15) 

(5.16) 

which is an exactly solvable equation for any choice of the 
arbitrary functions a(t ) and,B (t ). The one-soliton solution of 
(5.15) can be obtained either by using the Backlund transfor
mation (see Sec. VI) or else from the standard kink solution 
of the sine-Gordon equation by noticing that, under the 
change of coordinates, 

(x,t )~(y(x,t ),r(x,t)), (5.17a) 

(5.17b) 

(5.17c) 
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Eq. (5.15) reduces to 

W TT -Wyy + 16sosinw=0. (5.18) 

Then the one solition solution of (5.15) can be written 

w(x,t) = 4 tan - I exp [ ~ (1 + l~o )x 

+ ~ L d;( at;) - l~o P(;))], (5.19) 

where k is an arbitrary parameter (it is the parameter of the 
Backlund transformation). 

Although the solutions of the generalized sine-Gordon 
equation (5. 15) can be obtained from those of (5.18) through 
the mapping (5.17), it may be useful, depending on the 
choices of a(t ) and P (t ), to obtain directly the solutions of 
(5.15) (for instance to study the asymptotic behaviors in tor 
x) or to look at the evolution of the spectral data associated 
with solutions of (5.15) instead of (5.18), more especially if 
the equation (5.15), understood as a perturbed sine-Gordon 
equation,2.22.23 has a physical interest. 

VI. BAcKLUND TRANSFORMATION AND SOLITON 
SOLUTIONS 

The Backlund transformation (BT) for the SG equation 
has been the first one discovered for a solition equation, just 
one century ago. 24 

Afterwards the BT has been found for many different 
hierarchies ofIST-solvable NEE's related to many different 
spectral problems. 

The resulting common feature is that the so-called x
component of the BT has a universal character, in the sense 
that it holds, unchanged in form, for all the equations in the 
hierarchy, while the so-called t-component has a specific 
form for any considered equation. 

However, in the case considered in this paper, the x
component of the BT for the SG equation found by Back
lund is not the x-component ofthe BT for all the equations in 
the hierarchy described in the previous sections, because the 
equations in the hierarchy couple two independent fields, 
while the SG equation is a one-field evolution equation. 

Therefore, we need to find explicitly the BT for the hier
archy and to verify that in the specific case ofSG equation it 
reduces to the already known BT. 

Let us consider a nonsingular 2 X 2 matrix gauge trans
formation B of the eigenmatrix IP in the spectral equation 
(1.5) and (1.6), 

W = BIP. (6.1) 

Here B = B ( q,q;A, ) is considered as a functional of 

of the transformed field 

and of the spectral parameter ..1,. Wis required to satisfy the 
spectral equations 
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Wx = VW, (6.2) 

W, = vW, (6.3) 

with spectral operators V and V obtained by substituting q 
with q in U and V. 

It is easy to verify that B must satisfy the matrix differ
ential equations 

Bx = VB-BU, 

B, = VB-BV. 

By cross differentiating one gets 

Bx, -B,x =(U, - Vx + [V,V])B 

- B (U, - Vx + [U, V ]), 

(6.4) 

(6.5) 

(6.6) 

and, consequently, if the matrix B is a solution of the set of 
equations (6.4) and (6.5) and q is a solution of the evolution 
equation defined by the Lax representation 

U, - Vx + [U, V] = 0, (6.7) 

then q is a solution of the evolution equation induced by 

(6.8) 

The gauge B is called a Backlund gauge and it is said to 
generate the x-component of the BT via Eq. (6.4) and the t
component of the BT via Eq. (6.5). 

To find the explicit form of B one must first solve Eq. 
(6.4) and successively determine the time evolution of the 
constants of integration by imposing that the resulting B 
asymptotically satisfy Eq. (6.5), say at x = - 00, 

B~-I= VI-IBI-I_BI-IVI-I. (6.9) 

In Ref. 20 it has been proved that this procedure 
uniquely determines the Backlund gauge B. 

Let us choose B to have a simple pole at A, = 00, 

B (q,q;A,) = Bo( q,qjA, + B I( q,q), (6.10) 

with 

Bj=ap3+PpI+rp2+0jI (i=0,1). (6.11) 

By equating to zero the coefficients of A, and A, 0 in (6.4) 
and by introducing for convenience aj ,/3j forj = - 1,2 and 
rj,Oj forj = - 1,2,3 we get the recursion relations 

a -I = P _ I = r -I = 0 -I = 0, 

ajx =i(u+u)rj +irs-s)Oj_1 +i(v+v)/3j_J' 

(6.12a) 

(6.12b) 

Pjx = -2rj+1 +(u-u)Oj +rs+s)rj_1 -i(v+v)aj_ l , 

(6. 12c) 

rjX = 2/3j+ J - i(u + u)aj - rs +s)/3j_1 - (v - v)Oj_I' 
(6.12d) 

OjX = (u - u)/3j + irs -s)aj _ J - (v - v)rj-l> 

(j = 0,1,2), 

together with the constraints 

a 2 =/32 = 0, 

rj = OJ = ° (j = 2,3). 

(6.12e) 

(6.13a) 

(6.13b) 

The constraints a 2 = 0, r2 = 0, P3 = ° via Eqs. (6.12b) 
and (6.12d) and the constraints O2 = 0, P2 = 0, r = ° via Eqs. 
(6.12c) and (6. 12e) furnish, respectively, the equations 
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15 1 = - [(V + v)/(S - s)] /31' 

15 1 = - [(S+s)/(V-V)]/3I' 

and the equations 

(6. 14a) 

(6. 14b) 

a l = - [i(v - v)/(S - s)] rl' 

a l = - i[(S + s)I(v + v)] rl' 

If one excludes the uninteresting case 

(6.15a) 

(6.15b) 

a l =/31 = rl = 151 = 0, the two sets of equations arecompa
tible iff S6 = S6. We choose So = So. 

Then, the recursion relations (6.12) can be explicitly 
solved and one gets the Bj's (j = 0,1) and four differential 
equations in the x-variable. 

In order to get the right number of differential equa
tions (one for any independent field variable) one must 
choose a o = 0 or Do = O. 

In the first case (ao = 0) one gets the following Back
lund gauge: 

B = Do(AI _l.... ~ - v (u - u)u3 + ~(u - U)U2),(6.16) 
2 S -s 2 

with Do an arbitrary function of t, and the two differential 
equations 

[[(v - v)l(S - s)](u - u)lx = - (u2 - u2) - 2(S - s), 
(6.17) 

(u - u)x = - [(v - v)/(S - s)](u2 - u2) - 2(v - v), 
(6.18) 

which are to be interpreted as the x-component of the 
searched BT. 

In the second case (Do = 0) one gets a BT that can be 
obtained by composing the previous BT with the trivial BT 
defined by v- - v, u- - u. 

It is convenient to express v,S and v,s in terms of only 
one field (i) and W, respectively, 

v = iso sin (i), 

S = So cos (i), 

V = iso sm (i), 

S = So cos w, 

(6.19a) 

(6.19b) 

(6.20a) 

(6.20b) 

and to rewrite Eqs. (6.17) and (6.18) as follows: 

(w x + (i)x)(u - u) = 2i(u2 
- u2

) 

8 
.. w+(i) . W-(i) 

- ISo sm --- sm ---, 
2 2 

- '(-2 2) W + (i) u - u = I U - u cot ---
x x 2 

4
. W + (i) . W - (i) 

- ISo cos --- sm ---. 
2 2 

From these two equations it is easy to obtain 

[(u - u)lsin [(w + cu)l2]]x = 0. 

(6.21) 

(6.22) 

(6.23) 

Therefore, the x-component of the BT is given by the 
explicitly integrated equation 

u - u = - i(k /2)sin [(w + (i))/2], (6.24) 

with k an arbitrary function of t, and by the differential equa
tion in W, 

Wx + (i)x = 2i(u + u) + 16(solk )sin[(w - (i))l2]. (6.25) 
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The time behaviors of k and Do are determined by insert
ing into (6.9) the asymptotic expression of B at x = - 00 

BI-I = DeAl + (i/4)Doku3, (6.26) 

which is obtained by using the asymptotic behaviors 
U,U,(i),W_O as Ixl-oo and Eq. (6.24). 

In order to compute the asymptotic behavior of Vat 
x = - 00, let us note that, by using (2.30), (2.20) and (2.31), 
(2.23), the dj and aj in Eqs. (2.21) and (2.24) can be cast into 
the form 

dj = - if [(U v/s)JL U-
I I/2e/J], 

j = 2,4, ... ,2m, (6.27) 

and 

aj = -iSI[(L-· I (~/JrJL -j/2(~/J], 
j = 2,4, ... ,p. (6.28) 

From (3.16) we get for dj and aj at x = - 00, 

d_-~ __ I_J __ j_ = _~{H(+IHI+I} . (DH I + I 8H I + I) . 
} 2 8q' oq 2 I'}' 

x--+ - 00 (j = 2,4, ... ,2m), (6.29) 

i (OH \ - I J DH j = II ) a
j

_ - -So ---, = 
2 oq oq 

i { I_I I-I} - -So HI ,H j 1 , 2 -

x_ - 00 (j = 2,4, ... ,p), (6.30) 

and, consequently, because the Hamiltonians HI ± I are in 
involution with respect to the Poisson bracket! ' I, dj and 
aj-D as x- - 00 for any jl=O. 

The dj and aj in V have, of course, the same asymptotic 
value. 

From the recursion relations (2.18), (2.20) and (2.19), 
(2.23) one also obtains that.!} ,ej and cj ,bj , together with their 
counterparts in V, asymptotically vanish for any j. 

Then, VI- I and Vi -- I can be easily computed and, by 
taking into account Eq. (6.9) and So = So, we finally derive 
that Do and k must be independent on t. 

This result can be extended to any different choice of 
the constants of integration in the recursion relations 
(2.18)...;.-(2.25) and, therefore, to the more general NEE's in 
(3.17). 

In order to get the explicit form of the t-component of 
the BT, we equate the coefficients of A a in (6.5). It results that 

_ 4i w+(i) -
(i), + (i), =-csc---Tr[u3(Wp - Wp)] 

k 2 

+ iTr[udVn + Vn)], (6.31) 

_ 4i W + (i) -
(i), + (i), = - sec ---Tr[ u 2(Wp - Wp )] 

k 2 

+ iTr[u1(Vn + Vn)]· (6.32) 

Consistency requires that these two equations be depen
dent. Any of them can be considered as the first differential 
equation of the t-component of the BT. 

The previously obtained equation 

k, =0 (6.33) 
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must be considered as the second differential equation of the 
t-component of the BT. 

The composition of two Backlund gauges 
B ( q3,ql;A;k2)B ( QI,qo;A;kl)-or for short B ~l B \~-is a 
Backlund gauge that transforms the field qo into Q3' This can 
be verified by computing directly its x- and t-derivatives by 
using Eqs. (6.4) and (6.5) written successively for B ~i and 
B (1) 

10' 

Moreover, the Backlund gauges satisfy the so-called 
permutability theorem 

(6.34) 

Because the Backlund gauges are uniquely determined 
by their asymptotic values at x = - 00, the theorem (6.34) 
follows from the corresponding trivial identity at x = - 00. 

From Eq. (6.24) written successively for the BT's, 
B j21, B \~, B W, and B ~zci, and the trivial identity, 
(u 3 - utl + (u l - uo) = (u 3 - uz) + (uz - uo), one gets the 
double BT for (V 

(6.35) 

which furnishes (V3 in terms of (VI' (Vz, and (vo by means of 
pure algebraic and elementary transcendental operations. 

From the same equation (6.24) one also gets the double 
BT for u, 

[
1 + (kl + kz)Z tanZ (VI - (Vz](U

3 
- uo) 

kl - kz 4 

_ (1 + t 2 (VI - (V2) kl + kz ( ) - an U I -U2 , 
4 kl - kz 

(6.36) 

which furnishes U 3 in terms of uo, U I, U z, (VI' and (Vz. 
The found BT and double BT in the SG case reduce, as 

expected, to the well-known BT discovered by Backlundz4 

and the double BT discovered by Bianchi. 25 

The two differential equations in the x-variable (6.24) 
and (6.25), solved for U = 0 and (V = 0, furnish the one-soli
ton solution for all the equations in the hierarchy 

W = 4 tan-I exp [~ (1 + 1:~o)x + tp(k,t)]. (6.37) 

The dispersion function tp(k,t ) must be determined by 
inserting the found solution w into the differential equation 
in the t-variable (6.31) or (6.32). 

For instance for the generalized SG equation (5.15) one 
gets 

(1 + 1:~0 )Wx - (a - 1:~0 f3 )wt = 0, (6.38) 

and, consequently, the one-solition solution (5.19). 
Finally, let us note that, because the double BT for (V 

(6.35) is the same as for the SG equation, the form of the N
soliton solution is the same for all the equations in the hierar
chy. Only the dispersion functions tp(k,t ) depend sensitively 
on the specific chosen equation. 

VII. THE CASE v = s, LIOUVILLE EQUATION AND 
GENERALIZATIONS 

Now we are to examine briefly the class of reductions 
corresponding to So = 0 in (1.7) and we choose for simplicity 
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S = v (the case s = - v can be studied through the same pro
cedure). As noted before, this reduction has already been 
studied6 in the case where Wj = 0 for allj in (1.6) and a 
degenerated Hamiltonian structure has been found. 

Using the results obtained in the previous sections one 
first realizes that the operator L + given by (2.22) possesses 
the following properties in the case v = s where it is written 
Lo+ . 

(i) It is defined and can be factorized under the form 

Lo = JoAo' 

with 

Jo = (D 2V) 
- 2v 0 ' 

Ao= (~ ~) ~~ 

(7.1) 

(7.2) 

I) 1 (D 
I 4-2 ~) . 

(ii) It is singular since, for any asymptotically vanishing 
functionf(x) we have 

L 0+ ( _ !f _ Uf) = o. (7.3) 

Thus, in opposition to the case when So =/= 0, the operator L 0+ 

no longer is invertible and the class of evolution equations 
that one would obtain for p> 1 in (1.6) would not be local. So 
we restrict our study to the case p = 0 and obtain the follow
ing class of solvable NEE's: 

(7.4) 

where J..lj and v are arbitrary functions of t,Lo is the adjoint of 
Lo+, and 

N- ( 1 
- (l/2v)D 

(1/2v)Dv ) 
1 - (l/4v)D(l/v)Dv ' 

(7.5) 

for the asymptotic behaviors 

u-o, v-a=/=O (ax = at = 0), for Ixl-oo. (7.6) 

Note that for a = 0 and v=/=O, although (7.4) cannot be writ
ten in the standard canonical form, 

can still be defined since it reads 

(7.7) 

Moreover, the relation (3.16) for the ( + ) sign still holds and 
thus all the equations in the hierarchy (7.4) are Hamiltonian 
systems (with commuting flows), that is, 

(
U t ) . m oH~tJI. OH\-I 

= -I L J..lJo +IVJo---' 
Vt j~O oQ oq 

(7.8) 

where the Hamiltonians H ~ + ) and H \ - ) are obtained from 
those given in Sec. IV by making v = s. 

Another important result is that, in the case v = s, and 
p = 0, we do not have to choose the particular solution (2.15) 
for ao(x,t). Indeed, the relations (2.4) and (2.5) are automati
cally consistent for any ao and thus, the hierarchy (7.4) can be 
generalized to involve an arbitrary function of x and t as 
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(7.9) 

(note that the right-hand side vector functional of ao belongs 
to the null space of L 0+ and of Ao). As an instance of such 
new NEE we set 

m = 0, flo = 1, 

and (7.9) writes 

U t = U X + 2v + 2iao, 

vt = - 2uv - iao,x - 2iuao. 

(7.10) 

(7.11a) 

(7. lIb) 

The above set of couplet NEE's can be cast into an equivalent 
system of two Riccati equations: 

u2 + U t - 2iao = /(x + f), 
u2 + Ux + 2v =/(x + f), 

where/is an arbitrary function of (x + f). 

(7.12a) 

(7.12b) 

Any specific functions of u, v, and ao can be arbitrarily 
given. If ao (or v) is arbitrarily chosen, the problem of finding 
the solution of(7.11) reduces, via (7.12), to a linear problem. 
Otherwise, the system can be solved by using the 1ST meth
od. 

To illustrate the found system of solvable NEE, let us 
choose the following transformation: 

v(x,f) = il,exp[cp (x,f)], 

ao(x,f) = iv(x,f)[ 1 - 2p(x,f I]. (7.13) 

It decouples (7.11) as follows: 

U = - (l/4p)(cpt - (1 - 2p)cpx + 2px)' (7.14) 

CPu + (1 - 2p)cpxx + 2(p - I)CPxt + p2 exp[cp] 

= (l/p)(Pt -Px)(cpt - CPx + 2px) - 2(Pxt -Pxx)' 
(7.15) 

In the last equation, any specific function of cP and P can be 
arbitrarily chosen. In particular, for P = lone gets the Liou
ville equation for P = ! the equation studied in Refs. 6 and 
23. 
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The quantum nonlinear Schrodinger field with attractive coupling is considered through the 
quantum inverse scattering method. The algebra of scattering data operators is formulated in 
terms of an infinite family of independent boson fields. It is shown that the unitary representation 
induced by the Galilean invariance of the model is equivalent to a direct product of simple 
representations. As a consequence, the quantum solitons tum out to be associated with 
representations describing quantum elementary Galilean particles. The characterization of 
quantum solitons as stable asymptotic fragments arising in the scattering of the fundamental 
bosons of the model is also analyzed. 

PACS numbers: 02.30.Jr, 11.30.Na 

I. INTRODUCTION 

We have recently analyzed some of the nonlinear wave 
equations solvable through the inverse scattering method 
(ISM) from a group-theoretical point of view. 1.2 Our main 
interest was to provide a precise mathematical characteriza
tion of the analogies between solitons and classical particles. 
Classical particles are mathematically described by canoni
cal realizations of invariance Lie groups. Thus we looked for 
a description of the degrees offreedom associated with soli
tons in terms of canonical realizations of Lie groups on fin
ite-dimensional phase spaces. This description was found by 
using the structure of independent degrees of freedom pro
vided by the scattering data variables of the ISM. 

In the last years great progress has been made in study
ing complete integrable quantum models by means of an 
appropriate formulation of the ISM, the so-called quantum 
inverse scattering method (QISM).3-5 The QISM applies to 
the quantum versions of several of the nonlinear wave equa
tions previously solved by the ISM. Moreover, at the quan
tum level some aspects of the ISM acquire a simpler and 
more intuitive meaning.3 In the present paper we will be 
concerned with the quantum nonlinear Schrodinger equa
tion with attractive coupling 

(Ll) 
where !f(x) denotes the one-dimensional boson field verifying 
the canonical commutation relations 

[tft(x),tftlv)] = 0, [tft(x),tftt(y)] = £5(x - y). (1.2) 

This model describes a field of nonrelativistic bosons of mass 
! interacting via the attractive potential c£5 (x - y), in one 
space dimension. The exact integrability of (1.1) was 
proved6

•
7 by means of an explicit diagonalization of the cor

responding Hamiltonian through the use of Bethe ansatz 
solutions.s Nevertheless the rich algebraic structure under
lying this model was revealed by the application of the 
(QISM).9-12 

The quantum nonlinear Schrodinger equation is a Gali
lean-invariant system. The corresponding projective unitary 
representation of the Galilei group comes from a unitary 
representation U of the extended Galilei group 
G = Ig = (0,b,a,u)ER4

). The group law of Gis 

glg2 = (0 1 + O2 + !uib2 

+ ula2,bl + b2,a l + a2 + ul b2,u l + u2 ), (1.3) 

and the representation U is given by 

U(g) = exp(iOM)exp(ibH)exp( - iaP)exp( - iuK), (1.4) 

where 

I foo foo 
M = 2 _ 00 dx tftttft, H = _ 00 dx(tft!tftx + ctftttftt#), 

(1.5) 

P = dx tftt( - itftx), K = - - dx tfttxtft. f
oo 1 foo 

-00 2 -00 

The generators M, H, and P represent, respectively, the 
mass, the energy, and the momentum observables. The gen
erator K is equal to - MQ, where Q represents the position 
of the center of mass of the system. These operators satisfy 
the commutation relations 

[M,H] = [M,P] = [M,K] = [H,P] = 0, 
(1.6) 

[H,K] = iP, [P,K] = iM. 

The solutions of (1.1) transform under the action of G ac
cording to 

tft'(t,x)= U (g)!f(t,x) U (g)-I 

= exp [ - (i/2)(0 + !u2t + ux)] !f(t + b,x + ut + a). 
(1.7) 

The classical version ofEq. (1.1) is one of the representa
tive models of the ISM. 13 Its dynamical structure presents 
two basic components which become independent asymp
totically in time, namely, solitons and radiation. A group
theoretical analysis I reveals that the solitons are Galilean 
classical particles and that the radiation may be identified 
with a classical free Schrodinger field. On the other hand, the 
quantum nonlinear Schrodinger field (1.1) may be described 
in terms of an infinite spectrum of excitation quanta of mo
mentump and energy6.7 

p2/n - (c2/12)(n 3 
- n), n = 1,2,... . (1.8) 

For n = 1 these quanta coincide with the fundamental bo
sons of mass!. For n > 1 they correspond to bound states of n 
fundamental bosons. 
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In this paper we use the QISM to analyze the structure 
of the representation U associated with the Galilean invar
iance of(1.1). We have two main objectives. The first is to 
provide a characterization of the excitation quanta of (1.1) in 
terms of quantum Galilean particles. The second aim is to 
clarify the correspondence between the dynamical objects 
arising in the classical and the quantum versions of the non
linear Schrodinger field. Our analysis is based on the set of 
scattering data operators introduced by Gockeler. II In this 
way, we find that the quantum nonlinear Schrodinger field 
may be described in terms of an infinite family of indepen
dent boson fields tPn(n = 1,2, ... ). Then we use these fields to 
decompose the representation U into a direct product of sim
ple representations of the extended Galilei group. As a con
sequence it follows that the quanta associated with the fields 
tPn are characterized as quantum elementary Galilean parti
clesofmass~ nandinternalenergy - (cz/12)(n3 - n). These 
results are seen to be in complete agreement with the predic
tions of quasiclassical quantization methods. In particular, 
we analyze in detail the identification of the radiation quanta 
with the lowest soliton quanta. 3 Thus, we find that the states 
obtained by repeated application of the operators tP ~ to the 
vacuum vector are the quantum analogs of the classical pure 
soliton solutions. This property leads to the characterization 
of the quantum solitons as the quanta of the fields tP n' In 
order to get a deeper understanding of the quantum solitons, 
we provide a method for obtaining the wave functions in 
configuration space for multisoliton states. It allows us to 
describe quantum solitons in terms of the asymptotic frag
ments arising in the scattering processes of the fundamental 
bosons of (1.1). Finally, we investigate the quantum model 

i¢, = - ¢xx + 2c¢t¢¢ - eEx¢, (1.9) 

which describes the interaction of the nonlinear Schrodinger 
field with a uniform constant electric field. By using a simple 
transformation l4 it is proved that (1.9) is exactly integrable. 
We prove also that quantum solitons of mass! n react to the 
electric field as charged particles with charge ne. 

II. QISM AND SCATTERING DATA OPERATORS 

A. The auxiliary spectral problem 

The starting point of the QISM for solving (1.1) is an 
operator version of the Zakharov-Shabat spectral problem II 

~ VI + ikvl - !=Cvz¢(x) = 0, ax 
(2.1) 

Here k is the spectral parameter and Vi (k,x) (i = 1,2) are nor
mal ordered operator functionals of the fields ¢ and ¢ t. Let 
us denote by tP (k,x) the Jost solution of (2.1) verifying 

lim exp(ikxlT3)q1 (k,x) = (1). (2.2) x __ 00 0 

Equations (2.1) and condition (2.2) are equivalent to the inte
gral equations 

1736 

q:>1(k,x) = e- ikx +!=C J~ 00 dy e-ik(X-Y)q:>z(k,y)¢(y), 

(2.3a) 
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By iterating Eqs. (2.3) we may generate series expansions for 
q:>i(k,x) (i = 1,2) whose terms are Wick monomials of the 
fields ¢ and ¢t. For 1m k"~0 it follows that the kernels of 
these Wick monomials are bounded and that the corre
sponding expressions for the components of q:> are well de
fined as quadratic forms on a suitable domain of the Fock 
space. Following the same procedure as in the classical case, 
we define two scattering data operators 

(A (k)). . \.B (k) = !~n: exp(lkxlT3 )q:> (k,x). (2.4) 

Through the operator expression for q:>(k,x) and (3.4) one 
finds that A (k ) and B (k ) are well-defined quadratic forms for 
1m k"~0 and 1m k = 0, respectively. Moreover, one finds the 
following commutation relations II: 

[A (kl),A (kz)] = [A (kd,At(k2)] = [B (kl),B (k2)] =0, 
(2.5a) 

A t(k )B (k ) = 2kl - 2k2 - ic B (k )A t(k ) (2.5b) 
I 2 2kl _ 2k2 _ iO 2 I , 

Bt(k)A t(k ) = 2kl - 2k2 - ic A t(k )Bt(k) (2.5c) 
2 I 2kl _ 2k2 _ iO I 2 , 

B t(kdB (k2) = - 1Tco(kl - kz)A t(kM (k l ) 

( 
2kl - 2kz - iC) 

+ 2k I - 2kz - iO 

X (2kl - 2kz + ~c) B (kz)B t(kd. (2.5d) 
2kl - 2k2 + 10 

The operators [A (k ),B (k ):kElR J provide a complete descrip
tion of the quantum nonlinear Schrodinger field in the repul
sive case (c > 0) (Ref.9). However, in the attractive case addi
tional degrees of freedom are present which require the 
introduction of a wider set of scattering data operators. 

The relevant set of scattering data operators for (1.1) 
was found by Gockeler. II These operators are constructed 
through a suitable analytic continuation of products of the 
operators A (k ) and B (k ). An essential role in Gockeler's 
method is played by the generator K of pure Galilean trans
formations defined in (1.5). This operator satisfies the follow
ing important property: 

exp( - aK)q:> (k,x)exp(aK ) 

= q:> (k + ia/4,x), Imk;;'O, Im(k + ia/4);;.0, (2.6) 

where q:> is the Jost solution of(2.1). An analogous property is 
also satisfied at the classical level I and its proof extends with
out any difficulty for proving (2.6). For each n = 1,2, ... , 
Gockeler defines two scattering data operators 

An(k) = !~ [eXP [C(1 - n)K] 

xft $I(k - ..!..- c(n - j),x)exp [c(n - I)K ] ], 
}~ I 2 

(2.7a) 
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B ! ( - 2k ) = !~~ [ exp [c( 1 - n)K ] 

X Ii $2(k - ..!...- c(n - j),x) 
j= I 2 

Xexp[c(n - 1)K] ], (2.7b) 

where $(k,x) = exp(ikxu3 )qJ (k,x) and kER. The order in the 
products of$; 's involved in Eqs. (2.6) is not important since 
it is verified that [$;(k,x), $; (k',x)] = ° (i = 1,2). Observe 
that by means of a formal application of (2.6), Eqs. (2.7) re
duce to the formal expressions 

An(k)=IiA[k-i~(n+l -j)], 
J= I 2 2 

B!( - 2k) =Ii B [k _ i ~ (n + 1 -i)]. 
J= I 2 2 

(2.8) 

B. Reflection coefficient operators 

The algebraic properties of the scattering data opera
tors adopt their simplest form when expressed in terms of the 
"reflection coefficient operators" defined by 

R !(p) = [21TlcI I/2n] -IB!(p/n) 

X [An( - p/2n)] -I, n = 1,2,00', pER. (2.9) 

This definition differs slightly from the one used by Gock
elerll who setsR !(p) = B !(p) [An( - p/2)] -I. The opera
tors (2.9) satisfy the following simple algebraic relations: 

R!(P)R!'(P')=Snn'(~ - ~:)R~'(P')R!(P)' (2.1Oa) 

Rn(p)R !,(p') = 8nn,8(p - p') 

XS~n,(L - P')R !,(p')Rn(p), 
n n' 

(2.1Ob) 

where the coefficients Snn' are given by 

S ,()= lIS lIS' q+ic(m+m'+I) 
nn q . ( , , 

m = - S m' = - s' q + IC m + m - 1) 

s = (n - 1)/2, s' = (n' - 1)/2. (2.11) 

Note that 

Snn,(q) = Sn'n(q) = S~n'( - q), ISnn' (q)1 = 1. (2.12) 

Equations (2.10) exhibit in a convenient form the algebra of 
the reflection coefficient operators. They may be derived 
from Gockeler's results II by observing that according to the 
formula for the composition of two quantum angular mo
menta, the coefficient Snn' defined in (2.11), may be written 
as 

S () = sII+s' IIj q + ic(m + 1) 
~q , 

j= Is-s'lm= -j q + ic(m - 1) 

which leads to the following two other expressions: 

Snn,(q) = IT q + ic(2a + In - n'1)l2 
a= I q - ic(2a + In - n'1)l2 

(2.13) 

q2 + c2(n + n')2/4 
Snn' (q) = 2 2( ')2/4 q +c n-n 

;; (q - ic(2a - n - n')/2 )2 
X II (2. 14b) 

a=1 q-ic(2a+ln-n'I)/2 ' 

where n = min(n,n'). From (2. 14a) and (2. 14b) the equiv
alence between (2.9) and the relations deduced by Gockeler 
follows at once. 

In addition to (2.10) the reflection coefficient operators 
satisfy the following commutation relations II with the oper
ators M, P, and H defined in (1.5): 

[M,R !(p)] = ! nR !(p), [P,R !(p)] = pR !(p), 

[H,R !(p)] = [p2/n - (c2/12)(n 3 
- n)]R !(p). 

III. ANALYSIS OF THE GALILEAN ACTION 

(2.15a) 

(2.15b) 

A. Galilean generators and scattering data operators 

In order to analyze the unitary representation U of the 
extended Galilei group, we look for the expressions of its 
generators in terms of scattering data variables. They are the 
quantum versions of the trace relations arising in the classi
cal context of the Zakharov-Shabat spectral problem. First, 
let us prove that 

(3.1a) 

(3.1b) 

H = "Lf'" dP(p2 - ~ (n 3 
- n»)R !(p)Rn(p)· 

n>1 -'" n 12 
(3.1c) 

From the algebraic relations (2.10) it is clear that the expres
sions (3.1) for M, P, andH satisfy the commutation relations 
(2.15). On the other hand, the quantum Gel'fand-Levitan 
method I 1.12 for (Ll) shows that the quantum field tP(x) may 
be reconstructed from the operators 
{Rn(p):n = 1,2,00.;pER}. This property implies that Eqs. 
(2.15) determine M, P, and H up to an additive constant. 
Then Eqs. (3.1) follow from (2.15) and the fact that all the 
operators M, P, H, and Rn(p) annihilate the vacuum state. 

The interpretation of Eqs. (3.1) becomes simple when 
we use a realization of the operators Rn in terms of boson 
fields. This kind of realization was first proposed by Grossel5 

in the repulsive case. It is based on the following property of 
boson fields,p (p): 

exp(L'" '" d p' G (q,p'),p t( p'),p (P')),p t( p) 

=,p t(p)exp[G(q,p)] 

xexp(L"'", dp' G(q,p'),p t(p'),p (P'))' (3.2) 

From this property it follows at once that given a family of 
independent boson fields ,pn(P) (n;;;.l) 

[,pn (p),,pn' (p')] = 0, 

X q - ic(2a - n - n')/2 
q + ic(2a - n - n')/2 ' 

(2. 14a) [,pn(P),,p!,(p')] =8nn,8(p-p'), (3.3) 

then the operators 
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R~(P)=tP~(p)lIexp[f'" dp1o(L - P:) 
n;;.1 - '" n n 

XlnSnn'(~ - ~:)tP!,(pl)tPn,(pl)] (3.4) 

satisfy the algebraic relations (2.10). In addition, (3.4) implies 
that 

(3.5) 

for all n> 1. Therefore, Eq. (3.4) may be inverted and we get 
that 

tP!(P)=R!(p)ITexp[f'" dplO(L - P:) 
n';;.1 - '" n n 

Xln Snn'(~: - ~)R !'(P')Rn'(PI)]. (3.6) 

Equations (3.4) and (3.6) show how to pass from the reflec
tion coefficient operators to a set of independent boson fields 
satisfying the canonical commutation relations (3.3). In 
terms of these boson fields the Galilean generators adopt the 
following form: 

(3,7a) 

(3,7b) 

H = L dp!!..... - - (n 3 
- n) tP ~(P)tPn(P)' f'" (Z c

2 ) 
n;;.1 - '" n 12 

(3.7c) 

1 f'" a K= - L -in dptP!(P)-tPn(P), 
n;;.1 2 - '" ap 

(3.7d) 

The first three formulas are a trivial consequence of Eqs. 
(3.1) and (3.5). To prove (3.7d) we note that from (2.6) and 
(2.7) we have that 

exp( - ivK)Rn(p)exp(ivK) = Rn(P + !nv), (3.8) 

and then from (3.6) it follows that 

exp( - ivK)tPn(p)exp(ivK) = tPn(P + !nv), (3,9) 

which leads at once to (3.7d). 
The expressions (3.7) show that the unitary representa

tion U associated with the Galilean invariance of the nonlin
ear Schrodinger field is equivalent to a direct product of the 
form 

(3.10) 

where Un (n> 1) is the unitary representation of the extended 
Galilei group associated with a field of free bosons of mass!n 
and internal energy - (cz/12) (n 3 

- n). In this way the fun
damental interacting field ¢(t,x) gives rise to an infinite spec
trum of quantum elementary Galilean particles, 

It is instructive to see how the structure (3.10) of U may 
be derived from the quasiclassical quantization 16 of the Gali
lean realization R associated with the classical version of 
(1.1) (Ref. 1). The realization R is a composition of two Gali
lean invariant systems. One represents the radiation compo
nent and is described by a free classical Schr6dinger field of 
mass!, which upon quantization gives rise to the factor UI in 
(3.10). The other system corresponds to the solitons and is 
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described by a variable number of classical Galilean parti
cles. These classical particles have a phase space with two 
pairs of action-angle variables (p,q) and (m,r). The variable 
m is the mass of the particle and its associated angle variable 
ris defined mod 41T. Moreover these particles have an inter
nal energy equal to - ~ cZm 3

• By applying the standard 
quantization rule to the pair (m,r) we get a spectrum of quan
tum particles with masses! n and internal energies - (cz/ 
12)n3 (n> 1). The presence of the additional term (cz/12)n in 
the quantum internal energy may also be justified by the 
introduction of a further quantum correction. 10,17 Hence, we 
see that the quantization of the solitons produces the whole 
spectrum Un (n > 1) of the unitary representation U. In parti
cular, it must be observed that the factor UI in (3.10) asso
ciated with the quantization of the radiation component ap
pears also as the lowest state of the quantized solitons. 3 This 
suggests that the quantum nonlinear Schr6dinger field in
volves soliton degrees offreedom only. In order to under
stand the meaning of this fact it is necessary to recall the 
properties of classical pure soliton solutions, As it is well 
known 13 these solutions correspond to a scattering data coef
ficient a(k) of the form 

r k-k 
a(k) = IT {,1m k{ >0. (3.11) 

(=I k-kr 

The classical field associated with (3.11) contains r solitons 
whose masses and momenta are related with the zeros of ark ) 
according tol 

(3.12) 

At the quantum level the role of the coefficient a(k ) is played 
by the operator A (k ) defined in (2,4). Moreover, the Hilbert 
space of states is generated by the vectors 

IPln l;PZn2;"';Prnr) 

=tP!,(pIltP!,(pz) .. ·tP!,(Pr)IO), n{>I, (3.13) 
with 10) being the vacuum state. By using (3.4) it follows that 

IPlnl;"';Prnr) = n[O(pj _ Pi) 
1<, n, ni 

+ 0 (Pi _ Pj )Sninj(pj _ Pi )] 
nj nj nj nj 

XR! (PI)···R ~ (PrliO). (3.14) , , 

On the other hand, A (k ) satisfies the following commutation 
relations with the reflection coefficient operators II: 

A(k)R!(p)= k+p/2n+ic[(n + 1)14] R!(p)A(k). 
k + p/2n - ic[(n - 1)14] 

(3.15) 

To get a closer analogy between the classical and the quan
tum equations it is convenient to use the translated operator 
A (k) = A (k - ic/4). Then from (3.14) and (3.15) and taking 
into account that A (k )10) = 10), we have that 

A (k )lPlnl;''';Prnr) = a(k )lPlnl;''';Prnr)' (3.16) 

where 

r k - k{ p{. C 
a(k)= IT ' k{ = - - -/-n{. (3.17) 

1=1 k-kr 2n{ 4 

Observe the complete analogy between (3.17) and the classi-
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cal expressions (3.11) and (3.12). Therefore, in terms ofthe 
ISM language, a state IPlnl;"';Prnr) represents a pure soliton 
state with r quantum solitons with masses! n I' momenta PI' 
and internal energies - (e2/12) (n: - nl) (I = l, ... ,r). 

B. Quantum solitons and scattering states 

Our next objective is to study the wave functions asso
ciated with the basic states (3.13). That is to say, we want to 
determine the scalar products 

(lIv'nf)(x l ",xn IPlnl;"';Prnr)' n = n l + ... + nr , (3.18) 

where Ixl···xn) = ¢'t(xd···¢'t(xn)IO). Firstly, we observe that 
according to (3.14) 

I Pln1;···;Prnr) = R ~JPr)···R ~, (pdIO), (3.19) 

provided that 

PI/n l >P2/n2 > ... >Pr/nr' (3.20) 

It may be shown's that the wave function associated with 

(3.21) 

takes on the regions XI <X2<"'<Xn the Bethe ansatz form 

(3.22) 

where the sum extends to all the elements u of the permuta
tion group of n objects and 

s(u,k) = (_ 1)«<7)11 ka(ll - ka(Jl ~ ie , 
i <j k i - kj + Ie 

k = (k" ... ,kn), (3.23) 

with E(U) being the parity of the permutation u. For other 
values of X the function (3.22) is extended by symmetry. 

The wave function for a general vector (3.19) can be 
found by means of a suitable analytical continuation of Eq. 
(3.22) in the following way. By repeated use of the commuta
tion relation (2.5c) one obtains that 

R i(kn)···R i(kd 

X[ITB(- k;)][.ITA(- ki)]-I. 
1= I 2 1=1 2 

(3.24) 

Ifwe now use the formal expressions (2.8) in the definition 
(2.9) of R !(p), then from (3.24) we get 

R ~(p) = (n - 1)!(21Tle/)ln-1)I2 

XR r (kn)R r (kn _ 1 )···R r (kl)' (3.25) 

where 

kj = pin - ie[j - (n + 1)/2], j = 1, ... ,n. (3.26) 
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Equation (3.25) has only a formal meaning. However, it sug
gests that the wave function of a state of the form (3.19-( 3.20) 
obtains through the analytic continuation ofEq. (3.22) to a 
complex vector k given by 

k = ill ffi ••• ffi p lr), (3.27) 

where ill(1 = I , ... ,r) denotes the nrdimensional vector of the 
form (3.26) withp = PI and n = nl • The resulting function 
turns out to be bounded. To prove this it is convenient to 
introduce some notation conventions. Let C be a subset of 
(1,2, ... ,n j with n' elements, then we define 

1 
Q(C) = ~ LXi> 

n ieC 

( lei ) q;(C,x) = exp - - L Ix; -xjl . 
4 i,jeC 

(3.28) 

Observe that given a vector k of the form (3.26), then on the 
region X I <x2 < ... <X n we have that 

exp(i~kjXj) = exp(ipQ(C)]q; (C,x), 

C = (1,2, ... ,n j. (3.29) 

Let us consider now a vector k of the form (3.27). We denote 
by CI"",Cr the cluster decomposition of the set 
(1,2, ... ,n = n l + ... + nr j given by 

CI = (1,2, ... ,nd, 

Cr = In - nr + 1, ... ,nj. (3.30) 

It is not difficult to prove the following two properties. 
(i) The coefficient S (u,k) is different from zero only for 

those u such that 

\fi,jECdl = l, ... ,r)/i< A u -I(i) <u -IU). (3.31) 

(ii) Given u verifying (3.31), then on the region 
XI<X2<···<Xn, 

exp(i~ka(J1Xj ) 
r 

= II exp{PIQ [u -'(Cd]}q; [u -1(CI),x], (3.32) 
1= I 

where u -I(CI) = (u -1(i):iECd. 

Therefore the wave function of a state of the form 
(3.19)-(3.20) on the region X I <x2< ",<xn is 

r 

NL'S (u,k) II exp{iplQ [u -1(CI)]}q; [u -1(CI),x], (3.33) 
cr 1=1 

where k = pi!) ffi ••• ffi p lr) and the sum extends to all the per
mutations u satisfying (3.31). The normalization constant N 
is given by 

N = ( - It(21Tlel) - r12lelnl2 

r ((n l _ 1)!)1I2 
X II ' n = n l + '" + nr • 

1=1 nl 

(3.34) 

Each term in the sum (3.33) describes a motion of n particles 
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of mass ! distributed into rfragments ofn l (I = 1, ... ,r) parti
cles. The wave function for each fragment with n l > 1 repre
sents a bound state of its constituent particles whose center 
of mass moves freely. By considering a wave packet formed 
from (3.33), one sees that due to (3.20) the only term which 
remains in the regionx, <XZ<,,,<xn as t---->- - 00 is thatcorre
sponding to the identical permutation (T = e. Moreover, 
from (3.23) we have that S (e,k ) = 1. Thus, the wave function 
(3.33) is a state of n bosons which as t---->- - 00 describes a 
motion of r freely moving fragments with masses !n l , mo
mentapI, and internal energy - (c2/12) (ni - nl)' This re
sult provides a clear picture of the concept of quantum soli
ton. We may identify the quantum solitons with the 
asymptotic fragments arising in the evolution of the scatter
ing state (3.19)-(3.20) as t---->- - 00. In this way, the fields 
t/J !(k) introduced in (3.6) are creation fields for incoming 
solitons. 

A similar analysis shows that the fields defined by 

¢!(P)=R!(p)I1exp[f= dP'e(P: - L) 
n';>' -00 n n 

XlnSnn'(~: - ~)R !'(P')Rn,(P')]' (3.35) 

are creation fields for outgoing solitons. In terms of these 
fields the Galilean generators take the same form as in (3.7). 
Moreover, we may construct outgoing states of r solitons 

I PIn ,; .. ·;Prnr)' 

+ e (pj - pj )Snini(Pj _ Pi)] 
nj nj nj nj 

XR!, (pIl .. ·R ~,(Pr)IO), (3.36) 

and from (3.14) and (3.36) we have that the S matrix for the 
scattering of r solitons, with masses n j and momenta P j such 
thatp/n, > P2/n2 > ... > Pr/nr' adopts the factorized form '9 

I1s (pj - Pj), (3.37) 
nln} i<j nj nj 

IV. INTERACTION WITH A UNIFORM CONSTANT 
ELECTRIC FIELD 

Let us consider the action of a uniform constant electric 
field E on the quantum nonlinear Schrodinger field. The Ha
miltonian of the system is now given by 

H'= f~oodX(¢r¢x +c¢t¢t¢¢-eEx¢t¢), (4.1) 

where it is assumed that the charge of the fundamental bo
sons of the model is equal to e. The Heisenberg equation of 
motion for the field ¢ has the form 

i¢, = - ¢xx + 2c¢t¢¢ - eEx¢. (4.2) 

Like its classical version,20 the quantum equation (4.2) is ex
actly integrable. Indeed, by defining the field '4 

1740 

¢(t,x) = ¢(t,x + eEt 2)exp [ - i [ eEtx + j (eE )2t 3] J, 
(4.3) 
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Eq. (4.2) reduces to the quantum nonlinear Schrodinger 
equation (1.1) for ¢. This property may be formulated in 
terms of wave functions as follows. Given a function 
f(t,x" ... ,xn) verifying 

. af a2f 
/- = -I-2 +2cIo(xj -x/JI, 

at j aX j i<j 
(4.4) 

then the function 
2 E 2) F(t,x" ... ,xn) =f(t,x, - eEt , ... ,xn - e t 

xexp[i(eEt~>j - ~ (eE)2t 3)], (4.5) 

satisfies the equation 

. aF a2F 
/- = - I-2 + 2cIo(x j -xj)F-eEIxjF. (4.6) 

at i aX j j<j I 

By using (4.5) we may determine the effect of the electric field 
on the quantum solitons of the nonlinear Schrodinger field. 
If we take asf the wave function (3.33) associated with an 
incoming state of solitons, then we have that under the ac
tion ofthe electric field solitons move asymptotically with an 
acceleration equal to 2eE. That is to say, solitons of mass !n 
behave as charged particles with charge ne. 

The exact integrability of (4.2) is a consequence of the 
properties of the nonlinear Schrodinger field under Galilean 
transformations. Indeed, the Hamiltonian (4.1) is equal to 
H + 2eEK, where Hand K are the Galilean generators de
fined in (1.4). Then, due to the expressions (3.7c) and (3.7d) 
the creation fields for incoming solitons verify that 

[H',Ib~(p)] 

=(p
2 

_ ~(113-n»)t/J~(p)+ineE at/J!(p), 
n 12 ap (4.7) 

and therefore the incoming states of solitons evolve accord
ing to 

exp( - itH')!p,n,; ... ;Prny) 

= exp [ - itI(pj - ~ (ni - 111) + eEplt 
I n l 12 

+ +nl(eEt)Z)]lp,(t)n';''';Pr(t)nr), 

where PI(t) = PI + eEtnl· 
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The Fermi pseudopotential is generalized from three to five dimensions, and the case of an 
infinite, uniform, equidistant, linear chain of such pseudopotentials is studied in detail. Similar to 
the three-dimensional case, zero-width resonances are also present in five dimensions. While this 
generalization is natural and can be carried through formally when the strength is negative, there 
are basic changes in the underlying structure. These results in five dimensions also apply in four 
dimensions. 

PACS numbers: 02.30.Tb, 12.90. + b 

I. INTRODUCTION 

The Fermi pseudopotential was first used nearly half a 
century ago. 1 The first applications were to problems of nu
clear physics,2.3 and the later ones to many-body prob
lems.4-7 In three dimensions, it is 

(1.1) 

and is called a pseudopotential because it is an operator in
stead of a function. In the simplest case, a is a parameter with 
dimension length; more generally, a can be a function of the 
energy.4 Here we are not going to deal with such energy 
dependence. 

Recently, potentials of the form 

a83(r) (1.2) 

were studied,s-IO where a is infinitesimal. It is now known 
that - V2 + (1.1) and - V2 + (1.2) are the same with a and 
a suitable functions of each other. 

There is a general belief that the Fermi pseudopotential 
exists only in two and three dimensions, but not in higher 
dimensions. 10 The reason for this belief, in a nutshell, is as 
follows. Consider for K > 0 the free-space Green's function in 
d dimensions 

(1.3) 

It is square integrable in two and three dimensions, but not 
ford;;.4. 

Intuitively, it seems that this condition of being square 
integrable is rather far removed from physics. One of the 
original ways of motivating the Fermi pseudopotential is to 
take a repulsive potential such as a hard sphere, and to con
tinue analytically the s-wave part of the wave function out
side the potential. Thus the wave function for the Fermi 
pseudopotential (1.1) is physically meaningful only for r 
away from the origin. With this motivation, square integra
bility in the vicinity of the origin has no physical interpreta
tion. 

It is the purpose of the present paper to initiate the 
study of Fermi pseudopotentials in higher dimensions by 
considering the case d = 5. This value of d has been chosen 
judiciously. On the one hand, because of the form of the free
space Green's function, the Fermi pseudopotential is simpler 

in form when d is odd than when d is even, as already evident 
by comparing the cases d = 2 and d = 3. On the other hand, 
the case d = 7 is much more complicated than the case 
d = 5, for reasons that are not yet understood. 

In three dimensions, since the free-space Green's func
tion has the singularity r- 1

, the operator (a / ar)r in (1.1) is 
chosen to annihilate this singularity. In an analogous way, 
since the free-space Green's function in five dimensions has 
the singularity r- 3

, the Fermi pseudopotential is chosen to 
be 

(1.4) 

where the coefficient 4r is only for convenience. Here a also 
has the dimension oflength. An alternative, entirely equiva
lent choice is 

4ra385(r)~~~,-3. (1.5) 
ar r ar 

In Sec. II, the Green's function in the presence of this Fermi 
pseudopotential (1.4) or (1.5) is obtained explicitly in a com
pletely straightforward way. However, the result is interest
ing in that it makes sense only for 

a";;O. (1.6) 

As in the three-dimensional case, a = 00 is allowed. In Sec. 
III, this Green's function is applied to the case of an infinite 
equispaced linear chain of Fermi pseudopotentials. It is 
found that the phenomenon of infinitely narrow resonances, 
previously known in three dimensions, also occurs in five 
dimensions. Section IV is devoted to the simplest property of 
the Green's function of Sec. II as the resolvent operator, and 
the more mathematical questions of this Fermi pseudopo
tential in five dimensions are raised in Sec. V, but by no 
means solved. 

The failure of the present procedure in seven dimen-
sions stems from the fact that there the condition (1.6) is 
replaced by a";;O and a;;'O, or more precisely a = 0 or 00. 

Assuming that the mathematical problems discussed in Sec. 
V can be solved, then the present situation with Fermi pseu
dopotentials in higher dimensions is as follows. A Fermi 
pseudopotential can be defined in all dimensions corre
sponding to a = 00, meaning that the Green's function is 
defined and has the necessary analytic properties. In four 
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and five dimensions, a one-parameter family of Fermi pseu
dopotentials can be defined, analogous to the known cases of 
two and three dimensions. The situation is as yet unclear in 
six dimensions. 

II. GREEN'S FUNCTION 
A. Three dimensions 

Before obtaining the Green's function in five dimen
sions in the presence of the Fermi pseudopotential (1.4), we 
review the corresponding problem in three dimensions with 
(1.1). The Green's function is defined through the partial 
differential equation 

(V2 + k 2 - 417'0t53(rfr r)G (r, ro; k) = - t5 3(r - ro) 

(2.1) 
together with the usual boundary conditions at infinity. Let 

a 
A = 417'0 ar rG (r, ro; k )1,= 0' (2.2) 

then 

(V2 + k 2)G (r,ro;k) = - t5 3(r - ro) + At53(r), (2.3) 

and hence 

G (r, ro; k) = Go(r, ro; k) - A Go(r, 0; k), (2.4) 

where Go(r, ro; k) is the free-space Green's function given 
explicitly by 

Go(r, ro; k) = eik Ir - rol/417'lr - rol. (2.5) 

The coefficient A is determined by substituting (2.4) into (2.2) 
and the result is 

G(r, ro; k) = Go(r, ro; k) 
- [41Tol(1 +iko)]Go(r,O;k)Go(ro,O;k). 

(2.6) 

This same Green's function is also obtained from the "point 
interaction" (1.2). This shows that the Fermi pseudopoten
tial and the point interaction are one and the same in three 
dimensions. 

B. Five dimensions 

The derivation in five dimensions is step-by-step the 
same. We begin with the partial differential equation 

(V2 + k 2 - ~03t5S(r) ~ ~)G (r, ro; k) = - t5S(r - ro) 

(2.7) 
in five dimensions. Let 

A = ~03 ~~ ~G(r, ro; k)1 ' a, ,=0 
(2.S) 

then 

(V2 + k 2)G (r, ro; k) = - t5S(r - ro) + At5S(r), (2.9) 

and hence 

G (r, ro; k) = Go(r, ro; k) - A Go(r, 0; k), (2.10) 

where Go(r, ro; k) is the free-space Green's function in five 
dimensions 

Go(r, ro; k) = (Sr)-llr - rol-3eiklr-rol(1 - ik Ir - roj). 
(2.11) 

Again, the coefficient A is determined by substituting (2.10) 
into (2.S), and the result is 
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G (r, ro; k) = G (r, ro; k) - B (k )Go(r, 0; k )Go(ro, 0; k), 
(2.12 

where 

B(k)=24r03/(1 +ik 303
). (2.13, 

In spite of the close similarity of the results, B (k ) has new and 
interesting features. If 0 < 0, there is a bound state with bind
ing energy 0- 2 and bound-state wave function 

r- 3e - ,f la l (1 + r/loll. (2.14) 

When a > 0, there are complex poles located at 

k =a- l ei-rrf6 

and 

(2.15) 

If such complex poles are not acceptable, in five dimensions 
a cannot be positive. More precisely, in five dimensions, 0 

can be zero (which is trivial), negative, or infinity. In the last 
case, B (k ) is simply 

-i24rk -3. (2.16) 

III. ONE-DIMENSIONAL ARRAY 

As an example of utilizing the Fermi pseudopotential 
(1.4) in five dimensions, we study in this section the case of 
the one-dimensional equispaced linear chain of infinite 
length. Before specializing to this case, let a finite or infinite 
number of Fermi pseudopotentials be located in general at 
rj . With Rj = Ir - rj I, the Hamiltonian is 

H= - V2+ ~·W(r-r.)4ra3~R3. (3.1) t J J aR J J 

The solution of the Schrodinger equation 

H1/I = k 21/1 (3.2) 

follows closely the procedure of Sec. II B. Equation (3.2) is 
explicitly 

(3.3) 
j 

where 

A.=4r03~R31/11 . (3.4) 
J J aR 3 J 

J RJ =0 

In the absence of an incident field, the solution of (3.3) is 

1/1 = - }2Aj(SrR J)-leikRi(1 - ikRj ). (3.5) 
j 

Substitution into (3.4) then yields the following linear equa
tions for the determination of Aj and hence 1/1 from (3.5): 

(1 + ik 30J)Aj + 3aJ}2rj /
3e

ik
'i'(1 - ikrjl)A1 = 0, (3.6) 

I ".,j 

where rjl = Irj - rl I is the five-dimensional distance 
between the points rj and rl' Given OJ and rj , (3.6) admits a 
nontrivial solution only for certain values of k: these are the 
resonances. 

We now specialize to the case of an infinite uniform 
linear array of equal spacing h. Thus 

rjl = V - /Ib, 
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independentofj,and 

A - eijf3 j- , (3.7) 

where,8 specifies the reduced Hamiltonian. For this case, the 
fundamental equations (3.6) simplify to one transcendental 
equation 

1 + ik 3a3 + 3(.!!.-)3 I VI- 3elk lil b (1 - ik Vlb )eijf3 = O. 
b dO 

(3.8) 

In three dimensions, the salient feature of such an infi
nite uniform linear chain is the presence of infinitely narrow 
resonances. The zero width of the resonance is intimately 
related to the infinite length of the array. If the array is suit
ably terminated or bent into a closed curve such as a circle, 
the width becomes nonzero but small. II Such narrow reson
ances are the quantum-mechanical analog of the corre
sponding electromagnetic phenomenon associated with the 
Yagi-Uda antenna array12 often used with television sets. 

This phenomenon also occurs in the present case of a 
linear chain in five dimensions. This means the existence of 
real k 's as solutions to (3.8) provided that a, b, and,8 are in 
suitable ranges. First of all, the zero width of the resonance 
implies the absence of a radiation field, and hence 

(3.9) 

Let the condition (3.8) be rewritten in the form 

~(.k.)3 + ~ik 3b 3 = _ Ilil- 3elk lil b (l _ ik lilb )eijf3, 
3 a 3 dO 

(3.10) 

then 
rei(P+ kb) 

rhs of (3.10) = Jo Z-I dz 

X [In(l - z)](i,8 - In z) + (,6- -,8). (3.11) 

Deform the path of integration in the z plane so that it goes 
from 0 to 1 along the positive real axis and then from 1 to 
el( ± f3 - In z) along the unit circle. As the first part of the con
tour gives a Riemann ;-function; (3), (3.11) reduces to, by 
(3.9), 

(f3 + kb 
rhs of(3.1O) = - 2;(3) + Jo dO(O -,8) 

X [In( 2 sin ~) - ~ i(1T - 0)] 
+ l-f3+

kb
dO (O+,8) 

X [In( -2sin~)+ ~ i(1T+O)]. 

(3.12) 
Thus the imaginary part can be explicitly calculated as 

Imaginary part of rhs of (3.10) = jk 3b 3, (3.13) 

and consequently (3.10) has the real form 

1 (b)3 ((f3+ kb (f3- kb) 3 -;; +2;(3)- Jo + Jo dO(O-,8) 

X In( 2 sin ~ ) = o. (3.14) 

Remember that a < 0 while b > O. The solutions of(3.14) give 
the locations of infinitely narrow resonances. 

1744 J. Math. Phys., Vol. 25, No.6, June 1984 

IV. RESOLVENT EQUATION 

The example of the last section shows that the Fermi 
pseudopotential in five dimensions is of use. We now return 
to the case of a single Fermi pseudopotential already treated 
in Sec. III B to study some simple properties of the Green's 
function (2.12). Let the Hamiltonian be 

H = - V2 + 4ra385(r) :~ ,-3, (4.1) 

then G (r, ro; k) is the coordinate representation of 
(H - k 2) -I. Since H commutes with itself, this operator sat
isfies the resolvent equation 

(k 2 _ k'Z)(H _ k2)-I(H _ k'2)-1 

= (H - k2)-1 - (H _ k'2)-I. 

Expressed in terms of G (r, ro; k), (4.2) is 

(k 2 - k '2)J d 5r" G(r, r"; k )G(r', r"; k ') 

= G(r, r'; k) - G(r, r'; k 'i. 
In what sense is this formula correct? 

(4.2) 

(4.3) 

The difficulty stems from the fact that in five dimen
sions the free-space Green's function is not square integra
ble, as discussed in the Introduction. Thus, in the usual sense 
of integration, the integral on the left-hand side of(4.3) does 
not exist. 

Fortunately, since the divergent integral is of the form 
fr- 6 d 5r , formulas familiar in dimensional regulariza-
tion 13,14 can be invoked. The relevant one is 

J r- 6 d 5r = O. (4.4) 

Equation (4.4) gives a meaning to the left-hand side of (4.3), 
because the Go of (2.11) is of the form 

Go(r, 0; k) = (8r)-l r-3[ 1 + O(r)], (4.5) 

for small r. The rest of the verification for (4.3) is straightfor
ward. 

V. DISCUSSIONS 

We have seen that the Fermi pseudopotential (1.1) in 
three dimensions can be naturally generalized to (1.4) or 
equivalently (1.5) in five dimensions. With this natural gen
eralization, the formal manipulations are only slightly 
changed. The underlying mathematical structure, however, 
is altered in a profound manner. While - V2 + (1.1) gives 
rise to a self-adjoint operator in the space of square integra
ble functions, it is not clear whether (4.1) is self-adjoint in any 
sense. A first question that needs to be answered is: Does 
there exist a Hilbert space of functions such that the resol
vent as explicitly given by (2.12) is bounded and satisfies the 
resolvent equation (4.2)? We do not know the answer to this 
and numerous related questions. By explicit examples, we do 
know, however, that the Fermi pseudopotential (1.4) in five 
dimensions is useful. It is a challenge to mathematical physi
cists to construct a consistent theory of this new Fermi pseu
dopotential. 

There is one other fundamental difference between (1.1) 
and (1.4). In three dimensions, (1.1) can be approximated by 
a short-range square-well attractive potential of suitable 
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strength. This is the basis for the successful application of 
nonstandard analysis. 8 On the contrary, in five dimensions, 
such an approximation does not seem to exist for the Fermi 
pseudopotential (1.4). 

We conclude with a list of Fermi pseudopotentials in 
two to six dimensions, where the overall constant is omitted: 
two dimensions, 

82(r)r(ln r)2h1n r)-I; 

three dimensions, 

a 
83(r~r; 

four dimensions, 

84(r)r(ln rf41ln r)-lr-Ii.~; 
ar ar 

five dimensions, 

85(r)~~' 
a~ , 

and six dimensions 

82(r)r(ln rf i.(ln r) -I r- 1 i. r- I i. r4. 
ar ar ar 

There may be some problems with the last one. 
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The geometric method for constructing the nonlinear chiral SU2 X SU2 invariant Yang-Mills 
Lagrangian in curved isospin space given by Meetz for a particular choice of coordinates is 
generalized to an arbitrary system of coordinates in curved isospin space. The resulting 
Lagrangian coincides with the general nonlinear chiral SU2XSU2 invariant Yang-Mills 
Lagrangian constructed previously using the matrix method. 

PACS numbers: 02.40.Ky, 11.15.Kc, 11.30.Na, 11.30.Rd 

I. INTRODUCTION 

The purpose of this paper is to generalize the geometric 
method suggested by Meetz l for constructing the nonlinear 
chiral SU2XSU2 invariant Yang-Mills Lagrangian for the 
pion-nucleon- p-meson (-TT-N- p) system using curved iso
spin space. Meetz' construction was based on a particularly 
simple choice of coordinates in curved isospin space such 
that the chiral SU2 X SU2 zSO(4) four-vector 5 a 

(a = 1,2,3,4) was identified with the isovector pion field cpa 
(a = 1,2,3) according to sa = (cpa, 54). The four-vector sa 
transforms linearly as the (~,~) representation of the chiral 
SU2XSU2 group, and hence its length Da/3 sa 5/3 is an 
SU2 X SU2 invariant. A suitable normalization of this length 
then determines 5 4 in terms of cpa and hence defines a three
dimensional curved isospin space embedded in the four-di
mensional Euclidean space spanned by 5 a. The three com
ponents of the pion field cpa can be used as general curvilinear 
coordinates in this three-dimensional curved isospin space. 
The methods of Riemannian geometry as well as the tech
niques of Yang-Mills theory can then be employed for con
structing a nonlinear chiral SU2 X SU2 invariant Yang-Mills 
Lagrangian for the 'TT-N- p system. The resulting Lagran
gian turns out to be a special case of the general nonlinear 
chiral SU2XSU2 invariant Yang-Mills Lagrangian for the 
'TT-N- p system constructed previously using the matrix 
method.2 The reason for this lack of generality in the geo
metric method of construction used by Meetz is that the 
identification of the four-vector 5 a in terms of the pion field 
cpa assumed by Meetz is not the most general possible. In the 
following we will identify the components of the four-vector 
5 a in terms of the pion field cpa according t05 a = (2/ pcp a,a), 
where a and p are functions of the dimensionless variable 
/2 cp 2,fis a coupling parameter with the dimension oflength, 
andcp2 = Dij cp icpj(i,j = 1,2,3). Even though a normalization 
of the length of the four-vector 5 a will put some restriction 
on the form of the functions a andp, the identification of the 
four-vector 5 a in terms of the pion field adopted here is the 
most general possible. This identification coupled with the 
geometric method of Meetz leads to the most general nonlin
ear chiral SU2 X SU2 invariant Yang-Mills Lagrangian for 
the 'TT-N- p system that was obtained previously using the 
matrix method. 

II. CURVED ISOSPIN SPACE 

We begin by considering a four-dimensional internal 
Euclidean space spanned by a real, dimensionless four-vec
tor field 5 a(x). Under the chiral SU2 X SU2 Z SO(4) group,s a 
is assumed to transform linearly as the (~,~) representation 
according to 

5 a' = R a /3 5/3, a,.B = 1,2,3,4, (la) 

where the 4 X 4 matrix R satisfies the conditions 

RR T =R TR =1, (lb) 

detR = 1. (lc) 

The length Da/3 5 as /3 of the four-vector 5 a is an SU2 
X SU2zSO(4) invariant, and without loss of generality we 
will normalize this length to unity so that 

Da/3 5 a5/3 s·s + (5 4)2 = 1, (ld) 

where S = (5 1,5 2, t3) and s' s = Dij 5i5j
. This normaliza

tion condition defines a three-dimensional curved isospin 
space with constant curvature embedded in the four-dimen
sional Euclidean space. We will restrict our attention to the 
upper hemisphere of the three-dimensional curved isospin 
space defined by 

(Ie) 

and we will choose the three components of the pion field cpa 
as general curvilinear coordinates in this three-dimensional 
curved isospin space. Further, we will identify the compo
nents of the four-vector 5 a in terms of the components of the 
pion field according to 

(2a) 

The normalization condition (ld) gives a relation between a 
and p of the form 

~ + 4f2p2cp 2 = 1, (2b) 

so that, in general, a and p are given by3 

a(/2cp 2) = 1 _ 2/2cp 2 + 0 (/4), 

p(Pcp 2) = 1 + 0 (/2), 

(2c) 

(2d) 

but are otherwise arbitrary. Our identification of the four
vector 5 a in terms of the pion field given in Eq. (2a) is the 
most general possible. The special case considered by Meetz 
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corresponds to the choice p = 1. 

The chiral SU2X SU2;::;SO(4) group is represented lin
early in the four-dimensional Euclidean space as 

tt=R~tj+Ri4t4, (3a) 

t4'=R4jtJ+R44t4. (3b) 

However, in the three-dimensional curved isospin space 
with the pion field rpa as coordinates, the chiral SU2 X SU2 
group induces a nonlinear transformation on the pion field 
according to 

(2fprp aj' = R \ (2fprp b) + R a4U, (3c) 

(u)' = R 44U + R \ (2fp rp b). (3d) 

In order to obtain the explicit form of the infinitesimal 
chiral SU2 XSU2 transformations of the pion field, we write 
the chiral SU2 X SU2 transformation matrix Rap as 

R af3 = {jaf3 + e"p, (4a) 

where e" f3 are the infinitesimal chiral SU 2 X SU 2 parameters 
satisfying 

e" p + Ep a = O. (4b) 

Then from Eqs. (3c) and (3d) we find that under the infinitesi
mal chiral SU2XSU2 transformations, the quantities 
(2f prp a) and u transform according to 

{j (2fprp a) = ~b(2fprp b) + ~4U, (4c) 

{jU = E\ (2f prp b), (4d) 

and if we define 

~b rpb = ~bc rpbWc' (4e) 

~=-~ ~ 

where (if and v" are, respectively, the real infinitesimal iso
spin and chiral parameters and ~bc is the Levi-Civita tensor 
with Et23 = 1, then the infinitesimal chiral SU2 X SU2 trans
formation for the pion field can be written as4 

{jrpa = _ r b( rp )Wb - F ab ( rp )Vb' (4g) 

where 

r b( rp) = ~bc rpc' (4h) 

F ab ( rp) = (1/2f)[(ul p){jab + 4Prp arp b(p'lu')], (4i) 

and a prime on u and p denotes a derivative with respect to 
the dimensionless variablef2rp 2. We note that the isospin 
subgroup of the chiral SU2XSU2 group is represented lin
early on the pion field, whereas under the chiral transforma
tions the pion field transforms nonlinearly. 

The infinitesimal line element in the four-dimensional 
Euclidean space given by 

ds2 = (1/4f2){jafJ dt a dt P (Sa) 

is an SU2 XSU2;::;SO(4) invariant. In the three-dimensional 
curved isospin space, the four-vector t a is specified in terms 
of the pion field by Eq. (2a) so that 

t a = t a( <pal, (Sb) 

and hence 

(Sc) 
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Thus the SU 2 X SU 2 invariant line element (Sa) can be writ
ten in terms of the pion field as 

ds2 = (1/4f2){j at
a 

at
p 

drp a dm b 
af3 arp a arp b T 

= gab ( rp )drp a drp b, (Sd) 

where gab ( rp ) is the covariant metric in the three-dimension
al curved isospin space defined by 

at a at
p 

gab ( rp) = (1/4£1) - - {jap· 
arp a arp b 

From Eqs. (2a) and (Se) we find thae, 

[ { 
U'2 4p4}] 

gab( rp) = p2 {jab + f2rpa rpb P2(1-=- ~) , 

(Se) 

(Sf) 

and the corresponding contravariant metric defined accord
ing to 

(Sg) 

is given by 

~b ( rp ) = ~ [{jab _ f2rp arp b {4
p2

(u'2 - 4p4)}]. (Sh) 
p2 u'2(1-~) 

If we define the square roots of the covariant and contravar
iant metrices as 

(gI/2)ab( gl/2)cd gbc = gad' (Si) 

(g 1l2t b(gI/2)bc = {jac' (Sj) 

then we find that 

(g1l2)ab = p[ {jab + 2f2rpa rpb {~ - 1 ~ u}], (Sk) 

(gl/2tb = ~ [{jab _ 4f2rparpb{-L - pp'}]. (SI) 
P l+u d 

Under an SU2 XSU2 coordinate transformation in 
curved isospin space defined by 

rpa' = rp a'( rp ), (6a) 

the infinitesimal drp a transforms as a contravariant vector. 
Moreover, the space-time derivative al-' rpa also transforms 
as a contravariant vector since we have 

a a' 

af.l <pa' = ~ a rpb. 
arpb I-' 

(6b) 

The transformation law for the covariant metric gab ( rp ) fol
lows from Eq. (Se) as 

(6c) 

so that it transforms as a second-rank covariant tensor, and 
hence by Eq. (Sg) the contravariant metric ~b( rp) trans
forms as a second-rank contravariant tensor. Thus from Eqs. 
(6b) and (6c), we can define the covariant space-time deriva
tive of rpa as 

(6d) 

Also since the chiral SU2 X SU2 group is an invariance group 
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of the infinitesimal line element (Sa), we have the isometry 
relationS 

(6e) 

The chiral SU2 X SU2 invariant Lagrangian for the pion 
field that is at most quadratic in space-time derivatives of the 
pion field and that reduces to the free pion Lagrangian in 
lowest order in the coupling parameter f is now uniquely 
given by 

y - 1 ( )a aa b /'" 
7T" - 2 gab cP I' cP "CP 17 , (7a) 

where 171''' is the Lorentz metric tensor defined as 17I'V = 17l'v 
= diag( 1, - I, - I, - 1), The corresponding chiral 

SUz X SU2 invariant action for the pion field given by 

I=!J d4x17I'VaI'CP"avcpbgab(CP)' (7b) 

has the form of field theories that are harmonic mappings of 
Riemannian manifolds. 6 The chiral covariant equation of 
motion for the pion field obtained by varying the action giv
en in Eq. (7b) is 

17l'v[al'avcpa+r~c(cp)J"cpbavcpc] =0, (7c) 

where r~c( cp) is the Christoffel symbol for the curved iso
spin metric gab ( cp) defined as 

r~c = !g"d [ab gcd + ac gbd - ad gbc]' 

where 

agab 
ac gab =--. 

acp c 

(7d) 

The chiral covariant derivative of a contravariant vec
tor val cP ) in curved isospin space can be defined as usual in 
terms of the Christoffel symbol according toS 

Vbva 
= abva + r~cvc, (8a) 

where 

a 
b _ avb 

a V ---, 
acpa 

so that Vbva transforms as a second-rank mixed tensor in 
curved isospin space. Ifwe define a chiral covariant space
time derivative of a contravariant vector in curved isospin 
space according to 

DI' va = (V bVa)al' cP b = all va + r~cvcal' cP b, (8b) 

where 

(8c) 

then D I' va transforms as a covariant vector in Lorentz space 
and a contravariant vector in curved isospin space. In case 
the vector va has an explicit space-time dependence not aris
ing from its dependence on the pion field, Eq. (8c) must be 
amended as 

(8d) 

where the caret denotes a space-time derivative due to the 
explicit space-time dependence of va. 

We close this section by defining the triad or dreibein 
fields ea

;( cp) according to 

ea
i ( cp )ebj ( cp )oij = g"b( cp), (9a) 
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ea;(cp)ebj(cp)gab(CP) = oij' 

Then from Eqs. (Si) and (Sj) we find that 

ea;( cp) = (gI/Z)a; . 

(9b) 

(9c) 

We note that the first index on ea
;( cp) transforms contravar

iantly in curved isospin space while the second index is a fiat 
isospin index. 

The chiral SU Z X SU 2 invariant pion Lagrangian given 
in Eq. (7a) can now be written as 

y 7T" = ! gab( cp )al' cp a av cp b 17l'v 

- 2'12 X; X j >: I'v 
- 51' 5v U ij 17 , (9d) 

where 

(ge) 

so that X ~I' is the fiat isospin-space component of the curved 
isospin-space vector al' CPa' 

III. CHIRAL SUz X SUz PION-NUCLEON LAGRANGIAN 

In this section we proceed to determine the chiral 
SU2 X SUz transformation law for the nucleon field in 
curved isospin space in order to be able to define a chiral 
covariant space-time derivative of the nucleon field. This 
and the result of the preceding section will then permit the 
construction of a general nonlinear chiral SU2 X SUz invar
iant pion-nucleon Lagrangian. 

In fiat isospin space, the nucleon field transforms ac
cording to the two-dimensional fundamental representation 
of the isospin SU(2) group generated by the 2 X 2 Pauli matri
ces -r' satisfying the anticommutation relation 

(lOa) 

For the curved isospin space with metric gab ( cp ), we genera
lize the fiat isospin Clifford algebra (lOa) by defining the 
2 X 2 matrices L a ( cp ) that depend on the pion field and that 
satisf/ 

(lOb) 

Under the chiral SU2 X SUz coordinate transformations in 
curved isospin space, the matrices L a( cp ) are assumed to 
transform as components of a contravariant vector so that 

L a'( cp ') = acpa' L b( cp). 
acpb 

(lOc) 

An explicit form for the matrices L a (cp) is obtained by ob
serving that the 2 X 2 matrices defined by 

L a( cp) = (gI/Z)"; 1'; = ea;r, (lOd) 

satisfy the Clifford algebra (lOb) by virtue of the relation (9a). 
However, this solution for the matrices L a( cp ) is not unique 
since a transformation on the flat isospin index of ea

;( tp) of 
the form 

(lOe) 

will leave the Clifford algebra (lOb) unchanged provided the 
2 X 2 matrices A; j satisfy the condition 

(lOt) 

Thus the solution (lOd) for the matrices L a( cp ) is unique up 
to an orthogonal transformation on the fiat isospin space 
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index of ea
j ( rp). We will adopt the particular solution given 

by Eqs. (lOd) and (51). 
From the Clifford algebra (lOb) and the solution (lOd) 

for the matrices L a( rp ), it follows that the ordinary deriva
tive of La ( rp ) with respect to the pion field can be put in the 
form 

JbL a( rp) = ! (Jb g"c)Lc( rp) + [..rb,L a( rp)], 

where 

(IIa) 

(Ub) 

Since g"b and L a (rp ) transform, respectively, as second
rank contravariant tensor and contravariant vector in 
curved isospin space, the isometry relation (6e) implies that 
the matrices L a'( rp ') satisfy the relation 

!L a'( rp '),L b'( rp ')J = 2g"b'( rp ') = 2g"b( rp '), (I2a) 

and from Eq. (lOb) we have 

!L a( rp '),L b( rp') J = 2g"b( rp '), (I2b) 

and hence there exists a unitary matrix S ( rp ) depending on 
the pion field such that 

La'(rp')=S-ILa(rp')S. (I2c) 

To determine the chiral transformation law for the nu
cleon field N ( rp ) we require that the bilinear 
N ( rp )L a( rp )N ( rp ) transform as a contravariant vector in 
curved isospin space so that 

N'( rp ')L a( rp ')N'( rp ') = Jrp a' N( rp)L b( rp )N( rp), (I2d) 
Jrp b 

where we assume that the matrices L a( rp ) have the same 
functional form in all coordinate systems related by chiral 
SUz X SUz transformations, and from Eqs. (I2c) and (lOc) we 
have 

N'( rp ')L a( rp ')N'( rp') = ;:: N'( rp ')SL b( rp)S -IN'( rp '), 

(I2e) 

so that a comparison of Eqs, (I2d) and (I2e) gives 

N'( rp ') = SN( rp). (l2f) 

In order to determine the unitary matrix S, we write its infin
itesimal form as 

S=I + T. 

Then from Eqs. (12b) and (I2e) it follows that 

[T,L a( rp)] = (JbL a)/Jrp b _ L b( rp )Jb(/Jrp a), 

where from Eqs. (4g) and (4i) 

/Jrpa = _ Fab( rp )vb. 

(13a) 

(13b) 

(13c) 

Using the form of L a( rp) given in Eq. (lOd), we find that Eq. 
(13b) gives 

T = ..ra/Jrp a + A [La,L b ]Jb(/Jrp a), 

which can be written as 

(13d) 

T = (i4)~jk 1'k eaj ( rp ) [ebj ( rp )Jb (/Jrp a) - Jbeaj ( rp )/Jrp b] . 
(13e) 

Finally using the explicit form for eaj( rp) and /Jrpa given in 
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Eqs. (9c) and (13c), respectively, we obtain 

T = [ifp/(l + a)]£'}k 1'j Vj rpk -(i/2)T' p, (l3f) 

where 

f3j = [2fp/(I + a)]€Okv) rpk = [2fp/(1 + a)](vX 'P)j, (13g) 

and hence the matrix S is given by 

S = exp [(i/2)] T'P, (13h) 

We observe that the chiral transformation law for the nu
cleon field N ( rp ) is similar to a local isospin transformation 
with the transformation parameters P depending on the pion 
field. This similarity will be exploited below to construct a 
chiral SUzXSUz invariant Yang-Mills Lagrangian for the 
1T-N- p system. 

The matrix S given in Eq. (13h) determines the chiral 
transformation law for the nucleon field N according to Eq. 
(I2f) as well as the chiral transformation law for the 2 X 2 
matrices L a ( rp ) according to Eq. (12c). Further, since the 
dreibein fields eaj( rp) are related to L a( rp) according to Eq. 
(lOd), the same matrix S also determines the chiral transfor
mation law for the dreibeins. Ifwe write this transformation 
law in the form 

ea'j( rp ') = Bo ea}( rp '), (13i) 

then we find from Eqs. (lOd), (12c), and (13h) that the 3 X 3 
matrix B is given by 

Bo( rp) = cos f3/J j} - ( Si;f3 )€Ok f3 k 

+ C -;~sf3)f3j f3), (13j) 

where f3 = I PI. We note that the isometry relation (6e) for 
the metric and the defining relation (9a) for the dreibeins give 

g;b ( rp') = e;j( rp ')eb} ( rp ')/Jo = gab( rp ') 

(13k) 

which implies that the transformation (I3i) must be orthogo
nal. It is readily verified that the matrix B given above is 
indeed orthogonal. 

The ordinary derivative of L a ( rp ) with respect to the 
pion field is given in Eq. (lla) and we define the covariant 
derivative of La ( rp )using Eq. (8a) as 

Vb L a = JbL a + Fb acL c. (I4a) 

Further for the metric tensor g"b ( rp ) we have in general 

(14b) 

Then if we write the covariant derivative of L a( rp ) as 

VbLa= [ilb,L a], (14c) 

then it follows that the 2 X 2 matrix ilb is given by 

ilb =€b +A{La,LC]Jagbc = -HLa,VbL a], (14d) 

and using the solution for La (rp) given in Eq. (lOd), we find 
that 

ilb = (i/4)€,Jk1'kec
) [eOjJa gbc + (Jbeaj)gac]' (I4e) 

Finally, using the explicit expression for eO j ( rp) given in Eq. 
(9c) we obtain 
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(14t) 

The covariant derivative of the nucleon field N ( cp ) in 
curved isospin space is defined to satisfy 

AbL a = Vb L a - [nb,L a] = 0, (15a) 

-1 b(NL aN)=Vb(NL aN) = ( -1b N}L aN + NL a(-1b N). 

Then it follows that 

-1aN = aa N - na N, 

(-1a N)=( aa N)+Nna, 

where a bar over a Dirac spinor ¢ is defined as 

i/J= ¢tyO. 

(15b) 

(15c) 

(15d) 

(15e) 

In analogy with Eq. (Sb), we now define a chiral covar
iant space-time derivative of the nucleon field N ( cp ) as 

DI' N = (-1a N)al' cp a = al' N - na Nal' cp a, (16a) 

DI' N = ( -1aN) al' cp a = al' N + Nna al' cpa, (16b) 

where 

(16c) 

and the last term in Eq. (16c) is present if the nucleon field 
has an explicit space-time dependence not arising from its 
dependence on the pion field. Using the explicit expression 
for na given in Eq. (14t), we can write the chiral covariant 
space-time derivative of the nucleon field as 

DI' N = (al' + ij2 T,XI')N, (17a) 

where 

T'XI' = Dij ..fXI' j, 

Xl'i = [2p2/(l + u)] ~jk Cpjal' CPk' 

(17b) 

(17c) 

The chiral SU2 XSU2 invariant Lagrangian for the nu
cleon field N ( cp ) can now be written as 

.Y N = NiyP'(al' + ij2T,XI')N - mNN (ISa) 

and if we add to this the chiral SU2 XSU2 invariant pion 
Lagrangian given in Eq. (7a), we obtain the chiral SU2 X SU2 

invariant pion-nucleon Lagrangian in the form 

.Y~1 = NiyP'(al' + ij2T,XI')N - mNN 

+ ! gab ( cp )al' cp a{J"cp b. (ISb) 

This Lagrangian is invariant under the infinitesimal isospin 
transformations 

cpa ~ cpa _ jab ( cp )W b , 

N ~ (1 + (i/2)T.ro)N, 

(19a) 

(19b) 

as well as under the infinitesimal chiral transformations 

cpa ~ cpa _ Fab(cp )Vb' 

N ~ (1 + (i/2) T.(3)N. 

(19c) 

(19d) 

The chiral covariant equation of motion for the nucleon 
and pion fields obtained from Eq. (ISb) have the form 

iyP'DI'N - mN = 0 , (20a) 

1f"[ al'a" cp a + Fb aCal'CP bav cp C] = - iNyP'n abal'CP bN, 
(20b) 
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where 

(2Oc) 

and 

(20d) 

Using the expression for n a given in Eq. (14d), the equation 
of motion for the pion field can be put in a manifestly chiral 
covariant geometric form 

1fV[ al' a" cpa + Fb aCal' cpbav cpC] = A NiyP'R abed 

X [L e,L d ]al' cp bN, 
(20e) 

where R a bed is the Reimann curvature tensor in curved iso
spin space defined according to 

R abed = aeFbad - ad Fb ae + F/e F/d - Fdae Fb ec· (2ot) 

The pion-nucleon Lagrangian (ISb) contains chiral 
SU2 XSU2 invariant pion-pion as well as pion-nucleon in
teractions such that in the limit of vanishing curvature in 
curved isospin space (f ~ 0) these interaction terms vanish 
and the Lagrangian (ISb) reduces to a sum offree pion and 
nucleon Lagrangians that are invariant under the isospin 
transformations only. Thus the chiral SU2 XSU2 invariant 
pion-pion and pion-nucleon interactions contained in the 
Lagrangian (ISb) have a geometric origin in that their form is 
completely determined by the curvature in isospin space. 
However, the chiral SU2 X SU2 symmetry does not restrict 
the pion-nucleon interaction to those terms that arise from 
the curvature of the isospin space only, and it is possible to 
construct chiral SU2 X SU2 invariant pion-nucleon interac
tion that does not vanish in the flat isospin space limit. Thus, 
since NL aN and al' cp a transform as contravariant vectors 
in curved isospin space, an interaction term of the form 

.Yin, = GNyl-'rL a( cp )al-' cp bNgab ( cp), (21a) 

where G is a coupling parameter with the dimension of 
length, will be invariant under the chiral SU 2 X SU 2 transfor
mations. Using Eqs. (ge) and (IOd) this can be written as 

.Yin, = 2jGNyP' r T'Xsl' N, (2Ib) 

and in the limit of vanishing curvature in curved isospin 
space, it reduces to 

(21c) 

which is invariant under isospin transformations only. 
The complete chiral SU 2 X SU 2 invariant pion-nucleon 

Lagrangian can now be written as 

.Y rrN = NiyP'DI' N - mNN +! gab ( cp )al' cp a{J" q; b 

+ GNyl-'rL a( cp )al' cp bNgab ( q;), (22) 

and its invariance under the chiral SU2 X SU2 transforma
tions is manifest in its geometric structure. 

IV. CHIRAL SU2 XSU2 -rr-N-p LAGRANGIAN 

In this section we extend the general chiral SU2 X SU2 

invariant pion-nucleon Lagrangian constructed in the last 
section by incorporating a massive isovector p-meson field 
without breaking the chira} SU2 X SU2 symmetry of the La
grangian. 
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The chiral transformation law for the nucleon field giv
en in Eqs. (12f) and (13h) is similar in structure to a local 
isospin transformation of an isospinor in Yang-Mills theory. 
Further, the chiral covariant derivative of the nucleon field 
given in Eqs. (16a) and (17a) is also similar in structure to the 
covariant derivative of an isospinor in Yang-Mills theory. 
Hence, if we replace the chiral covariant derivative of the 
nucleon field in Eqs. (16a) and (17a) by a Yang-Mills covar
iant derivative containing an isovector p-meson field accord
ing to 

(a/L - flaa/L qf)N = (a/L + ijzT,X/l-)N 

- (a/L + (i/2)gT' p/L)N, (23a) 
then the Lagrangian (18b) will still be chiral SUzXSUz in
variant provided that thep-meson field matrixp/L = TO P/L 
has a chiral SUzXSUz transformation law identical to that 
of 

(2i/g)flaa/L cp a = (2j2 /g)T,X/l-' 

In order to determine the chiral transformation law for 
fla aIL cpa we recall that fla is defined by Eq. (14c) as 

Vb L a( cp) = [flb( cp ),L a( cp)], (23b) 

or equivalently, by Eq. (14d) as 

fla(CP) = -HLb(cp),VaLb(cp)]. (23c) 

Moreover, the matrices r a( cp) are assumed to have the same 
functional form in all coordinate systems in curved isospin 
space that are related by chiral SU z X SU z transformations. 
Consequently, under a chiral SUz X SUz transformation 
fla( cp) transforms as 

fla( cp) - fla( cp ') = - H L b( cp '),VaL b( cp ')], (23d) 

and hence the chiral covariant derivative of the nucleon field 
given in Eq. (23a) transforms as 

(a/L - fla( cp)a/l- cpa)N - (a/l- - fla( cp ')a/L cp a')N ' . (23e) 

From Eq. (23c), we find that 

fla(cp)a/l- cpa = -HLb(cp),VaLb(cp)] aIL cpa. 

(23f) 

and under chiral SUz X SUz transformation this transforms 
as 

fla ( cp)a/l- cpa _ fla ( cp')a/L cpa' 

= - H L b( cp '),D/LL h( cp ')]. (23g) 

Finally, from Eqs. (lOc), (12c), and (23g), we find that 

fla(cp')a/L cpa' =S(fla(cp)a/L cpa)S-I_Sa/LS-I, (23h) 

so that according to Eq. (23a) the p-meson field matrix has a 
chiral SU z X SU z transformation law of the form 

PI' - P/L I = SP/LS -I - (2i/g)Sa/L s -I. (24a) 

This chiral transformation for the p-meson field is similar in 
structure to the transformation of an isovector gauge field in 
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Yang-Mills theory, and consequently, a covariant curl of the 
p-meson field defined according to 

T.Fjjv = F/Lv = aIL Pv - av P/L + (ig/2) [ P/L' Pv ], (24b) 

will have a chiral transformation law of the form 

F~v = SF/Lv S -I, (24c) 

and hence a kinetic energy term for thep-meson of the form 

- !F/l-v·F/LV, where F/l-v = aIL Pv - av P/L - g PI' X Pv 

will be chiral invariant. 
In contrast to the usual Yang-Mills theory, where the 

gauge field must remain massless in the limit of exact sym
metry, we have in the present chiral Yang-Mills theory the 
possibility of adding a mass term for the p-meson field with
out breaking the chiral SUz X SUz symmetry. This is because 
under the chiral transformations;/L is assumed to transform 
in the same way as (2/z / g) X/L' and hence the combination 

( 
2/2)Z 

P --X /L g I' 

will be invariant under the chiral SU z X SU z transformations 
and will provide a mass term for thep-meson without break
ing the chiral SUz X SUz symmetry. 

Thus with the incorporation of the p-meson field, the 
general nonlinear chiral SUz X SUz invariant 1T-N- P Lagran
gian takes the form 

.!t' nN p = NiY'(a/L + (il2) gT' p/L)N - mNN 

-! F/Lv·F/LV + !mp'( P/L - (2/2/g)X/L)z 

+ ! gab ( cp )a/L cp aiJ'cp b 

+ GNY'rL a( cp )a/l- cp bNgab ( cp) . (25) 

This Lagrangian coincides with the most general nonlinear 
chiral SUz X SUz invariant 1T-N- P Lagrangian constructed 
previously using the matrix method. z Here we have con
structed this Lagrangian by generalizing the geometric 
method of Meetz, 1 and the chiral SUz X SUz invariance of 
the Lagrangian (25) is manifest in its geometric structure. 

lK. Meetz, J. Math. Phys. 10, 589 (1969); see also L. Brown and D. Boul
ware, Ann. Phys. 138, 392 (1982). 

2A. Ebrahim and F. Giirsey, Nuovo Cimento Lett. 9 (9), 716E (1974). 
3A. Ebrahim, J. Math. Phys. 16, 1253 (1975). 
4A. Ebrahim and M. Serdaroglu, Nuovo Cimento A 21,249 (1974). 
5See, e.g., S. Weinberg, Gravitation and Cosmology (Wiley, New York, 
1972). 

6See, e.g., C. Misner, Phys. Rev. D 18, 4510 (1978). 
7W. Pauli, Ann. Phys. 18, 337 (1933); D. Brill and J. Wheeler, Rev. Mod. 
Phys. 29, 465 (1957); J. Anderson, Principles 0/ Relativity Physics (Aca
demic, New York, 1967), p. 358. 
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Explicit evaluation of a path integral with memory kernel 
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An explicit expression is presented for the path integral of an harmonic oscillator interacting with 
itself in the past. The time dependence of the memory kernel is assumed to be exponential. The 
relation with the Feynman trial action for the variational calculation of the polaron ground state 
energy is discussed. 

PACS numbers: 02.50. + s, 71.38. + i 

1. INTRODUCTION 

In the present paper, the explicit evaluation is presented 
of the path integral 

K f( x,t Ix',O) = f ~ Xr exp -is f[x,x,t 1 (la) 

with the boundary conditions X, = X and Xo = x' over the 
action 

S f[x,x,t 1 = L dr(; x; - Tmn 2X; + I(r)xr ) 

+ ifl2C L dr f du XrXue - iuXT- u l. (lb) 

For imaginary times t = - iT, this propagator becomes 

.~>( x,T Ix',O) = f ~xr exp ~ Yf[x,x,T 1 (2a) 

with 

Yf[x,x,Tl = - iT dr(;x; + ~mn2x; -/(r)xr) 

+flC iTdriTdUXrXue-wlr-ul. (2b) 

Although this action at first glance resembles the Feyn
man trial action 1 for the study of the Frohlich polaron, an 
essential difference is the fact that in (lb) and (2b) the coeffi
cient of x; is not time dependent. The memory effect only 
appears in the coupling with the trajectory in the past. Fur
thermore, the strength of the harmonic potential is indepen
dent of the strength of the memory terms, whereas in the 
Feynman trial action both are intimately connected. 

Despite these differences (the first of which is essential 
for the actual evaluation), the calculation of the ground state 
energy of the large polaron with this trial action (lb) repro
duces the Feynman ground state energy for the polaron. In
deed, the equation of motion for the classical path, as derived 
from the extremalization of the action (1), becomes exactly 
the asymptotic limit (i.e., O<r<T for T -+00) of the equation 
of motion corresponding to the Feynman action, provided 
one imposes the extra condition n 2 = 4flC /mw. This condi
tion is not required in the action (2b), suggesting that it al-

8) Research Associate of the National Fund for Scientific Research (Bel
gium). 

b) Institute of Applied Mathematics, Rijksuniversitair Centrum Antwerpen, 
Groenenborgerlaan 171, B-2020 Antwerpen, and Eindhoven University 
of Technology, Eindhoven, The Netherlands. 

lows in principle to find a lower variational energy. How
ever, as will be shown below, this extra degree offreedom in 
the variational determination of the energy, turns out to in
troduce an harmonic potential for the center of mass, which 
does not improve the upper bound for the energy. 

Although the integration of (1) and (2) thus does not 
provide new results for the ground state energy of the po
laron, and although the path integral itself is not even re
quired within Feynman's treatment, the explicit evaluation 
of this type of path integrals remains a challenging problem 
in itself, and seems of particular interest from a mathemat
ical point of view. Only a limited class of Gaussian path 
integrals with retardation has effectively been calculated. 

The most general class of path integrals with a quadrat
ic action and with a memory kernel treated so far has been 
worked out in Ref. 2, including several previously known 
functional integrals as limiting cases, and with explicit re
sults for "p-periodic kernels." However, the kernel in the 
action (1) does not satisfy this periodicity condition, and to 
the best of our knowledge, the path integral (1) has not been 
obtained explicitly so far. 

It should be noted that the exponential dependence of 
the memory term in the action (1), introduces a substantial 
difference with the Gaussian path integral for an electron gas 
in a random potential, as studied in Ref. 3. 

2. EVALUATION OF THE PATH INTEGRAL 

In order to evaluate the path integral (I), we proceed as 
follows. In the first place, we examine how this path integral 
derives from a Hamiltonian, describing an oscillator in an 
external field, and coupled to a boson. Given the averaging 
procedure for obtaining the propagator (1) from the Hamil
tonian, the path integral can be explicitly evaluated if one 
subsequently diagonalizes the Hamiltonian, writes its propa
gator, and applies the averaging procedure. The relevant 
Hamiltonian turns out to be 

p2 m 
H = - + ~ 2X2 - I(t)x - ifn/2C(a - a+)x + flwa+a, 

2m 2 
(3) 

where a and a+ are the standard annihilation and creation 
operators for bosons. Consider then the propagator 

K (x,a,t Ix',a',O) = (x,alexp - i. f'dr H la',x'), (4) 
fl Jo 

where the coherent states la) (with complex numbers a) are 
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defined as4-6 

1 '" ane - 1I21al21 ) 
fa) = 1T1/2 n~o (n!)1/2 n. (5) 

The propagator (4) can be obtained from the well-known 
properties of these coherent states (see, e.g., Ref. 6). The re
sult is 

K ( x,a,t lx' ,a' ,0) = f 9 Xr exp ~ L dr(; x; 

- ; n 2X; + I(r)xr )Klx [(a,t la',O), 

(6a) 

where 
K[x [(a,t la',O) 

= (1/1T) exp( - (la1 2/2 + la'I 2/2 - a*a'e- iWI)) 

X exp(a*A 1x [(t) - a'A fx [(t)e - iWI - (ill2)<P[x [(t)) 

with 
(6b) 

This propagator can be transformed into the boson number 
representation 

K(x,n,!lx',n',O) = fd 2af d 2a'(nla) 

XK( x,a,! Ix',a',O)(a'ln'). (7) 

Performing the integrations explicitly, one finds that this 
propagator for n = n' = 0 is exactly the propagator (1) 
which we study. 

K ( x,n = O,t Ix' ,n' = 0,0) = K f( x,! Ix' ,0). (8) 

The path integral (1) is thus obtained by eliminating the bo
son in the propagator of the Hamiltonian (3), where the 
elimination means that the average ofthe propagator in the 
boson ground state is considered. 

Once this relation is established, one can proceed to the 
evaluation of the path integral. A convenient way to do this, 
is first to diagonalize the Hamiltonian, which of course gives 
two independent oscillators, and then to eliminate the boson 
contribution from the resulting propagator. Introducing 
then the momentum and position operators P2 and X2 , 

P2 . ~ (9a) 
a = ~212m2w - l\j ~X2' 

a+ = P2 + i~ m 2w x 2 , (9b) 
~212m2W 212 

one readily obtains the Lagrangian, associated with the Ha
miltonian (3) 

L (x,X;X2,x2;t ) = !l2w + !mx2 - !mn 2X2 + I(t )x 

+ !mzX~ - !m2w2x~ + 2xX2 ~I2Cm2w, 
(10) 

which is the Lagrangian of two coupled harmonic oscilla
tors, one of them acted upon by an external force/(t). Obvi
ously, this system can be written as a sum oftwo independent 
oscillators, via the transformation 

ql =x2,;m:; sin (} + x,fm cos e; 
q2 = x 2,;m:; cos (} - x,fm sin e. (11) 

Introducing the notation 

r = 2~I2:C; W = ~(n 2 - W2
)2 + 4j12, (12) 

the angle e of rotation of the coordinate frame is defined by 

Sill e = - . . ~w2_n2+ W 
2W ' 

~
n2_w2+ W 

cos (} = . 
2W 

(13) 

The eigenfrequencies of the independent oscillators are 

2 w2+n2+ W 2 w2+n2_ W n l = ; n 2 = , 
2 2 

(14) 

and the forces which act upon them are 

cos (} sin (} 
gl(t) = ----uz I(t); g2(t) = - ---m/(t). 

m m 
(15) 

The Lagrangian, obtained after this transformation, is 

L = i.12w + ± (ilJ - i.n JqJ + g j(t)q j). 
2 j= I 2 2 

(16) 

The propagator of this system is (see, e.g., Ref. 7, or Ref. 5; p. 
38) 

K (x,x2,t Ix',x~,O) = ~mm2eiWI/2kgl (ql,t Iqi ,0) 

X kg2 (q2,t Iq~ ,0), (17) 

where the mass factor in front is due to the Jacobian from the 
transformation (II), and where the propagators kg)q,! Iq',O) 
are given by 

n. i n. [ 
__ ....::....J __ ex})-:- J (q2 + q~2)COS n .t _ 2qq~ 
21Til2 sin n .t 12 2 sin n .t J J J J J 

J J 

+ ~ (' dr gj(r)(qj sin n jr + q; sin n j(t - r)) - ~ (' dr (r du gj (r)gj (u) sin n p sin n j(t - r)]. n)o n)o Jo 
(18) 

As mentioned above, the propagator K f( x,t Ix',O) is the propagator of the Hamiltonian, averaged over the phonon ground 
state, and thus it can be obtained by performing the integration 
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(19) 

with 

Vlo( XZ) = _Z_ exp - _Z_x;. (
m W)1I4 m W 
1Tfz 2fz 

(20) 

Using the transformation (11), one realizes that only Gaussian integrals are involved, which can be done. Introducing the 
shorthand notations 

= --x' = --x X Fiw X' Fiw' 2fz ' 2fz ' 

in in 
bl(t) = . I ; bz(t) = . z , 

wsmillt wsmilzt 

A (t) = 1 - bl(t) sinz () cos illt - bz(t) cosz () cos ilzt, 

B (t) = bl(t )sin2 () + bz(t) cosz (), 

D(t)=2Xtan()-2bl(t)(Xcosillt-X')tan() + - sm()cos() drf(r) bz(t) z -bl(t) I, fiw . i' ( sinil r sinil r) 
mfz 0 ilz ill 

D'(t) = 2X' tan () - 2bl(t)(X' cosillt - Xl tan () + ~_2w_sin ()cos () (' dr f(r)(bz(t)_si_n_il...:.z(!-t_-_r-"-.) V mfz Jo ilz 
_ bl(t) sin il~t - r)). 

I 

one finally obtains 

K,(x,t Ix',O) = 2 ~ 1 V w ~A 2(t) _B2(t) 

Xexp bl(:) ((XZ + X'Z) cos illt _ 2XX')exp 2bl(t)~ w (' dr f(r)(X sin illr + X' sin ill(t - r)) 
cos () il I 2mfzJo 

wbl(t) cosz 
() i' iT .. wb (t) sinZ () Xexp - dr doI(r)f(u) smnl 17 smill(t-r)exp __ ...:z'-'-__ 

mfzfl i 0 0 mfzfl ; 

i
' iT A (t)[DZ(t) + D 'Zit)] - 2B (t)D(t)D'(t) 

X dr du f(r)f(u) sin ilp sin ilz(t - r)exp 2 2 . 
o 0 4[A (t)-B (t)] 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 

Note that D (t) and D '(t) depend on the coordinates X and X'. The propagator (2) for imaginary times t = - iT is readily 
obtained from (27). 

3. REMARK ON THE GROUND STATE ENERGY OF THE POLARON 

For the study of the ground state energy of the polaron, along the lines introduced by Feynman, the propagator for 
imaginary times is only required for T -+ 00 . Therefore, we restrict ourselves to this asymptotic limit. In this case, bl ( - iT) and 
b2( - iT) and thus also B ( - iT) decay exponentially with T. Combining the terms in X and X', and neglecting all contribu
tions in the exponent which decrease exponentially with T, one ends up with 

, , 1 iTiT [COS2 () -n.lT-O'I sin
z 

() -n2 IT-0'1] %,(x,T-+oolx,O):::::%,=o(x,T-+oolx,O)exp----:; drduf(r)f(u) --e +--e , 
mfz 0 0 WI 4ilz 

(28) 

where 

% _ 0 ( x, T -+ 00 Ix' ,0)::::: 2 ,fiiifiW [][;. f!j; e -In, + n, - wiT /2 

,- W + ill sinz () + ilz cOSZ 
() V 1Tfz V 1Tfz 

(X 2 X'Z) illilz/w + ill cos2 
() + il2 sin

2 
() Xexp- + . 

w + ill sin2 
() + ilz cosz () 

(29) 

Following Feynman's variational treatment, but using the action (2b) without external force as the trial action in the 
Jensen inequality, one obtains an upper bound for the polaron ground state energy Eo. Of course, the ground state energy 
corresponding to the trial action equals ill + ilz - w, as follows from the exponential decay with Tin (29). Also for the 
expectation value of the interaction part in the polaron action, one can directly use the propagator (28), without relying on the 
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equation of motion for the classical path. Without going into details, we quote the final result (expressed in units such that the 
electron mass m, the frequency of the longitudinal optical phonons and fz equal 1) 

E
o
'1. (111 + 112 - W)2 + 111112 _ ~ ('" da 

4 111 + 112 [iTJo 

(30) 

where 111> 112, and ware variation parameters, and a is the polaron coupling constant. 

Since in the Hamiltonian formulation of the polaron 
problem the total momentum associated with the electron 
and the phonons is a conserved quantity, one would intu
itively expect that the trial action reflects this property. One 
thus expects that the minimum of the energy (30) is found for 
values of the parameters where the diagonalized Hamilton
ian (3) consists of a free particle (i.e., 112 = 0) and an harmon
ic oscillator. This is indeed confirmed numerically. The min
imum variational energy is obtained for 112 = 0, which 
means from (14) that 11 2 = 4fzC /mw. As mentioned in the 
introduction, this is precisely the condition for which the 
equation of motion for the classical path from the action (1), 
in the asymptotic limit for imaginary times becomes exactly 
the equation of motion corresponding to the Feynman trial 
action. Under this condition, one also readily checks that the 
minimum of the energy (30) becomes exactly the Feynman 
upper bound for the ground state energy of the polaron. 

1755 J. Math. Phys., Vol. 25, No.6, June 1984 

I 
ACKNOWLEDGMENT 

Financial support by the F.K.F.O. ("Fonds voor Kol
lektiefFundamenteel Onderzoek"), Belgium, Project No. 
2.0072.80, is gratefully acknowledged. 

'R. P. Feynman, Phys. Rev. 97, 660 (1955). 
2J. Adamowski, B. Gerlach, and H. Leschke, J. Math. Phys. 23,243 (1982). 
3y. Bezak, Proc. R. Soc. London Ser. A 315,339 (1970); G. Papadopoulos, 
J. Phys. A 7,183 (1974); D. C. Khandekar, S. Y. Lawande, and K. Y. 
Bhagwat, Phys. Lett. A 93,167 (1983); K. L. Sebastian, Phys. Lett. A 95, 
13l (1983). 

4J. R. Klauder, Ann. Phys. 11, 123 (1960). 
5L. S. Schulman, Techniques and Applications of Path Integration (Wiley, 
New York, 1981), p. 242. 

6See, e.g., G. J. Papadopoulos, in Path Integrals and their Applications in 
Quantum, Statistical and Solid State Physics, edited by G. J. Papadopoulos 
and J. T. Devreese (Plenum, New York, 1978), p. 139. 

7R. P. Feynman and A. Hibbs, Quantum Mechanics and Path Integrals 
(McGraw-Hill, New York, 1965), p. 64. 

F. Brosens and J. T. Devreese 1755 



                                                                                                                                    

The occupation statistics for indistinguishable dumbbells on a rectangular 
lattice space. I 
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The method of Hock and McQuistan used recently to solve the occupation statistics for 
indistinguishable dumbbells (or dimers) on a 2 X 2 X N lattice is extended further to obtain, for the 
L X M X N lattice, general expressions for the normalization, expectation, and dispersion of the 
statistics, and their limit as N becomes very large. In particular, an explicit expression of the 
partition function in the thermodynamic limit 2 (x) is obtained for any value of the absolute 
activity x of dimers. The developed mathematical formalism is then applied to planar lattices, 
1 XM XN, with M = 1,2,3, and 4. The known results for M = 1 and 2 are recovered, and some 
new ones are obtained. The recurrence relation for the number A (q,N) of arrangements of q 
dumbbells on a 1 XM XN lattice which has 3 and 5 terms when M = 1 and 2, respectively, is 
found to have 15 and 65 terms for M = 3 and 4. Analysis and extrapolation of the results enable 
one to predict the expectation (8 ) IMN on a planar 1 X M X N lattice to be 63.4%, in the limit as 
bothM and Nbecome infinite. We also find an upper bound on the quantity MN [(8 2

) - (8) f] in 
the limit as both M and Nbecome infinite. In the thermodynamic limit (M &N- 00) the partition 
function 2(1), for the absolute activity x = 1, is found to be equal to 1.95. By limiting the number 
M of rows of infinite extent (N- 00 ) to just 4, we find that the error in determining 2 (1) for the 
infinite two-dimensional lattice is just 4.5%. In this paper 2(x) is obtained for any value of the 
absolute activity x for M = 1 and 2. A more thorough study of 2 (x), and its fast convergence with 
increasing values of M, and applications will be presented in a forthcoming article. 

PACS numbers: 02.50. + s, 05.50. + q, 05.70.Ce, 68.90. + g 

I. INTRODUCTION 

The statistical treatment of the absorption and crystalli
zation of diatomic molecules, or the treatment of the proper
ties of binary alloys, usually leads to the problem of deter
mining the occupational degeneracy for indistinguishable 
dumbbells (or dimers) distributed on a lattice. In such prob
lems, if a site is occupied, then, at least one of its nearest 
neighbor sites must also be occupied. Consequently, there is 
a distribution of pairs (dumbbells or dimers) of occupied 
nearest neighbor sites. Exact solutions have been found by 
McQuistan and co-workers (referred to hereafter as MQc) 
for the following special cases 1 X 1 X N, 1 X 2 X N, and 

(3) The major difficulty of extending MQC's method to 
larger lattices is that one must decouple the recurrence rela
tions to obtain a recurrence relation involving A (q,N), the 
number of ways of arranging q indistinguishable dumbbells 
on the non truncated lattice, in the form 

2 X 2 X N. 1 Exact solutions have also been obtained for a 
completely filled lattice 1 XM XN using Pfaffians2 and the 
transfer matrix method.3 

Basic improvements on MQC's method 1 enable one to 
give a general formulation of the problem of dumbbells dis
tributedonaL XM XN lattice, whereLandMarefixed,and 
N is allowed to become very large. We give a brief summary 
ofMQC's method. 

(1) MQC introduced sublattice spaces obtained from 
the original one by removing from the Nth array containing 
LM compartments one, two, or more cells. Since they only 
considered the 2 X 2 X N lattice space, the number of sublat
tices thus generated is rather limited. 

(2) MQC then considered the number of ways q indistin
guishable dumbbells could be arranged on the originallat
tice and also on every other sublattice they generated. By 
graphical analysis they were able to develop coupled recur
rence relations among the various possible arrangements on 
different lattices. 

n max mmax 

A (q,N) = I I cnmA (q - n,N -- m). (1.1) 
n-=Orn=I 

For a given set of values of Land M, the coefficients cnm ' and 
the quantities nmax and mmax do not depend on q or N. Equa
tion (1.1) generally holds for q>nmax and N>mmax' Conse
quently, the initial values of A (q,N) for O<q < qmax and 
O<N < mmax have to be calculated numerically. 

(4) MQC also introduced the bivariant generating func-
tion 

G(x,y) = I I A (q,N)xqyN. (1.2) 
N~Oq~O 

Combining Eq. (1.2) with the decoupled recurrence relation 
Eq. (1.1 ),G (x,y) is obtained explicitly as the ratio of the two 
polynomials in x and y, 

G (x,y) = H (x,y)l D (x,y). (1.3) 

Essential to this procedure is the evaluation of the initial 
values of A (q,N) for O<q < qmax and O<N < mmax' 

(5) The meaningful statistical quantities are the configu
rational grand-canonical partition function4 

.IN(x) = I A (q,N)xq, (1.4) 
q~O 

the expectation value of the occupation of L X M X N lattice 
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1 qmax 

(f) N = I qA (q,N), 
qrnaxLl N q~O 

the dispersion in f) 

1 qmax 

(f)2)N= 2 Iq2A(q,N), 
qrnaxLl N q~O 

and the mean square deviation 

at = [( f) 2) N - ( f) ) N)2] . 

(1.5) 

( 1.6) 

(1.7) 

The connection between the bivariant generating function 
and the above statistical quantities is made by recalling that 

00 qma'l. 00 

G(x,y) = I yN I xqA (N,q) = I yNLlN(X). (1.8) 
N~O q~O N~O 

The quantity x represents the absolute activity of the dumb
bells or dimers, and MQC have only considered the case 
x=1. 

(6) MQC then calculate the z roots Rj of D (1,l/z), and 
perform an expansion of G (1 ,y) in the form 

'" kj ~ N G(I,y) = L = I kj L (yRj ) 
j (l-yRj ) j N~O 

(1.9) 

Comparing Eqs. (1.8) and (1.9), the normalization is obtained 
exactly as a finite sum over the roots of D (1,l/z), i.e., 

Ll N (I) = I kjR f(I). (1.10) 
j 

As Nbecomes large, the leading term in Eq. (1.10) gives a 
good approximation of the normalization Ll N' namely, if R) 
is the largest root, then 

LlN~k)R~. (1.11) 

The method of calculating k) as suggested by MQC for the 
2 X 2 X N lattice is rather complicated and cannot be easily 
extended to the general case. As a matter offact, this is also 
true for the other quantities (1.5), (1.6), and (1.7) which they 
have calculated for the same lattice mentioned above. 

This paper is the first in a series of two. 5 Here we intend 
only to present exact mathematical expressions for the 
grand-canonical partition function Ll N(X), for any value of 
the activity x (x>O). This will enable one to derive the closed 
form expression for the thermodynamic limit 

E' (x) = lim [Ll N(X)] IILMN. 
N~oo 

(1.12) 

We will also obtain the large N behavior of (f) ) LMN and 
oiMN for the rectangular L XM XN lattice. This is done in 
Sec. II. The general formalism is then applied to a planar 
lattice space, namely 1 XM xN lattices for M = 1,2,3, and 
4. The closing section is devoted to an analysis and discus
sion of the numerical results obtained. Throughout this arti
cle, all the numerical results were obtained using a Hewlett 
Packard 34C pocket calculator. 

II. GENERAL FORMALISM 

Following step (1) ofMQC's procedure, we first consid
er all the topologically distinct sublattices obtained from the 
original rectangular L X M X N lattice by removing from the 
Nth array, containing LM compartments, one, two, etc., up 

1757 J. Math. Phys., Vol. 25, No.6, June 1984 

to (LM - 1) compartments. The capital letter "T" will be 
used to denote a whole class of topologically distinct sublat
tices obtained from the original lattice by removing a given 
number of compartments. In the applications presented in 
this paper we use the following notations: 

"d" represents the non truncated original lattice; 
":JJ" represents the whole class of topologically distinct 

sublattices with one compartment removed from the Nth 
array; 

"~" represents the whole class of topologically distinct 
sublattices with two compartments removed from the Nth 
array; and so on. Thus, "Y" stands for" d," ":JJ ," "~," 
etc. 

In order to enumerate the various elements belonging to 
the same class Y, we choose a running lower index i; so that 
when referring to a particular sublattice belonging to the 
class Y, we would call it Y;. 

The number of ways q dumbbells can be arranged on a 
particular T; -lattice is called T; (q,N), where it is understood 
that Land M are fixed and N is the only dimension allowed 
to vary. The initial values for these numbers are 

T,(O,N) = 1 for N =1O, 

A (0,0) = 1 (i.e.,Y = d). 

To these initial values, we add the initial conditions 

(2.1a) 

(2.1b) 

T;(O,O) = 0, for Y =ld, (2.1c) 

since for N = 0, no compartments exist on an d -lattice and, 
therefore, other Y-Iattices, obtained by removing one or 
more compartments for the d -lattice, do not exist. 

The next step is to generate the coupled recurrence rela
tions among the various numbers of arrangements T;(q,N) in 
the form 

T;(q,N) = I I I Cnm [ToT)] T)(q - n,N - m).(2.2) 
11)1 n m 

There will be as many equations as there are T; 'so The num
ber of equations involved will be studied in Paper 11.5 For 
every given set of values of Land M (specifying the 
L XM XN lattice space) the coefficients Cnm [ToT)) haveto 
be evaluated. These coefficients are positive integers. This is 
step (2) ofMQC's method described in the introduction. 

For the purpose of obtaining meaningful statistical 
quantities, the bivariant generating function expressions Eq. 
(1.3) is essential. It can be determined without explicitly ha v
ing to perform the decoupling of the recurrence relations Eq. 
(2.2) and obtain a recurrence relation for A only, as in Eq. 
(1.1). This is done by introducing as many bivariant generat
ing functions as there are Y; - lattices, namely 

oc qmax 

GT,(x,y) = I I T;(q,N)xqyN. (2.3) 
N~Oq~O 

Combining Eqs. (2.2), (2.3), and the initial value conditions, 
Eqs. (2.1a), (2.1b), and (2.1c), one finds 

GA(x,y) = 1 + I I Cnm [A,T) ]G1)(x,y)xnym, 
ITjl n,m 

(2.4a) 

GT,(x,y) = I I Cnm [T;T)] GTj(x,y)xnym, for T; =lA. 
11)1 n,m 

(2.4b) 

Thus, the decoupling of recurrence relations is reduced to 
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the much easier problem of solving a system of linear equa
tions where the bivariant generating functions Gr play the 
role ofunknowns.6 Clearly, in this system of equ~tions, the 
coefficients are Cnm [To1j ]xnym. It then follows that each 

I - I xnymcnm [A,A ], - I xnymcnm [A,B(], 
n,m n,m 

one of the bivariant generating functions can be written as 
the ratio of two polynomials inx andy. Formally, the system 
of equations (2.4a) and (2.4b) may be represented by a matrix 
equation, namely 

GA 

- I xnymcnm [B(,A ], 1- Ixnymcnm [BI,B I ], 
GB , 0 

(2.5) 
n,m n,m 

Solving for GA , one finds 

G A (x,y) = H (x,y)1 D (X,y), (2.6) 

whereD (x,y) is the determinant of the square-matrix appear
ing in Eq. (2.5) and H (x,y) is the cofactor associated with its 
first diagonal element. The polynomial structure of H (x,y) 
and D (x,y) follows immediately from the structure of this 
matrix. Although irrelevant to the discussion of the problem 
of interest to us, it is worthwhile remarking that decoupling 
ofthe recurrence relation Eq. (2.2) can be achieved by 
straightforward manipulations on Eq. (2.6). 6 

From now on, we will assume that Eq. (2.6) has been 
worked out explicitly for a given set of values of Land M. 
Unlike MQC's method, we will not restrict the activity x to 
take on the value x = 1. The major advantage of this ap
proach is the ability to obtain closed form expressions for the 
configurational grand-canonical partition function .J N (x), 
the expectation < e ) N' and the variance ot. Thus, the z-roots 
of the determinant D (x,l/z), Rj(x), are x-dependent. These 
roots are the z-solutions of the equation 

D(x,l/z) = O. (2.7) 

It then follows that the bivariant generating function may be 
expanded in terms of the Rj(x), namely 

'" kj(x) 00 N", N 
GA(x,y) = ~ = I y ~kj(x)[Rj(x)] , 

j [1-yRj(x)] N=O j 
(2.8) 

where the coefficients kj(x) will be determined shortly. 

A. The calculations of..::1 N 

Equation (2.8), when compared with the equivalent 
expression of the bivariant generating function G A (x,y), 

00 qmax 

GA(x,y) = I yN I xqA (q,N), (2.9) 
N=O q=O 

allows one to obtain .J N (x) in the form 
qmax 

..::1N(x)= I xqA(q,N) = Ikj(x)[Rj(x)]N. (2.10) 
q= 0 j 

Clearly, the normalization .J N calculated in particular cases 
by MQC, is the function.J N(X) evaluated at x = 1, 

.IN=.JN(I). (2.11) 

We now explicitly evaluate kj(x) in terms of the polyno
mials H (x,y) and D (x,y). This is achieved by expanding 
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I 
GA (x,y) in the neighborhood of one of the roots,y = lIR;(x). 
The denominator D (x,y) in Eq. (2.6) is given by 

D(X,y)=D(X, ~J + ~- ~J 
X - +0 y--( aD) (1 )2 

ay y=IIR,1x) R
j 

• 

(2.12) 

Since R; is one of the solutions of Eq. (2.7), D (x,lIR;) = O. 
Using the relation, 

H (x,y) kj(x) 

D(x,y) = t [1- yR;(x)] 
(2.13) 

and isolating the term in the j-summation corresponding to 
j = 1, then replacing D (x,y) by its equivalent from (2.12) and 
multiplying both sides ofEq. (2.13) by (y - lIR;), one ob
tains an expression valid in the neighborhood ofy = lIRo 
namely 

H(x,y) = _ kj(x) + (Y - 1) 
(aDlaY)yRi=1 +O(y-lIR;) R;(x) R; 

XI kJ(x) 

J7" [1- yRJ(x)] (2.14) 

We then sety = lIR; in Eq. (2.14) and obtain 

- Rj(x)H(x,l/R;) 
k(x)= . 

, [aD laY]yRi= ( 
(2.15) 

This gives the closed form expression of .J N (x), 

_ '" [Rj(X)]N+ IH(x,lIRj ) 
.JN~)- - ~ . 

j [aDlaY]Y=IIR}X) 
(2.16) 

Let R I (x) be the largest root for any given activity x (x;;;.O), 
then in the thermodynamic limit the partition function is 
given by 

E(x) = lim [.I N (X)]IILMN= [RI(x)]IILM. 
N_", 

(2.17) 

By setting x = 1 in Eq. (2.16), we obtain the exact closed 
form expression of the normalization,..::1 N .IN (I). Rj (l) are 
thez-roots of D (1, liz). Should there exist nonsimple roots of 
D (1, liz), the analysis above, which assumes simple roots, 
can be easily adjusted. Nevertheless, it is possible to show 
that the forthcoming discussion will remain unaffected as 
long as the root oflargest modulus is real, positive and sim
ple. Under these circumstances, let R I be the largest real root 
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of D (1 , liz). Setting x = 1 in Eq. (2.16) and factoring out 
R f+ I, one finds 

(
R )N+ I H(ll1R) 

..:::1 N(I)=Ll N = -Rf+IL -' " . 
j RI [aDlaY]YRj~' 

(2.18) 

This clearly shows that the leading term of Eq. (2.18), when 
N becomes large, is 

LlN = - R f+ I _H---,--(I_,I_IR_j_) _ {I + 0 (RR'I" )N+ I}. 
[aDlaY]YR,~1 

(2.19) 

B. The calculation of <()N 

Consider the first derivative of Ll N(X), Eq. (2.10) 

qmax 

Ll ~(x) = I xq-IqA (q,N). (2.20) 
q~O 

Since there areLMN compartments on a L XM XN-lattice 
space, and since each dumbbell occupies two adjacent com
partments, the maximum number qmax of dumbbells that 
may occupy such a lattice is the integer part of LMN 12. We 
use the symbolic bracket notation [LMN 12] to refer to in
teger division, i.e., 

qrnax = [LMN 12]. (2.21) 

Generalizing definition (1.5), the expectation on the lattice 
may then be given as a function of x as 

1 (..:::1 ~(X)) 
(O)N= [LMNI2] LlN(x) , 

(2.22) 

where..:::1 ~(x) is defined as aLl N(X)/ ax, 

..:::1 ~(x) = I {k jR f + NkjR f- IR iJ. (2.23) 
j 

This enables one to obtain the closed form expression 

(

" [k'RN+Nk'RN_IR~]) 
1 "7" " , 

(O)N = ---- . 
[LMN 12] " k.R N 

£.. ) , 
j 

(2.24) 

So Rj(x) are numerically calculated from D (x, liz) = 0 and 
the associated values kj (x) are calculated using Eq. (2.15). On 
the other hand, the quantities Rj(x) have still to be evaluated. 
The values, k j(x) may then be calculated after taking the 
derivative of Eq. (2.15). 

Since Rj(x) are completely independent of the polyno
mial H(x,y), if we call tj(x) the expression of kj(x) when 
H(x,y)=l, it then follows that 

1 I tj(x) (2.25) 
D(x,y) = j [1 - yRj(x)]' 

and 

-Rj(x) 
tj(x) = ----

[aDlaY]YR,=1 
(2.26) 

We now take the partial derivative ofEq. (2.24) with respect 
tox: 

(2.27) 

According to Eq. (2.12), an expansion of D 2 in the neighbor
hood ofy = lIRi(x) is 

D 2(x,y)= y- - - +0 y- - . ( 1 )2 (aD)2 (1 )3 
R; ay yR,= I R j 

(2.28) 

We multiply both sides ofEq. (2.27) by tv - lIRj)2, replace 
D 2 by its approximate expansion (2.28), and then take the 
limit asy approaches lIRi(x). We obtain 

aD(x,lIRj) aD(x,lIRj) tj(x)R ;(x) 

ax ay [R;(x)f 
(2.29) 

Finally, theexpresson oft; (x) given by Eq. (2.26) may be used 
in Eq. (2.28) and yields 

R ;(x) = R ;(x) (aD lax) . 
aD lay yR,~ I 

(2.30) 

The forthcoming derivation remains unaffected as long 
as the root oflargest modulus R I (x) is a real, positive, and 
simple root. Then, as N becomes large, the leading terms in 
Eq. (2.23) are 

1 {k; (x) 
(0) N = [LMN 12] kl(x) 

+NR;(x) +NXO(!!L.)N}. (2.31) 
RI(x) RI 

Taking the limit as Nbecomes infinitely large, and using Eq. 
(2.30), one finds 

(0) = _2_ (1 aD lax). (2.32) 
00 LM Y aD lay yR,~ I 

First-order corrections are readily available from Eq. (2.31). 

c. The calculation of ~ 

The method of calculating 0;" is straightforward. The 
starting point is the expression of the second derivative of 
..:::1 N(x) as computed from Eq. (2.20): 

qrnax 

..:::1~(x)= I Xq- 2[q2A (q,N)-qA (q,N)]. (2.33) 
q~O 

Generalizing Eq. (1.6) and combining Eqs. (2.20), and (2.33), 
it then follows that 

(0 2) = 1 (..:::1 ~(x) + ..:::1 ~(X)). 
N [LMN 12]2 LlN(x) (2.34) 

The ratio..:::1 ~(x)/..:::1 N(X) was calculated previously [see Eqs. 
(2.22) and (2.31ll. Similar calculations give 

l:j {k j' + 2Nk j(R jIR I ) + Nkj(R j'IRd + N(N - l)kj (R jIRd2J(R/R I)N 

l:j kj(R/RdN (2.35) 

The leading terms ofEq. (2.35) as Nbecomes large are 
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-----.!!..-=_l +2N_l
_

l +N_l +N(N-l) _I +0 _1 N2. Li " k " k' R' R " (R ' )2 (R )N 

LiN kl kl RI RI RI RI 
(2.36) 

Thus, the large N behavior of (0 ) N is given by 

4 {R'2 1 ( k' R' R; R;' R;2) 1 (ki' ki) (Rj)N} (02)N=--- __ 1_+_ 2_1_1 + +----2 +-2 -+- +0 - . 
L2M2 RI2 N kl RI R) RI RI N kl kl Rl 

(2.37) 

Clearly, in the limit as Nbecomes infinite, one has 

(0
2
)00 = L2~2 (::r =(O)oof 

This shows that 
croo = o. 

(2.38) 

(2.39) 

The first-order correction to at may be calculated by taking 
the square ofEq. (2.31), keeping the leading terms, i.e., 

2 4 { R ;2 2 k; R; 
(O)N) = L2M2 R/ + N--;::/i; 

1 k;2 (Rj)N} +--+0 - . 
N 2 k/ R] 

(2.40) 

We take the difference between Eqs. (2.36) and (2.39) and 
find 

cr.--- -- 1+---4 {IR;( R;' R;) 
N - L 2M2 N R] R i RI 

1 k; ( k ;' k ; ) (R )N} +-2- 1+-,--+0-1 • 
N kl k 1 kl Rl 

(2.41) 
Again, the above result holds when the root R 1 oflar

gest modulus is a simple, real and positive root. We now 
calculate the first-order correction by looking at an explicit 
expression for R i'l R i. This is done by taking the logarith
mic derivative of R ; using Eq. (2.30) and the fact that in this 
equation one has 

1 dy 
y= -- and -= 

R;(x) dx 

R ;(x) 
(2.42) 

R~(x) 
It follows that 

R;' = 2!!i + (a
2
D lax

2 
- (a

2
D lax ay)(R ;IR ~)) 

R; R; aD lax yR,~ 1 

_ (a
2
D lax ay - (aZD layZ)(R ;IR ~)) . 

aD lay yR,=1 (2.43) 

TABLE I. The entries A, B, C, etc., correspond to sublattices generated 
from the original lattice space 1 xM XNby removing from the Nth array, 
no compartment, one, two, etc., up to (M - I) compartments, respectively. 
This table gives the number of topologically distinct sublattices belonging to 
the same class, and for various values of the lattice size M. The last column 
in this table gives the total number ofbivariant generating functions GT,(x,y) 

for various values of the lattice size M. Since this number is equal to the total 
number of T,- lattices, it is obtained by adding the number in the table 
falling on the same horizontal line. 

~s TOTAL 

A B C D E NUMBER Of 
SIZE GENERATING 

M "- FUNCTIONS 

1 1 I 

2 I I 2 

3 I 2 2 5 

4 I 2 4 2 9 

5 I 3 6 6 3 19 

1760 J. Math. Phys., Vol. 25, No.6, June 1984 

I 
This result may be combined with the properties 

R;(x) (aDlax) 
R ~(x) = aD lay yR,~ l' 

to give the leading term of at for large N: 

cr.
N 

= _2_ (0) {I + LM (0) 
LMN 00 2 00 

a2D lax2 (aD lax)(a2D layZ) 

+ aDlax + (aDlayf 

_ 2 a
2
Dlaxay } + o (lINf. (2.45) 
aD lay yR,~l 

To complete this theoretical study of the occupation 
statistics for indistinguishable dumbbells on a rectangular 
lattice space, L X M X N, for finite N and for the limit as N 
becomes very large, we conclude with the Gaussian repre
sentation of A (q,N). Introducing the normalized quantity 

0= qlqrnax (2.46) 

we obtain the Gaussian distribution valid for large values of 
N, namely 

A (q,N) = Amax exp( - [0 - (O)N ]2/at), (2.47) 

where (0 ) N and UN are calculated from Eqs. (2.32) and 
(2.45) setting x = 1. Amax is the maximum number of possible 
arrangements on theL X M X N lattice given approximately 
by 

(2.48) 

We now proceed to applying this general formalism to 
1 XM XN lattices for M = 1,2,3, and 4. In Table I, we give 
the number of distinct sublattices of given class Y for every 
case to be investigated. 

III. THE 1 X 1 xN LATTICE 

This one-dimensional problem has already been solved 
exactly.l We reproduce the known results for the sake of 
completeness and as a mere application of the general for
malism developed in Sec. II. Following MQH, the recur
rence relation for the number of arrangements A (q,N) of q 
dumbbells on this lattice is straightforward. This number is 
equal to the sum of all possible arrangements of q dumbbells 
leaving the Nth compartment unoccupied A (q,N - 1), and 
all possible arrangements, A (q - I,N - 2), of(q - 1) dumb
bells when the last two compartments are occupied by one 
dumbbell. This is illustrated in Fig. I. So, very simple, one 
has 

A(q,N)=A(q,N-I)+A(q-I,N-2). (3.1) 

This is a special case of Eq. (2.2) which stands for a set of 
equations, equal in number to the number of distinct T;
lattices. In the one-dimensional problem, we have two 
Cnm [T;,1j] coefficients, namely 
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2 N-2 N-I N 

A(q, N-I) 

N-2 N-I N 

I I + I A(q,N-2) 

FIG. 1. Generating a recurrence relation for the number of arrangements 
A (q,N) of q dumbbells on a I X I X N-Iattice. 

COl [A.A ] = 1, c12 [A.A] = 1. (3.2) 

For this problem, Eq. (2.4a) becomes 

G A (X,y) = 1 + yG A (x,y) + xy2G A (x,y) (3.3) 

and we end up with one equation with one unknown. Then 
matrix equation (2.5) has a trivial form 

(1 - y - xy2)GA (x,y) = 1 (3.4) 

leading to the simplest expressions for H (x,y) and D (x,y), 

H (x,y) = 1, D (x,y) = 1 - y - xy2. (3.5) 

The z-roots of D (I, liz) are easily obtained from setting 

D (liz) = (lIz2 )(z2 - Z - x) = O. (3.6) 

These are 

Rj(x)=4[1-(-IY~I+4x], j=I,2. (3.7) 

The root oflargest modulus is real and positive and we pro
ceed in the application of our formalism, by calculating the 
first- and second-order partial derivatives of D (x,y) with re
spect to x andy, namely 

aD a2D a2D _y2, __ =0 -- = -2y; 
aD 

aD 

ay 

ax2 'axay 

a2D 
-(1 +2xy), - = -2x. 

ay2 
(3.8) 

,'I , I , [-I I I 1'-" N I 

,'I I I I I == I I I I '-'I i I 
,'1111 [J I rF-~ 
FEll I [:111 rXI 

A(q, N-I) 

A(q-I, N-I) 

A(q-2, N-2) 

2B(q-l, N-I) 

FIG. 2A. Generating a recurrence relation for the number of arrangements 
A (q,N) of q dumbbells on a 1 X2XN-Iattice. 

,'I I I I r~~~H I INl 
EIII H J 11-& 

A(q, N-I) 

B(q-I, N-Il 

FIG. 2B. Generating a recurrence relation for the number of arrangements 
B (q,N) of q dumbbells on a truncated 1 X 2 X N-Iattice of class B. 

Using Eq. (2.16), we obtain the exact value of the grand
canonical partition function, 

~N(X)= c+~r+ljtl 
x( 1 - (- 1 y{f+4X)N + I 1 - (- lY{f+4X . 

1 + ~ 1 + 4x 1 + 4x - (I N 1 + 4x 
(3.9) 

TABLE II. Arrangements of q dumbbells on a 1 X 1 X N lattice and the normalization factor LI N' 

~ 0 I 2 3 4 5 EXACT APPRQXIMATI: ERROR 
6 N 6 N 0/0 

0 I I 0.7236 e7.64 

I I I 1.1708 17.08 

2 I I 2 1.8944 5.28 

3 I 2 3 3.0652 2.17 

4 I 3 I 5 4.9597 0.807 

5 I 4 3 8 8.0249 0.312 

6 I 5 6 I 13 12.9846 0.118 

7 I 6 10 4 21 21.00952 0.045 

8 I 7 15 10 I 34 33.99412 0.017 

9 I 8 21 20 5 55 55.00364 0.0066 

10 I 9 28 35 15 I 89 88.99775 0.0025 
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In the thermodynamic limit, Eq. (2.17) yields 

For large values of N, and for x = I, the normalization .:i N' 

(3.11) 

The accuracy of this relation improves with increasing val
ues of N. Table II shows how good this approximation is for 
small values of N. This approximation gives a better than one 
percent agreement for N = 4. The expectation (0 ) 00 , on the 
infinite one-dimensional lattice is calculated using Eqs. 
(2.32) and (3.8): 

(0) = 2 (~ - y2 ) 
00 -(I 2x) yR,=! 

Y + Y x=! 

=~[I-~L=! 
= I - ,fS/5 = 0.552 786405. (3.12) 

Similarly, combining Eqs. (2.44) and (3.8) one obtains for 
x=1 

~ = 4J5 .!. = 0.357 770 876 
N 25 N N' 

(3.13) 

IV. THE 1 X2XNLATTICE 
This lattice problem has also been solved.! Our general 

formalism may be applied again to give, in just a few steps, 
the interesting statistical quantities. Table I shows that there 
is only one sublattice belonging to the B-c1ass, and conse
quently, two bivariant generating functions GA and GB • 

Again, following MQC, Figs. 2A and 2B show how to find 
the recurrence relations Eq. (2.2). One finds 

A(q,N)=A(q,N-I)+A(q-I,N-l) 

+A (q - 2,N - 2) + 2B(q - I,N - I), (4.1) 

B(q,N)=A(q,N-I)+B(q-I,N-I). 

By comparison with Eq. (2.2) we obtain thecnm [T;.1}] coef
ficients 

C01 [A,A] = ClI[A,A ] = CdA,A ] = I, 

ClI [A,B ] = 2, Co![B,A] = ClI[B,B] = 1. (4.2) 

Consequently, for this lattice, Eqs. (2.4a) and (2.4b) reduce to 

GA (x,y) = I + (y + xy + x 2y2)GA (x,y) + 2xyGB(x,y), 

GB(x,y) =yGA(x,y) + xyGB· 

The matrix equation becomes 

(
(I - y(x + I) - x 2y2) 

-y 
- 2xY) (GA

) (I) 
I-xy GB = O· 

The determinant of the square matrix obtained is 

D(x,y) = (1 - xy)[ 1-y(x + I) - x 2y2] - 2xy2 

(4.3) 

(4.4) 

= 1-y(1 + 2x) _xy2 +xV (4.5) 

and the cofactor of its first diagonal element is 

H(x,y) = I -xy. (4.6) 

It then follows that 

G (x ) = H (x,y) = I - xy 
A ,y D(x,y) l-y(I+2x)- xy2+ x Y 

(4.7) 
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As an illustration of the flexibility of the general formal
ism developed, we would like to recover the decoupled re
currence relation from the expression of D (x,y). It is suffi
cient to mention here, without any additional derivations, 
that with each term of the form Axnym one associates 
AA (q - n,N - m). The one-to-one correspondence that fol
lows produces the uncoupled recurrence relation 

A (q,N) -A (q,N -I) - 2A (q - I,N - I) 

- A (q - I,N - 2) + A (q - 3,N - 3) = O. (4.8) 

This is the recurrence relation derived by McQuistan and 
Lichtman (MQL).! As found by MQL, the roots of D (1,1,z) 
are 

R! = 3.214 319 743, R2 = 0.460 811 121, 
(4.9) 

R3 = - 0.675 130871. 

Again, the root oflargest modulus is a simple root, real and 
positive. For this value of the z-root, we calculate the first 
and second partial derivatives of D (x,y) 

aD(I,lIR!) 

ax 
- 2y - y2 + 3X2y 3 = - 0.628699 130, 

a
2
D(I,lIR!) = 6xy 3 = 0.180 699159, 

ax2 

(4. lOa) 

(4IOb) 

azD(l,lIRd 

axay 
- 2 - 2y + 9x2y2 = - 1.751 122968, 

= - 3.331851413, 

a
2
D(I,lIR!) = -2x+6x3y=0.133353095, 

ay2 

H(I,l/R;) = I -xy = 0.688 92183. 

(4.IOc) 

(4.lOd) 

(4. We) 

(4.lOfj 

With these numerical results used in Eqs. (2.18), (2.31), and 
(2.44), we recover MQL's results, for x = 1, namely, 

.:iN = 0.664 591384(3.214319 743t, 

(0) 00 = 0.606 492711, 

(4.11) 

(4.12) 

and we also obtain the value of ~ that MQL do not report in 
their paper, 

~ = 0.167100 836(lIN) + O(lINf (4.13) 

For the purpose of comparing the rate of convergence 
for the various lattice problems discussed in this paper, we 
reproduce in Table III, MQL's table for A (q,N) and add to it 
the exact .:i N and the approximate .:i N calculated from Eq. 
(4.11). We notice from this table that the agreement ofthe 
approximate formula with the exact value is better than (0.1) 
percent for N = 4. 

Finally, for completeness we give the explicit x-depen
dence of the z-roots of D (x, liz), since 

D (x, liz) = (lIr)[z3 - (I + 2x)z2 - xz + x 3
] = 0 

(4.14) 

is a cubic equation. The three roots of this equation are real 
and given by 
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TABLE III. Arrangements of q dumbbells on a 1 X 2 X N lattice and the normalization factor ..d N' 

~ 0 I 2 3 4 5 6 7 8 9 C1N 
EXACT APPROXIMATE 

0 I I 0.6645913 

I I I 2 2.136209 

2 I 4 2 7 6.866459 

3 I 7 II 3 22 22.07100 

4 I 10 29 26 5 71 70.94324 

5 I 13 56 94 56 8 228 228.03425 

6 I 16 92 234 263 114 13 733 732.97400 

7 I 19 137 473 815 667 223 21 2356 2356.0160 

8 I 22 191 838 1982 2504 1577 424 34 7573 7572.9888 

9 I 25 254 1356 4115 7191
1

7018 3538 789 55 24342 24342.007 

R(x)= 1 +2x + ~ [4X2+7x+ 1]\/2 
J 3 3 

particular, one recovers the results obtained with the HP 
34C when the activity x is set equal to unity. 

xcos [r,6 r) + (j - 1) 2;], j = 1,2,3, (4.15) V. THE 1 X3XNLATTICE 

where 

Here, the situation is a bit more complicated than in the 
previous two examples. According to Table I, we have two 
sublattices B\ and B2 belonging to class B, and two sublat
tices C\ and C2 belonging to class C. These topologically 
distinct sublattices are represented in Fig. 3. Figures 3A, 
3B\, 3B2, 3C\, and 3C2 give the diagrams associated with the 
generation of the recurrence relations according to MQH. In 
these figures, only the last 3 rows of compartments are 
shown, namely rows N - 2, N - 1, and N, respectively. The 
coupled recurrence relations that follow from the analysis of 
these figures are 

cos t/J (x) = _ (11x
3 

- 42x2 - 21x - 2) (4.16) 
2(4x2 + 7x + If/2 

The advantage is that one is able to obtain the explicit 
closed form expression of the partition function 

SIx) = [R\(x)] \12, 

whereR\(x) is the largest of the three roots given in (4.15). In 
J 

A (q,N) =A (q,N - 1) + 2A (q - I,N - 1) +A (q - 3,N - 2) + 2BtIq - I,N - 1) 

+ 2B\(q - 2,N - 1) + B2(q - I,N - 1) + 2C\(q - 2,N - 1) + C2(q - 2,N - 1), 

B\(q,N) =A (q,N - 1) +A (q - I,N - 1) +B\(q - I,N - 1) +B2(q -l,N - I) + C\(q - 2,N - I), 

B2(q,N) =A (q,N - I) + 2B\(q - I,N - I) + C2(q - 2,N - 1), 

C\(q,N) =A (q,N -1) +B\(q -I,N - 1), 

C2(q,N)=A(q,N-l)+B2(q-l,N-I). 

The coefficients cnm [T;,Tj] are easily identified from Eq. (5.1) and the matrix equation (2.3) follows 

1 - y(1 + 2x) - x 3y2 - 2xy(1 + x) - xy _ 2x2y GA 

- y(l +x) l-xy -xy _x2y GB , 

(5.1) 

-y -2xy 10GB, (5.2) 

-y -xy 0 

-y 0 -xy 0 

The cofactor of the first diagonal element of the square matrix is 

H (x,y) = I - xy - 2x2y2(1 + x) + X4y 3 + X6y4 (5.3) 

and the determinant of the square matrix is 

D(x,y) = 1- (1 + 3xlY -xy2(2 + 7x + 5x2) +X2y3(2x2 -x - I) +X4y4(2 + 3x + 5x2) _x6y5(I_x) _X9y6. (5.4) 

The decoupled recurrence relation for A (q,N) is obtained following the rule stated in Sec. IV: 
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~-----~ 
ttttD---~ 

~---+++P 
tijjjj----t±tb 

I N 

H=+m----~t=++P tttttj---b 
I N 

§ft±±::-:a±P c, 

FIG. 3. B- and C-c1ass of sublattices for the 1 X 3 X N-Iattice problem. 

A(q, Ix3xN) 

N-2 N-2 N-2 

B,(q,lx3XN) 

N-2FW N-2WJ N-2ftW-~~~~~ ~-N-I ,N-I N-I N N N 
A(q, N-I) A(q-I, N-I) B,(q-I, N-I) 

N-2§Bj N-2~ N-I N-I 
N N 

C,(q-2, N-Il 

FIG. 3B,. Generating a recurrence relation for the number of arrangements 
B (q,N) of q dumbbells on a truncated 1 X 3 XN-Iattice of type B,. 

N-28=§~ , N-2Fm 
N-I N-I 

N N 

N-2W 
N~ll±HiJ 

A(q, N-I) 2B, (q-I, N-Il C2(q-2, N-I) 

FIG. 3B2• Generating a recurrence relation for the number of arrangements 
B (q,N) of q dumbbells on a truncated 1 X 3 X N-Iattice of type B2 • 

N-I N-I N-I C, (q, Ix3xN) ~ fIB iB 
N N N &B~'~~ ~ ITfB N-2 N-2 

A(q, N-I) 2A (q-l, N-I) A(q-3, N-2) _~~ ~ ~ ~ ~~~~ 

N-I N-I 

N N 

A(q, N-I) B,(q-I, N-I) 

N-2ffiE~ N-2~ N-2ffi§ 
~I N-I N-I 

N N N 

FIG. 3C,. Generating a recurrence relation for the number of arrangements 
C,(q,N) of q dumbbells on a truncated 1 X 3 )<N-Iattice of type C,. 

4B, (q-I, N-Il 2B,(q-2,N-1l 

2C,(q-2, N-f) C,(q-2, N-l) 

::aE 
N U 

A(q, N-i) 

C2 (q, Ix3x4) 

tffij
' 

N-2 I 

N-I 

N 

~(q-l, N-i) 

FIG. 3A. Generating a recurrence relation for the number of arrangements 
A (q,N) of q dumbbells on a 1 X 3 X N-Iattice. 

FIG. 3C2• Generating a recurrence relation for the number of arrangements 
C2(q,N) of q dumbbells on a truncated 1 X 3 X N-Iattice of type C2 • 

A (q,N) -A (q,N - 1) - 3A (q - 1,N - 1) - 2A (q - 1,N - 2) -7A (q - 2,N - 2) - 5A (q - 3,N - 2) 

+2A (q -4,N - 3) -A(q- 3,N - 3) -A (q- 2,N - 3) + 2A (q-4,N -4) + 3A (q - 5,N -4) 

+ 5A (q - 6,N - 4) - A (q - 6,N - 5) + A (q - 7,N - 5) - A (q - 9,N - 6) = O. (5.5) 

This recurrence relation should satisfy the initial values of A (q,N) to be computed by hand for q = 0 to 8 and N = 0 to 6. We 
explicitly see now why our formalism is so much easier to handle than the procedure involved in MQH's paper, 1 and the long 
derivations of MQL. 1 

The roots of D (1, liz) are easily obtained using the HP-34C pocket calculator. They are found to be 

R. = 6.212070250, R4 = - 0.342 320 858, 

R2 = 0.698 204 338, Rs = - 1, 

R3 = 0.350 983683, R6 = - 1.918937413. 
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TABLE IV. Arrangements of q dumbbells on a I X 3 X N lattice and the normalization factor AN' 

~ 0 I 2 3 4 5 6 7 8 9 10 ~ 
EXACT APPROXIMATE 

0 I I 0.551273070 

I I 2 3 3.424547038 

2 I 7 II :3 22 21.27352677 

3 I 12 44 56 18 131 132.1526428 

4 I 17 102 2671302 123 II 823 820.9415008 

5 I 22 185 1748 1597 1670 757 106 1 5086 5099.746274 

6 I 27 293 1644 5236 9503j9401 4603 908 41 31657 31679.98211 

7 I 32 

All roots are simple and real, and the one oflargest modulus is positive. We finally calculate the various first- and second-or
der derivatives of D (x,y) and evaluate them at x = 1 and y = 11 R 1: 

aD(l,lIRd = _ 3y _ y2(2 + 14x + 15x2) + xy3(8x2 - 3x - 2) 
ax 

+ X3y4(8 + 15x + 30x2) + xY(7x - 6) - 9X8y 6 = - 1.238 195378, 

J2D(1,lIR 1) = _ y2(14 + 30x) + y3(24x2 - 6x - 2) 
ax2 

+ X2y4(24 + 60x + 150x2) + X4y5(42x -·30) = - 0.915 022105, 

J2D(l,lIRd = _ 3 _ 2y(2 + 14x + 15x2) + 3xy2(8x2 - 3x - 2) 
axay 

+ 4X3y 3(8 + 15x + 30x2) + 5X5y4(7x - 6) -- 54xByS = - 11.872 187 10, 

aD (l,lIRd = _ (1 + 3x) _ 2xy(2 + 7x + 5x2) + 3x2y2(2x2 -- x-I) 
ay 

+4x4y3(2+3x+5x2)-5x6y4(1-x)-6xY= -8.341143147, 

J2D(1,lIR 1) = -2x(2+7x+5x2)+6x2y(2x2-x-1) 
ay2 

+ 12x4y 2(2 + 3x + 5x2) - 20x6y 3(1 - x) - 30X9y 4 = - 24.910 516 74, 

H(1,lIR 1) = 0.740 211 782. 

These results are used to obtain 

LlN = (0.551273070)(6.212070 250)N, 

(0) 00 = 0.614 764 390, 

~ = 0.105661 426(lIN). 

(5.6a) 

(5.6b) 

(5.6c) 

Table IV lists the exact values of Ll N and the values computed using the approximation formula (5.6a). This time the error is 
about 0.25 percent at N = 4. 

VI. THE 1 x4xNLATTICE 

According to Table I, there are two distinct sublattices of the B- and D-class, respectively, and four of the C-class. These 
sublattices are identified in Fig. 4. The drawings in Fig. 4 represent the last three rows, the (N - 2), (N - 1), and Nth row, 
having four compartments each. Figures 4A, 4B1, 4B2, 4C1, 4C2, 4C3, 4C4, 4D1, and 4D2 give the diagrams associated with 
the generation of the coupled recurrence relations among the numbe rofarrangementsA (q,N),Bj(q,N), Cj(q,N), andDj(q,N) 
of q dumbbells on the associated sublattices. The coupled relations that follow from the analysis of these figures are 

1765 

A(q,N)=A(q,N-1)+3A(q-1,N-1)+A(q-2,N-1)+A(q-4,N-2)+2BM-1,N-1) 

+ 4BM - 2,N - 1) + 2B2(q - 1,N - 1) + 2B2(q - 2,N - 1) + 2C1(q - 2,N - 1) + 2C1(q - 3,N - 1) 
+ C2(q - 2,N - 1) + C3(q - 2,N - 1) + C3(q - 3,N - 1) + 2C4(q - 2,N - 1) 
+ 2D1(q - 3,N - 1) + 2D2(q - 3,N - 1), 
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BM,N) =A (q,N - 1) + 2A (q - I,N - 1) + B1(q - I,N - 1) + 2B2(q - I,N - 1) + B1(q - 2,N - 1) 

+ B 2(q - 2,N - 1) + C1(q - 2,N - 1) + C2(q - 2,N - 1) + C4 (q - 2,N - 1) + D1(q - 3,N - 1), 

B 2(q,N) =A (q,N - 1) +A (q - I,N - 1) + 2BM - I,N - 1) + B1(q - 2,N - 1) + B 2(q - I,N - 1) 

+ CM - 2,N - 1) + C3(q - 2,N - 1) + C4 (q - 2,N - 1) + D2(q - 3,N - 1), 

C1(q,N)=A(q,N-l)+A(q-l,N-l)+B1(q-l,N-l)+B2(q-l,N-l)+C1(q-2,N-l), 

C2(q,N) =A (q,N - 1) + 2B1(q - I,N - 1) + C3(q - 2,N - 1) 

C3(q,N) = A (q,N - 1) +A (q - I,N - 1) + 2B2(q - I,N - 1) + C2(q·- 2,N - 1), 

C4(q,N) = A (q,N - 1) + B1(q - I,N - 1) + B 2(q - I,N - 1) + C4(q - 2,N - 1), 

D1(q,N) =A (q,N - 1) +B1(q - I,N - 1), 

D2(q,N)=A(q,N-l)+B2(q-l,N-l). 

The above nine coupled recurrence relations lead to a system of nine linear equations that give the closed form 
expressions of the bivariant generating functions. The square matrix associated with this system of linear equation is 

[I - y(1 + 3x + x 2
) - x"Tl - 2xy(1 + 2x) - 2xy(1 + x) - 2x2y(l +x) _ x2y _x2y(1 + x) _ 2x2y _ 2x3y 

-y(1 + 2x) l-xy(1 +x) -xy(2+x) _x2y _x2y 0 _x2y _x3y 

-y(I+x) -xy(2 +x) I-xy _x2y 0 _x2y _x2y 0 _x3y 

-y(I+x) -xy -xy l_x2y 0 0 0 0 0 
-y -2xy 0 0 1 _x2y 0 0 0 

- y(1 +x) 0 -2xy 0 _x2y 1 0 0 0 
-y -xy -xy 0 0 0 l_x2y 0 0 
-y -xy 0 0 0 0 0 1 0 
-y 0 -xy 0 0 0 0 0 1 

The determinant of this 9 X 9 matrix is not so difficult to calculate, since so many of its elements are zeros. Of course, the 
same holds for the cofactor of the first diagonal element. One finds 

D (x,y) = - X28y l4 + X24y l3 + x 21y12(1 + 5x + 12x2 + 12x3) -- x I8y11(1 + 6x + 9x2 + 17x3 - 4X4) 

A 

c, 

- xlyO(l + 12x + 32x2 + 64x3 + 103x4 + 47x5
) + X13y 9( - 2 + 2x + 43x2 + 94x3 + 34x4 - 20x5

) 

+ Xlly8(7 + 56x + 175x2 + 285x3 + 273x4 + 86x5
) - x lOy7(16 + 70x + 124x2 - 14x3 - 38x4) 

- X7y6(7 + 60x + 227x2 + 429x3 + 297x4 + 82x5
) + x 5l(2 + 14x + 21x - 36x3 - 57x4 - 34x5

) 

+ xY(1 + 16x + 84x2 + 176x3 + 143x4 + 41x5
) + x2y3(1 + 12x + 39x2 + 31x3 + 14x4) 

- xy2(1 + 9x + 28x2 + lOx3) - y(l + 6x + 2x2) + 1. 

8, 

'M-1E 
' , 

I I : 

tr 

D, D2 

:~~hltH·.---
N ' 

'---"- - , 
2B, (q-I. N-Il 

~ 
N-2 , 

N:'I_ iti] 
2C, (q-2, N-I) 

N-2~lJ~q 
N:'I!ffi~ 

C,(q-3, N-I) 

A(g. Ix4x N) tfit3 >1-. J~L ; I I : 
___ j ~i-
M(q-I. N-I) A(q-2. N-Il 

4B, (q-2. N-Il 2B2 (q-I. N-Il 

~ 8ffiR 
2C, (q-3, N-Il C2(q-2, N-Il 

A(q-4. N-2) 

~
'-t 

..• -

hl+fr __ J 
C,(q-2, N-I) 

~~y~W_-
HI-H~ ~llll ~ 
2C.(q-2, N-Il 20, (q-3, N-Il 202(q-3, N-I) 

FIG. 4. A-, B-, C-, and D-class of lattices for the 1 X4XN problem. 

FIG. 4A. Generating a recurrence relation for the number of arrangements 
A (q,N) of q dumbbells on a 1 x4xN-lattice. 

1766 J. Math. Phys., Vol. 25. No.6. June 1984 Alain J. Phares 1766 



                                                                                                                                    

8, (q, Ix4xN) 
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, , 
L ___ L __ ' 
2A(q~I, N-I) 8, (q-I, N-Il 

:llii8 ~ ~ 8uW 
28, (q-I. N-I) 8,(q-2. N-I) C, (q-2. N-I) C,(q-2. N-Il 

0, (q-3. N-I) 

FIG. 4B\. Generating a recurrence relation for the number ofarrangements 
Bdq,N) of q dumbbells on a truncated 1 Xl XN-lattice of type B I· 

~
+ 

N-2 1, I 

*"' , 
N ., 

, I 

A(q. N-/ J A(q-I, N-I) 28'(q-l. N-I) 8, (q-2, N-I) 

N-2~-' -t-i • 
N-I ' , 

I~ , 

N I __ ~ I L_ 
D,(q-3, N-I) 

FIG. 4B\. Generating a recurrence relation for the number of arrangements 
BI(q,N) of q dumbbells on a truncated 1 X 1 XN-lattice oftype BI. 

A(q. N-I) A(q-I. N-I) B,(q-I, N-I) 

CI (q-2. N-I) 

FIG. 4C I . Generating a recurrence relation for the number of arrangements 
Ct(q,N) of q dumbbells on a truncated I X4XN-Iattice of type C I . 
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C~{q, Ix4xN) 

A(q,N-I) 2BI (q-I. N-I) 

FIG. 4C2 • Generating a recurrence relation for the number of arrangements 
C2(q,N) of q dumbbells on a truncated I X 4 X N-Iattice of type C2 • 

A(q.N-I) A(q-I, N-ll 4q-2.N-1l 

FIG. 4C3 • Generating a recurrence relation for the number of arrangements 
C3(q,N) of q dumbbells on a truncated I X 4 X N-Iattice of type C3• 

A(q, N-I) 8, (q-I. N-Il 8,(q-I, N-IJ C.(q-2, N-I) 

FIG. 4C •. Generating a recurrence relation for the number of arrangements 
C.(q,N) of q dumbbells on a tnIDcated 1 X 4 X N-lattice of type C •. 

N-2 

N-I 

N 

DI{q, Ix4x N) 

BIB-~ .. BffE-
A(q, N-I) BI (q-I. N-I) 

FIG. 40 I' Generating a recurrence relation for the number of arrangements 
DI(q,N) of q dumbbells on a truncated 1 X4xN-lattice of type D t . 

A(q, N-I) Bz(q-I. N-I) 

FIG. 402, Generating a recurrence relation for the number of arrangements 
D2(q,N) of q dumbbells on a truncated 1 X 4 X N-Iattice of type D2 • 
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TABLE V. Arrangements of q dumbbells on a I X 4 X N lattice and the normalization factor .d N' 

~ 0 1 2 3 4 5 6 7 8 9 10 llN 
EXACT APPROXIMATE 

0 1 1 0.472589371 

1 1 3 1 5 5.699001236 

2 1 10 29 26 5 71 68.72481076 

3 1 17 102 267 302 123 " 823 828.7591840 

4 1 24 224 1065 2602 3401 2129 509 31 9986 9994.087688 

5 1 31 395 2717 10341 25974 36748 29339 11814 1935 78 119373 120519.6765 

H (x,y) = x24yl2 - x21yll(3 - x) - X 18y lO( 1 + lOx + 7x2) + X 15y9(3 + 13x + 8x2 - 5x3) + X 13y 8( 12 + 32x + 48x2 + 19x3) 

- X lly7(3 + 19x - 5x2 - lOx3) - X 9y6(24 + 86x + 80x2 + 26x3) - xy(3 + 13x + 19x2 + lOx 3) 

+ x5y4(12 + 56x + 56x2 + 19x3) + xY(3 + 19x + 14x2 + 5x3) - xY(1 + 14x + 7x2) - xy(3 + x) + 1. 

D (x,y) is a polynomial of 14th degree. The z-roots of D (1, liz) are all real and were found to be 

Rl = 12.05909736, R2 = 3.043 737925, R3 = 1.330009783, R4 = 0.826 568 481, 

R5 = 0.439 218 637, R6 = 0.328543398, R7 = 0.251442710, Rg = - 0.227516685, R9 = - 0.484178 764, 

RIO = - 0.548230369, Rll = - 1, R12 = - 1.826568481, Rl3 = - 1.858555021, Rl4 = - 3.336086508. 

Again, the root of highest modulus is positive and we evaluateH and the first and second derivatives of D atx = landy = 11 
Rl 

aD(I,lIR1) = _ 1.473035364, 
ax 

aD(I,lIR1) = _ 13.95557552, 
ay 

a
2
D(I,lIRd = _ 18.70841412, 
axay 

a
2
D(I,lIR1) = -1229607500 

ay2 . , 

H(I,lIRd = 0.546 911310. 

These results will then lead to the statistical quantities for x = 1 

LiN = (0.475 589 371)(12.059 097 36t, 

(8) 00 = 0.620 875 482, 

0;., = 0.074 714 5411N. 

(6.1a) 

(6.1b) 

(6.1c) 

Again, as a check of how good the approximate relation (6.1a) is, we list in Table V the number of arrangements of q 
dumbbells on a 1 X4XN lattice and compare the exact value of LiN with the approximate value computed from (6.1a). 
Consistent with previous results for N = 4 the approximation is accurate to better than 0.1 percent. 

VII. SUMMARY AND CONCLUSION 

The results obtained for the 1 XM XN lattices with 
M = 1,2,3, and 4 are summarized in Table VI. We found for 
each of these lattices that all roots of D (1, liz) were simple 
and real and we also found that the root oflargest modulus 
was positive. This may not be a surprise when all roots are 
found to be real. However, we are not able to prove that this 
should always be the case for all higher values of M. A closer 
analysis of the data shows that it is possible to make certain 
extrapolations which lead to a number of interesting predic
tions. 

(1) Equation (2.30) shows that, for a fixed set of values L 
and M the first-order correction of (e ) N in the large-N limit 
is of order liN, namely (2/LMN)(k ;/kd· It is appropriate to 
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TABLE VI. Summary of the numerical results obtained for 1 XM XN lat
tices with M = 1,2,3, and 4. 

M R, k, ~~m.,[N(T~J <8> 
<1J 

1 1.618033989 0.723606798 0.357770876 0.552786405 

2 3.214319743 0.664591384 0.334201672 0.606492711 

3 6.212070250 0.551273010 0.316984278 0.614764390 

4 12.05909736 0.472589371 0.298858164 0.620875482 
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FIG. 5. The large-N limit of the average occupation of dumbbells on a 
I XM XN lattice vs (11M). 

add two extra labels to the expectation «() 00 referring to L 
and M. In other words, we really obtained the value of 
«() hMoo for L = 1 and M = 1,2,3, and 4. Because of the 
symmetry that exists between L, M, and N, it is obvious that 
the first-order correction to «() LMN in thelarge-M limit is of 
order (1/ M). It therefore makes sense to plot «() ) 1M 00 versus 
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TABLE VII. Arrangements of q dumbbells on a I X 5 X N lattice and the normalization factor ..:1 s. 

----

~ 0 I 2 3 4 5 6 7 

0 I 
- -- -- -- --I--- --

I I 4 3 
r--~- ~- --- ~- _0_" -. --- ------

2 I 13 56 94 56 8 
---

3 I 22 185 748 1597 1670 757 r06 

4 I 31 395 2717 10341 2597~ 36748 29339 
------ __ L ___ -'-_____ 

--- -.~--.-

(1/ M) and follow its behavior as M increases from 1 to 4. 
Clearly, an almost linear graph is expected in the region of 
low values oft 1/ M). Figure 5 confirms our theoretical expec
tation. Apparently, linearity holds most perfectly for the 
data points corresponding to M = 2, 3, and 4. A least-square 
fit of these three points gives 

(e )IMoo = - 0.0564(1/M) + 0.6344, M>2. (7.1) 

The intercept gives the average occupation of dumbbells on a 
planar lattice of infinite extent, namely 

(7.2) 

(2) Equation (2.40) shows that, for a fixed set of values L 
and M the first-order correction to No7v in the large-N limit 
is also of the order of(1/N), namely (4/NL 2M2)(k; /kJ) 
X [1 + (k;' /k;)(k ; /kIl]. Here again, it is appropriate to 
make explicit the Land M dependence and add these two 
labels to 07v, thus giving oiMN' The symmetry mentioned 
above also requires that the first-order correction to 

M! lim NoiMN J 
N~oo 

(7.3) 

is of order (1/ M). Therefore, it makes sense to plot this quan
tity versus (1/ M) (Fig. 6). Linearity is not achieved as quickly 
as was the case for «() ) 1M 00 • However, it is possible to obtain 
an upper bound on the quantity 

lim MNdfMN' (7.4) 
N~oo 

A linear extrapolation from the last two data points, corre
sponding to M = 3 and M = 4, gives an intercept of 0.244. 
This is the upper bound we are looking for 

lim MNdfMN < 0.244. (7.5) 
N~oo 

M~oo 

(3) The largest rootR I (I) seems to follow an exponential 
behavior in M. This is very obvious from the semilogarith
mic graph (Fig. 7). A least-square fit of the four data points 
gives 

R J(I;M) = (0.8354)(1.9512)M (7.6) 

and predicts a largest root of23.6286 for M = 5. It also pre
dicts that in the thermodynamic limit 
E(I) = limM_oo [RI(I;M)]lIM = 1.9512. Thus the error 
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~ 8 9 10 
EXACT APPROXIMATE 

I 0.425379 

7 10.0511 

228 237.494 i 
I 

5086 561 1.64 

11814 1935 78 119373 132595. 

made in calculating E (1) for a two-dimensional lattice ofinfi
nite extent by just taking M = 4 is 4.5% since 
[R I(I;M = 4)j1/4 = (12.0591)1/4 = 1.863. 

(4) Concerning kl(I), which represents the limit of 
[ .J. N / R n ' as N becomes infinitely large, Fig. 8 makes ap
parent its decreasing behavior in terms of increasing values 
of M. Here, with no theoretical motivation, we plot for con
venience k I (1) versus 1/ M. A linear extrapolation from the 
last two data points corresponding to M = 3 and M = 4 
gives the value 

k l (I;M = 5) = 0.425379. (7.7) 

We, therefore, obtain an approximate expression for the nor
malization .J. N for the 1 X 5 X N-lattice problem. namely 

.J. N ~0.425 379(23.628 6t. M = 5. (7.8) 

This formula. obtained by extrapolation, works well for low 
values of N, as one might expect. Indeed, .J. N is an exponen
tial function; a small error in determining the largest root R I 
would produce a large error in computing .J. N as N becomes 
large. The root R I should be calculated to many more signifi
cant figures than the six given by the linear fit of the data. 
Table VII shows how the values of.J. N computed from (7.8) 
start to diverge rapidly from the exact results. In this case, 
the estimate on the root R I is a little bit too large. Never
theless,Eq. (7.6) may be used effectively should one choose to 
solve explicitly the occupation statistics on higher-order 
planar lattices. 
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We study an analytical structure of a quasistatic model of magnetically confined plasmas. 
Applying the fixed point theorem, we construct global-in-time weak solutions. 

PACS numbers: 02.90. + p, 03.40.Gc, 52.30. + r, 52.55. - s 

I. INTRODUCTION 

This paper studies equations that model the quasistatic 
evolution of a plasma. The quasistatics is the study of evolu
tion of equilibrium driven by the slow change of internal and 
external parameters. The quasistatic equations are given by 
dropping pta, v + (v·V)v) (p is the mass density, v is the ve
locity) in the magnetohydrodynamic equations. I There exist 
systematic studies2

--{i on this subject: formulating the prob
lem, constructing explicit numercial schemes, and analyzing 
mathematical structures. In this paper, however, we study a 
simplified model in order to understand an analytical struc
ture of the problem from the viewpoint of partial-differen
tial-equation theory. 

Our goal in this paper is to show that the model equa
tions have global-in-time solutions in a weak sense. Here, 
roughly speaking, a weak solution is a solution without regu
larity and uniqueness (see Sec. III). In many quasistatic prob
lems, we see some pathological behavior of solutions such as 
bifurcations and discontinuous evolution, that is, the so
called catastrophic jump. Therefore, it seems a natural ap
proach that we discuss weak solutions which include a quite 
general class of solutions enough to permit bifurcations and 
singularities. 

We consider initial-boundary value problems of a sys-
tem 

a,u=L1u+f(t)+g, u-P(u)u=O, 

where the unknown u corresponds to the current density 
flowing in the plasma,J(t ) is a given function, g is an un
known function implicit to u andf(t), andP (u) is an orthogo
nal projector onto a closed convex set W(u) offunctions, 
which is a linear subspace dependent upon u. 

Let us briefly review some analogous problems from a 
mathematical point of view. If the linear subspace W is inde
pendent of u, the corresponding problem is linear. A simple 
example of this category is the Stokes equations7

: 

a,v = L1v + f(t) - Vp, 

v - Puv = 0, 

where Puis the projector onto a linear subspace Wu of diver
gence-free vector fields, v is the fluid velocity, and p is the 
pressure. 

When the fixed set W is a general closed convex set, the 
corresponding problem is nonlinear and it is shown to be 
equivalent to a penalized equations: 

a,UE - alJl(u) + fIt), 

{
(VU,VU)/2, ifuEWnHb(IJ) 

lJI(u) = + 00, otherwise, 

alJl(u) = Is; lJI(v);;;.IJI(u) + (S,v - u), 

for all vEL 2(IJ ) J ' 

where (u,v) denote the inner product ofa Hilbert spaceL 2(IJ); 
see Sec. III for notation of function spaces. Making appro
priate assumptions forf(t ), we get a unique regular global-in
time solution for this problem (see Brezis8

). 

Allowing time dependence for W gives a generalization 
of the above penalized problem. This temporally inhomo
geneous equation has a unique regular global-in-time solu
tion under appropriate assumptions forf( t ) and W (t )(see Wa
tanabe9

). 

In the present work, the convex set W(u) is a linear sub
space, but it depends upon u, so the problem is strongly non
linear. In Sec. II, we discuss the physical background of the 
problem, and in Sec. III, we give a mathematical formula
tion. In Sec. IV, we prove the existence of weak solutions 
applying the Schauder fixed point theorem (cf. Nirenberg lO

). 

II. A QUASISTATIC MODEL 

The diffusive evolution of the magnetic flux density B is 
dominated by Ohm's law l 

E = 1]j - vXB, 

where E is the electric field, j is the current density, v is the 
fluid velocity, and 1] is the resistivity. In this work, we as
sume 1] is a constant. When we combine Ohm's law with 
Faraday's law 

a,B= -VXE, 

we get 

a,B = (1]/ /lo)L1 B + VX(vXB), (1) 
where we use Ampere's law with the displacement current 
neglected: 

j = VXB/ /lo' 

Take the rotation of the both sides of (1) to get an evolution 
equation for j: 

a, j = ( 1]/ /lo)L1j + VX(VX(vXB)). (2) 

In the quasistatic model, the nonlinear term 
VX(VX(vXB)) is implicitly determined by the equilibrium 
condition, instead of solving an evolution equation for v. II 
The macroscopic equilibrium condition is 
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O=jXB - Vp, (3) 

where p is the pressure. To determine p, we need equations of 
mass and entropy, which make analysis very complicated. 
Therefore, instead of using (3) directly, we employ here the 
following reduced condition of equilibrium. Let us now con
sider a two-dimensional system for simplicity. A generaliza
tion to three-dimensional systems is discussed in Sec. V. The 
reader is referred to Grad and Rubin 12 for the following 
standard technique in the static theory of plasmas. Let z 
denote the ignorable coordinate. We denote by u the z-com
ponent of the current density j. In a two-dimensional system, 
we can introduce the flux function", that is the z component 
of the vector potential; so it is related to u by a potential 
equation. The flux function defines flux surfaces, viz., a sur
face V zX( ",-contour) is a flux surface which magnetic field 
lines are lying on. According to the equilibrium theory, 12 in a 
two-dimensional system, u is a function of only"" viz., 
u = u( ",). In other words, u should be constant on each "'
contour. This necessary condition l3 for equilibrium is for
mally written as follows (see Sec. III for a more mathemat
ical formulation). Let W(u) denote a set offunctions that are 
constant on ",-contours, where", is related to u by a potential 
equation (see Sec. III). We denote by P (u) the orthogonal 
projector onto W(u). Ifand only ifu is contained in W(u), we 
have 

u -P(u)u =0. (4) 

This equation (4) is the formal expression of the above-men
tioned equilibrium condition. 

In this work, we model the quasistatics using the re
duced condition (4). Let us write the z-component of Eq. (2) 
as 

a,u=.:1u+N, (5) 

where N is the z component of the nonlinear term 
VX(VX(vXB)), and we replaced the constant ('TIl flo) by 
unity to simplify notation. To close (5) by the necessary con
ditionofequilibrium(4), wewriteN = f(t) + g, wheref(t lisa 
given function and g is implicit to u andf(t ). Note that, when 
we use the necessary and sufficient condition of equilibri
um,13 we can consider N itself implicit to u, andf(t) = 0. 

We now have a reduced quasi static model: 

a,u =.:1u + fit) +g, 

u - P(u)u = 0, 

(6) 

where unknowns are u and g. We consider the above system 
inaboundeddomainn that is contained in ]R2, with a bound
ary condition u = ° on the boundary an. In the next section, 
we give a mathematical formulation of W(u), P(u), and the 
system (6). 

III. MATHEMATICAL FORMULATION 

First, we list notation used in this paper. Let n be a 
smoothly bounded domain in ]Rz. We denote by QT a cylin
dricalregion(O,T)xn,andbyQ Taregion( - a,T)Xn fora 
fixed positive number a. We use the following function 
spaces (cf. Lions and Magenes I4

). We denote by L 2(n) the 
space of functions u(x) which are measurable and such that 
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the norm II u II = (S f1 u2 dx) 1/2 is finite. It is well known that 
L 2(n ) is a Hilbert space for the scalar product 

(u,v) = 1 u(x)v(x)dx. 

Let H mIn ) denote the Sobolev space that is a Hilbert space 
of functions which are in L 2(n ) together with all their deriva
tivesoforder <m. LetH - min ) be the dual spaceofHm(n). 
We denote by H ;r(n ) the closure of.9 (n ) in H m(1l ), where 
.9 (Il ) is the set of infinitely differentiable functions with 
compact support in Il. We define .9'(Il) = dual of fiJ(n), 
which is the space of distributions on Il. We denote by C (Il ) 
the space of continuous functions on Il. 

Let L 2(0, T; V), for a Hilbert space V, denote a space of 
functions on (O,T) such that the norm (s;;lul~ dt )112 is finite. 
We denote by ((U,V))T the inner product of the Hilbert space 
L 2(0,T;L 2(1l I), viz., 

((U,V))T = iT (1 u(x,t )v(x,t )dx )dt. 

Let C ([0, T]; V) denote the space of continuous functions on 
[O,T] with values in a Hilbert space V. 

We now give the mathematical expression of the flux 
function "'. The flux function is related to u E L 2(n ), in Il, by 

",=Ku, 

where K is a linear compact operator on L 2(n ) such that K 
maps L 2(n) into H2(1l). In view of the Sobolev lemma, 15 

'" = Ku E C (Il ) for u E L 2(1l ). Explicit definition of K is the 
solution operator for the following linear elliptic problem 

-A",=u, 

where A is the Laplacian with the domain D (A ) = H b (Ilo) 
nH 2(no), where Ilo is a certain two-dimensional domain in
cluding n. 

Let W (u), for u E L 2(n ), be the closure in L 2(1l ) of 
smooth functions that are constant on each", = const con
tour, where", = Ku. The set W(u) isa subspace ofL 2(n). We 
denote by P(u) the orthogonal projector onto W(u). We de
fine P(u(t)) for u(t) E L 2(0,T;L 2(1l)) taking, for example, 
P (u(ts))v = v at the discontinuous point t, of u(t ).16 

Let us interpret (6) as an evolution equation in L 2(1l): 

!!!!... =.:1u + f(t) + g, 
dt 

u -P(u)u = 0, 

u(O) = uo, 

where.:1 is the Laplacian with domain 

D(.:1) = Hb(1l )nH 2(1l), 

(7) 

du/dt is the strong derivative of u,f(t) is a given function in 
C ([0,00 );L 2(n )), and Uo is an initial value in L 2(n ). 

Next we define a weak solution of the system (7). We 
call a fun~tion u(x,t) a weak solution of (7) on (O,T), if there 
exists g E .9' (Q ' T) and u satisfies 

- ((u,a, t/J ))T = ((u,.:1t/J ))T + ((f, t/J ))T 

+ « g, t/J »T + (uo, t/J (-,0)), (8) 

((u - P (u)u, t/J ))T = 0, 

for all t/JE.9 (Q' T)' where « g,'» T represents a continuous 
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linear functional on !iJ (Q 'T)' Formally, we get (8) when we 
multiply,p E !iJ(Q 'T) toEqs. (7), and integrate them over QT' 

IV. WEAK SOLUTIONS 

We will prove the existence of a weak solution of (7). 
The existence theorem is an application of the Schauder 
fixed point theorem. We first fix a function wand solve a 
preliminary problem: 

- ((u,J t ,p ))T = ((u,Li,p ))T + ((f, ,p ))T 

+ « g, ,p » T + (uo, ,p (.,0)), (9) 

((u - P (w)u, ,p ))T = 0, 

for all,p E !iJ(Q 'T)' whereP(u) in (8) is here replaced by P(w). 
Let U(·) denote a mapping that maps w to u, the solution of 
(9), viz., U(w) = u. We then find a fixed point of the mapping 
U(·). Let us begin with the following lemma. 

Lemma 1: We fix a function wit ) E L 2(0, oo;L 2(n )), and 
consider a parabolic equation 

!!!!.... =L1u + I(t) + [P(w(t))u - u], 
dt E 

(10) 

ufO) = uo, 

where E is an arbitrary fixed positive number, 
I(t) E C ([0, 00 );L 2(n )),and Uo E L 2(n ). Then, (10) admits a 
unique solution in 

V(O, (0) = {u; U EL 2(0,00;Hb(n i), 

du L 2( -I} -E O,oo;H (n)). 
dt 

Proof First, we recall that V(O, (0) C C ([0, 00 );L 2(n )) 
(see Lions and Magenes I4

). 

(First step.) To prove this lemma, we apply the fixed 
point theorem in C ([0, 00 );L 2(n)). We first fix a function 
U E C ([0, 00 );L 2(n )), and consider the following problem: 

: =..1y + FU(t), (11) 

FU(t) = I(t) + [P(w(t ))u(t) - u(t )]lE. 

It is well known that (11) has a unique solution y E V (0, 00 ) 

(see Lions17
), andy(t) can be written 

y(t) = et.1uo + fe(t-S).1FU(S)dS, (12) 

where et.1 is the analytical semigroupl5 generated by..1. Let 
us write y = Y (u), where y is a solution of (11) with a fixed 
function u E C ([0, 00 );L 2(n)). We next find a fixed point of 
Y(.). 

(Second step.) We begin with the existence of a local-in
time solution. We define 

G (O,t ) = ! u E C ([O,t J;L 2(n )); 

Ilu(sJlI<lluoll + 1 (t;;;.s;;;.O)). 

which isa closed bounded subsetofC ([O,t ];L 2(n i). We prove 
that Y (.) maps G (O,t ) into itselffor sufficiently small t. In view 
of(12), we have 

II Y(u)(t) 11<llet
.1uo ll + f Ile(t-S).1FU(s)lIds, 
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where Y(u)(t) is the value of Y(u) at t. Since et.1 is a contrac
tion mapping for all t;;;.O, we have 

II Y(u)(tlll<lluoll + tess supI/FU(s)ll· 
O<s<t 

Because the projector P (w(t)) is contractive, we get 

IIY(u)(t)II<lluoll +tL:~~t( 11/(sJlI +21I u(s)II/E)] 

<lluoll + t [M + 2(lIuoll + I)lE], 

where M = sup II l(s)ll. Therefore, for 
0<5< 00 

t<[M + 2(11uol + I)/E]-I,weconcludethatT(.)mapsG(O,t) 
intoG (O,t). Next, we prove that y(.) is a contraction mapping 
on G (O,t), for sufficiently small t. Using (12), we estimate, for 
u, v E G(O,t), 

IIY(u)(t) - Y(v)(t)ll< f Ile(t-s,.:l [FU(s) -F"(s)] lids 

<t (2IE) sup Ilu(s) - V(s) II . 
0<5<t 

This implies 

sup II Y(u)(S) - Y(v)(s) II < sup Ilu(s) - u(slll, 
0<5<t 0<5<' 

for t<El2. So, for 

t<To = min! [M + (2IE)(lluoll + 1)]-I,El2) 

= [M + (2IE)(lluoll + 1)]-1, 

y(.) is a contraction mapping on G (O,t). Therefore y(.), for 
t<To' has a unique fixed point u in G(O,To), viz., Y(u) = u, 
which implies that u solves (10) in t< To. 

(Third step.) Finally, we prove the existence ofa global
in-time solution. We construct the global solution by the 
continuation oflocal solutions. We have found, in the second 
step, a solution u(t) in [O,To], which satisfies 
Ilu(To)II<lluoll + 1. Considering u(To) = ul , the new initial 
value, we apply the same procedure of the second step to find 
a solution in [0, To + TI], where 

TI = [M + (2IE)(llu l ll + 1)]-1 

;;;.[M + (2IE)(lluoll + 2)]-1. 

This continuation of the local solutions gives the desired glo
bal solution, since };,~ 0 T; = 00. This completes the proof 
of Lemma 1. 

We are planning to pass the limit of E ---+ ° in Eq. (10). 
This technique is the so-called penalty method (cf. Lions I8 ). 
We prepare the following a priori estimate that is indepen
dent of E. 

Lemma 2: For the solution of (10), we have an a priori 
estimate 

d 
2 dt IIU(l )11

2
< - IIVu(t JlI2 + (f(t ),u(t)), (13) 

for all t> 0. This especially implies 

f IIVu(s)11
2 ds<! lIuol1 2 + M 2

t 2 + Mt Iluoll, (14) 

whereM= sup 11/(5)11. 
O<S< 00 
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Proof When we multiply the solution u(t) oft 10) to the 
both sides of (10), and integrate them over n, we get 

~ lIu(t JlI2 = - IIVu(t JlI2 + (f(t ),u(t)) 
2dt 

+ (P(w(t ))u(t) - u(t ),u(t ))/E. 

This immediately gives(13),sinceP(w(t ))iscontractive. Inte
grating (13) over (O,t ) gives (14). 

We now prove the existence of a solution to a modified 
problem (9). 

Lemma 3: Let Tbe an arbitrary positive number, and 
let w(t) be given in L 2(0,T;L 2(n lI. Then, there exist 
u E L 2(0,T;H ~(n)) andg E ~'(Q'T) that satisfy (9): 

- ((u,a, rp ))T = ((u,Llrp ))T + ((I, rp ))T 

+ « g, rp»T + (uo, rp (·,0)), 

((u - P(w)u, rp liT = 0, 

for every rp E ~ (Q ' T)' where the initial value Uo is in L 2(n ). 
Proof In what follows, we denote by u~ the solution of 

(10), in order to clarify that u~ is a solution for the parameter 
E. For any rp E ~ (Q a we have 

- ((u',a, rp ))T = ((u',Llrp ))T + ((I, rp ))T 

+ (([ [P(w)u' - U']!E) , rp))T 

+ (uo, rp (.,0)). 
In view of the estimate (14), we can select a subsequence {ubj 
of the sequence {u'j that converges to u in the weak topology 
of L 2(0, T;H b (n )). For such a subsequence I u.s), we have, as 
tJ-O, 

((u.s,a, rp ))T - ((u,a, rp ))T' 

((u.s,Llrp ))T - ((u,Llrp ))T' 

for every rp E g7(Q ~). Therefore I ((u.s - P(w)u.s, rp ))TltJj 
converges to a finite number g( rp ). On the other hand, using 
((P(w)u, rp ))T = ((u,P(w) rp ))T' we get ((u.s - P(w)u.s, rp))T 
- ((u - P(w)u, rp IlT' as tJ - O. Consequently, we have 
((u - P(w)u, rp ))T = 0. Writingg( rp) = « g, rp », wegetthe 
desired result. 

Finally, we prove the existence ofa weak solution of(7). 
Theorem: Equation (7) permits a global-in-time weak 

solution, viz., there exists at least one couple of 
u E L 2(0, T;H b (n )) and g E g7' (Q ~) that satisfies, for every 
T>O, 

- ((u,a, rp ))T = ((u,Llrp ))T + ((I, rp ))T 

+ « g, rp » T + (uo, rp (0,0)), 

((u - P(u)u, rp ))T = 0, 

for all rp E g7(Q ~). 
Proof Let U(w) = u, where u is the solution, given in 

Lemma 3, of the problem (9) with a fixed function w. In view 
of the lower semicontinuity of the norm (S~ IIVu(s)1I 2 

dS)1/2 in 
the weak topology of L 2(0, T;H b (n )), we have the same esti
mate (14) also for the solution u(t) of (9). Let us define 

H (O,T) = {u E L 2(0,T;H 6 (n)); 

iT IIVuI12ds<~ IIUol1 2 +M2T2 +MTlluoll}, 
° 2 
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which is a weakly closed, bounded, convex subset of 
L 2(0,T;H b(n)). Because of the above-mentioned estimate, 
the function U (.) maps H (0, T) into H (0, T), and it is compact 
in the weak topology of L 2(0,T;H b(n)). Applying the 
Schauder fixed point theorem, 10 we conclude that U (.) has a 
fixed point in the weak topology. This completes the proof. 

V. DISCUSSION 

Below we list some additional remarks. 
Remark 1: There are four points to be made. 
(i) The regularity of the weak solution can be slightly 

improved as follows, which is obvious from the proof of 
Lemma 3. The weak solution u of (7) satisfies 

- ((u,a,v)Jr = - ((VU,VV))T + ((J,vll T 

+ (( g,V))T + (uo,v(.,O)), 

((u - P(u)U,V))T = 0, 

for every v E H I(O,T;H ~ (n )), and g is in the dual space of 
H I(O,T;H b(n)). 

(ii) A weak solution may have discontinuity in time. 
(iii) The concept of a weak solution has been introduced 

to the theory of the Navier-Stokes system by Leray 19 (see 
Temam7

). 

(iv) The projector P (u) gives the flux surface average of 
functions. In the present work, however, we have used no 
specific property of the flux surface average besides the fact 
thatP (u)islinearandcontractiveinL 2(n ). BehaviorofP (u)is 
unfavorable for the temporal regularity. For example, in (11) 
of Lemma 1, we get no improvement in regularity for its 
solution, even if we assume higher regularity for wIt ). 

Remark 2 (free boundary): A solution of the quasistatic 
model has a free boundary in the following sense. Let n ,+ 

denote the support of the solution u(t ) at time t. The region 
n ,+ is defined almost everywhere in [0,00). Generally, n ,+ 

is strictly contained in n, and the plasma has a free boundary 
an ,+ ; this is obvious when we consider the definition of 
W(u) and the boundary condition u(t) E H b(n) (a.e., t>O). 

Remark 3 (three-dimensional plasmas): Let us consider 
a three-dimensional domain n that is surrounded by a sim
ple torus an. We assume that the plasma has flux surfaces 
everywhere in n, viz., every magnetic field line lies on a 
corresponding surface and twists the long way around the 
torus. Then, we can introduce a flux coordinate (!/J,e,; ) 1 such 
that e is an angle the short way around, ; is an angle the long 
way around, and t/J = f rA·dx, where A is the vector poten
tial and the integral is taken over a curve r that is the inter
section of the flux surface and a poloidal cut. 

A necessary condition for equilibrium is that the cur
rent density j satisfies 

j = /(t/J)V; XVt/J + l (!/J)vt/Jxve. 

Let W( j) be the closure in (L 2(n))3 of smooth functions that 
satisfy the above condition and let P (j) denote the projector 
onto W( j). We consider the following quasistatic model: 

at j = Ll j + f(t) + g, 

j - P(j)j = O. 

Then, we conclude that the above system has a weak solution 
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provided that the plasma has flux surfaces everywhere; the 
argument is similar to that of the two-dimensional problem. 
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We present a theorem for (first-order) Lagrangian theories which associates several conserved 
quantities to one (s-equivalence) symmetry transformation. 
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I. INTRODUCTION 

In 1918, Noether established the well-known theorem, 
which bears her name, relating conserved quantities to in
variances of the action principle. 1,2 In this theorem each 
symmetry of the action is associated with one conserved 
quantity, in a very well-defined fashion, which makes it use
ful to construct the conserved quantities when a Lagrangian 
and one of its symmetries are known for a given problem. It 
is, of course, unnecessary to emphasize the tremendous im
portance that this theorem has had for mathematical physics 
over the years. 

In this work we present a similar theorem, which is 
based on a different definition of symmetry from the one 
stated above, that associates many conserved quantities with 
one given symmetry of the problem in consideration. The 
theorem may also be of use since the construction of the 
constants of the motion is simple and explicit once a Lagran
gian and a symmetry of the problem are known. 

In order to be more precise, let us briefly review the 
basic concepts involved in the Noether theorem and present 
the new elements which appear in the theorem we prove. 

Consider a Lagrangian L (qi, i/,t ) for a system with N 
degrees of freedom. The coordinate transformation 

qi = qi(q,t), 

! = !(q,t) 

induces a new Lagrangian I (qi, i/,!), where 

- . - dt 
L (q, q,t ) = L (q, q,t ) -= . 

dt 

(1 ) 

(2) 

Noether's theorem essentially asserts that if the transforma
tion given by Eq. (1) is a symmetry transformation for the 
Lagrangian (in the sense that the equations of motion de
rived from I are the same as the ones derived from L ), i.e., if 

(3) 

then one can construct a constant of the motion associated 
with the symmetry. Strictly speaking Noether's theorem is 
concerned with infinitesimal transformations 

qi = qi + 8qi(q,t ), 

! = t + 8t (q,t), 

and the symmetry requirement may be stated as follows. 

(4) 

The transformation (4) is a symmetry transformation 
for the Lagrangian L (qi, qi,t ) if there exists a function 
8/(qi,t) such that 

8L aL 8qi + aL (8qi)' + aL 8t + (L _ aL qi)(8t )' 
aq' aq' at aq' 

--:t (8/), (5) 

and the theorem asserts that if condition (5) is met, then 

8G = aL 8qi + (L _ aL qi)8t + 8/ (6) 
aq' aq' 

is a constant of the motion. The proof is straightforward 
when one uses Eq. (6), condition (5), and the equations of 
motion for the problem 

The conventional treatment may be found in many 
books (see, for instance, Refs. 2 and 3). 

(7) 

The purpose of this paper is to derive a similar theorem 
when a more general definition of symmetry is used. 

The idea in Noether's theorem is to look for transfor
mations which change the Lagrangian at most by a total time 
derivative leaving, therefore, the equations of motion invar
iant. 

One can consider a wider class of transformations that 
will alter the equations of motion without changing their 
solution. This amounts to considering transformations that 
will change the equations of motion covariantly leaving the 
solution space invariant. In other words, we are looking for 
transformations which will take a solution curve into an
other solution curve of the same problem. 

As a matter of fact, the idea just described has been 
discussed recently4-6 and its relationship to conservation 
laws has been found. We will briefly outline the main defini
tions and results in what follows. 

Two Lagrangians L (qi, qi,t ) and I (qi, qi,t ) are called 
s(olution)-equivalent iff their Euler-Lagrange equations 
have the same set of solutions. 

It is not difficult to prove that if L and I are s-equiva
lent, then4 

(8) 

and 

(tr(A k))' = 0 for integer k> 0, (9) 

where we have assumed that L and I are nonsingular, i.e., 

a2L 
det W,;; = det -.-. ~O, (10) 

, aq'aq' 

- a21 
det W", = det -.-. ~O. (11) 

, aq' ail 
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Due to the Cayley-Hamilton theorem, at mostN of the 
constants appearing in Eq. (9) are functionally independent. 

The matrix A can be written as 

A = WW- 1 (detA #0). (12) 

Gonzalez-Gascon 7 and Lutzky8 have suggested ways to use 
the result stated above to obtain conserved quantities from 
symmetries related to s-equiva1ence within the context of a 
second-order formalism (see also Refs. 4-6). 

In this paper we use the counterpart of the result given 
in Eq. (9) for a first-order formulation of the dynamical prob
lem.s The advantages of using a first-order formalism are 
essentially two. 

(i) For a first-order system of differential equations, 
there are always infinitely many Lagrangians associated 
with it, which makes s-equivalence an interesting possibil
ity.s.6 For second-order systems, there may be essentially 
one Lagrangian (up to the addition of a total time derivative) 
or none at all, which makes s-equivalence trivial or nonexis
tent.9,10 

(ii) Due to the fact that the number of equations of mo
tion for a first-order system is twice as many as the number of 
equations of the second-order system from which it originat
ed, one may, in principle, get as many as twice the number of 
functionally independent constants of the motion. 

In Sec. II we briefly review the results obtained in the 
first-order formulation of the inverse problem of the calculus 
of variations. Section III contains the theorem which links 
several constants of the motion to one s-equivalence relation. 
In Sec. IV we present one example to illustrate the theorem 
and Sec. V contains the conclusions. 

II. REVIEW OF FIRST-ORDER LAGRANGIAN 
FORMALISM 

The contents of this section may be viewed as a sum
mary of some aspects of Ref. 5 relevant to the subject of this 
paper. 

Consider a second-order differential system 

ri=Fi(qi,qi,t), i,j=l,oo.,N. (l3) 

It is well known that any such system can be brought to 
a first-order form by introducing suitable new variables. For 
instance, let us define 2N variables x a (a = 1,00' ,2N) 

(14) 
XN+i=qi, j= 1,oo.,N. 

Therefore, Eq. (l3) and definitions (14) can be written as 

xa = /a(xb,t), a, b = 1,oo.,2N, 

where 

/N+i = Fi(x\ Xk+N,t), j,k= 1,oo.,N. 

It will be useful to introduce 

/0= 1 

to write Eq. (15) as 
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(15) 

(16) 

(17) 

(18) 

It is easy to see that a Lagrangian L (x '"', X '"') for the first
order systems (18) must be linear in the velocities x '"' and can, 
therefore, be written as 

(19) 

In order for the Lagrangian (19) to give rise to equations of 
motion equivalent to (18) it is necessary and sufficient to have 

I = I (C(b)) aC(a) + aA , (20) 
'"' (a) ax'"' ax'"' 

where I(a) are arbitrary functions of the 2N functionally inde
pendent constants of the motion C (a) which satisfy 

det = det (al(a) _ al(b) ) ....LO (21) 
77(allb) - ac(b) ac(a) r, 

where the Cia) are such that 

and 

aC(a) 
--/'"'=0, 
ax'"' 

ac (a) 

det-- # O. 
axb 

(22) 

(23) 

Here A is an arbitrary function of x '"'. Therefore L can be 
written as 

L = I (C(b)) aC(a) x'"' + dA L (0) + dA . (24) 
(a) ax'"' dt dt 

It is worth mentioning that L (0) vanishes when the equations 
of motion are satisfied, i.e., 

L (O)lxl'~fl' = O. (25) 

Note that the change of variables 

Cia) = c(a)(X '"') (c(o) XO = t) (26) 

is well-defined because ofEq. (23). 
The equations of motion obtained from the Lagrangian 

(24) are 

(27) 

where 

al,", a( 
M,",v =---= -Mv,",' (28) 

axv ax'"' 

Obviously, the 2N + 1 equations (27) are not indepen
dent due to the fact that M is singular (because it is an anti
symmetric matrix of odd dimensionality). The number of 
independent equations is 2N because of relations (21) and 
(23). Consider the matrix mab defined by 

mab = M ab , a, b = 1,oo.,2N. 

It is not difficult to realize that 

detm#O. 

(29) 

(30) 

Assume now that I is a Lagrangian s-equivalent to L. It is 
straightforward to prove that 

(tr(A k))" = 0, for any integer k> 0, (31) 

with 

A =mm- 1
• (32) 

S. Hojman and J. G6mez 1777 



                                                                                                                                    

This is the first-order counterpart of the theorem stated 
in the Introduction [Eqs. (9)]. To end this section, we should 
emphasize that condition (21) can be met in infinitely many 
ways so that any first-order system has infinitely many s
equivalent Lagrangians. 

m. s-EQUIVALENCE AND CONSERVED QUANTITIES 

We will now prove the theorem which constitutes the 
main contribution of this paper. Given a Lagrangian 
L (x ", X ") for a first-order differential system, 

defineP, 

P = aL 8x" + aL (8x ")' = I xV8x" + (8x ") xVI 
ax" ax" v." .v ", 

(33) 

where 

8x" = 8x "(XV). (34) 

The transformation (34) is a symmetry transformation 
(related to s-equivalence) if 

EP = ----P =0. (
d a a) 

v 1;;,,=1" dtaxV axv 1;;,,=1" (35) 

The conserved quantities associated with this symme
try transformation will be called non-Noetherian. 

The non-Noetherian conserved quantities Ik are 

with 

A =mm- I
, 

where m is obtained from I defined by 

I=L+P. 

(36) 

(37) 

(38) 

Now for the proof. First note that P can be written as 

(39) 

with 

(40) 

Therefore, performing the change of coordinates (26) 

acta) 
II =ll (C(P))-- (41) 

v (a) axv ' 

or 

ac (a) al A ac (a) 
II = (C(b) C(O)) __ +_n ___ = +A 

v Pta) , aXv acta) axv Pv .v , 

where we have chosen A (C (a)) such that 

aA (c(a)) = n (c(a)). 
actO) (0) 

Now, the equations of motion for Pare 

E"P = (ll".v - llv.,,)X" = (p".v - Pv.,,)Xv = 0. 

(42) 

(43) 

(44) 

ward to prove that when the equations of motion for L hold, 
i.e., Eq. (22), and because ofEqs. (23) and (26), one gets 

aPIa) = ° 
actO) , 

and therefore 

Pta) = Pta) (C (b )). 

For I we get 

I = 7 x" = (I + II \ ... " " " "Jo", or 

(45) 

(46) 

(47) 

L = [I (C(b)) +p (C(b))] acta) x" + dA . (48) 
(a) (a) ax " dt 

It is straightforward to prove now that Ik are constants 
of the motion with definitions (37), (29), and (49). It may 
happen that 

detm = 0, (49) 

and therefore not even the first 2N Ik 's are functionally inde
pendent. In general there are less than 2N independent equa
tions derived from I. If 

det m#O. (50) 

then I and L are s-equivalent and there may be as much 2N 
functionally independent Ik ·s. We have then proven that 
considering the definition (35) of symmetry in first-order sys
tems one may get up to 2N non-Noetherian constants of 
motion. On the other hand, in the second-order formalism 
one may find. at most, Nnon-Noetherian constants ofmo
tion when equivalent Lagrangians exist. 

IV. EXAMPLE 

The example we present in what follows intends to 
prove that several functionally independent constants of mo
tion of a given problem may, in principle, be obtained from 
one transformation of s-equivalence. thus showing the power 
of the theorem proved in this paper. 

Consider the two-dimensional free-particle Lagrangian 

L 1 (
. . 2 . . 2) 

= 2 XIX2 -XzXl +x2 +X3X4 -X4X3 +x4 . 

The Euler-Lagrange equations are 

x2 =0, 

-X I +X2 =0, 

x4 =0. 

-X3 +x4 =0. 

Consider the transformation 

8x I = (XI - x2t )X4 + (X3 - x4t )x2t • 

8x2 = (X3 - x4t )x2' 

8X3 = (X3 - x4t )x2 + (x I - x2t )x4t , 

8x4 = (x I - x2t )x4' 

(51) 

(52) 

(53) 

We now assume that Eq. (35) holds. It is straightfor- I It is straightforward to construct P: 

P = xd - !XzX4 -! (X3 - X4t)x2 - !x~t + !X3X4] + xz[! XIX4 +! XI(X3 - x4t) - !X4(X3 - x 4t) +! x~t2 - !X3X4t] 

+ X3 [ - ! x~ t + ! X IX2 - ! X4X2 - ! (x I - x2t )x4] + x 4 [ - ! x 2(x I - x2t ) + ! x~ t 2 - ! x Ix2t + ! X3X2 

+! X3(X I - x 2t)] +! X~X4 +! X~X4t +! X~(X3 - X4t) -! XIXzX4 +! X~X2 +! X~X2t +! X~(XI - x 2t) -! XzX3X4' (54) 
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It is not difficult to prove that Eq. (35) is satisfied, and the matri" a = A - 1 is 

We adopt the notation 

CI =XI -x2t, 

C2 =X2 , 

C3 =X3 -x4t, 

C4 =X4 · 

The traces of powers of a are 

tra = 2(CI + C2 + C3 + C4 ), 

tra 2 = 2[(CI + C2 )2 + (C3 + C4 )2 

- 2(CI - C3)(C2 - C4 )), 

o 
(X3 -X4t) +X4 

X2 -X4 

- (X2 -x4 )t 

(56) 

(57) 

(58) 

tra 3 = 2[(CI + C2)3 + (C3 + C4)3 - 3(CI + C2)(CI - C 3) 

(C2 - C4 ) - 3(C3 + C4)(CI - C3 )(C2 - C4 )), (59) 

tr a 4 = 21 [(CI + C2)2 - (CI - C3)(C2 - C4W 
+ [(C3 + C4 )2 - (CI - C3)(C2 - C4W 
- 2(CI + C2 + C3 + C4 )2(CI - C3)(C2 - C4J ). (60) 

Equations (57)-(60) and (36) imply that there are twCl func
tionally independent constants of motion which are' .vritten 
as functions of C I , C2 , C3, C4 • These constants are 

A = C I + C2 + C3 + C4 , (61) 

B = (CI + C2 )(C3 + C4 ) + (CI - C3)(C2 - C4 ), (62) 

and the traces of powers of a are functions of them only. We 
have got two functionally independent constants (,fmotion 
from one s-equivalence symmetry transformation (53). 
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- (X2 -x4 )t 

(X3 -X4t) - (XI -X2t) + (X2 -X4)t
2 

(XI -X2t) +X2 

o 

- (X2 -X4) ] 
(X2 - x4)t 

o . 
(XI -X2t) +x2 

(55) 

I 
V. CONCLUSIONS 

We have presented a theorem which associates to one (s
equivalence) symmetry transformation several constants of 
motion. The construction of the constants involves no inte
gration and it is algebraic in character. This theorem is based 
on a previous one obtained for second-order Lagr.angians.4 

The fact that we have a first-order formulation implies that it 
is always possible to find s-equivalence transformaltions and 
to get several constants of motion for one problem as we did 
in the example. 

The results of this paper are, strictly speakin.g, useful for 
constants of motion which are defined globally. 

It may be interesting to try to generalize the methods 
presented here to systems for which some of the constants of 
motion are defined only locally. 

The relationship of s-equivalence to symmetries of the 
equations of motion will be given in a forthcoming paper. II 
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The problem of scattering of surface waves obliquely incident on a submerged fixed vertical plate 
is solved approximately for a small angle of incidence b:v reducing it to the solution of an integral 
equation. The correction to the reflection and transmisl,ion coefficients over their normal 
incidence values for a small angle of incidence are obtai ned. For different values of the incident 
angle these coefficients are evaluated numerically, takin,g particular values of the wave number 
a.nd the depth of the plate, and represented graphically. 

PACS numbers: 03.40.Kf, 47.35. + i, 02.30.Rz 

1. INTRODUCTION 

Dean l and Ursell2 first considered the problems of scat
tering of surface waves normally incident on submerged and 
partially immersed fixed vertical plane barriers in deep wa
ter. These problems are subsequently studied by Williams3

, 

Goswami4
, :and others by employing different mathematical 

techniques, e.g., reduction method, integral equation meth
od, etc. The problem of scattering of surface waves normally 
incident on a submerged fixed vertical plate in water of finite 
depth was considered by Goswami,5 the deep water case be
ing earlier considered by Evans.6 

The sc !lttering of surface waves obliquely incident on a 
partially im mersed or completely submerged vertical barrier 
in deep water was studied by Faulkner/'s Jarvis and Taylor,9 

Evans and Morris. 10 In the present paper the problem of 
scattering of surface waves obliquely incident on a sub
merged fixed vertical plate in deep water is solved by reduc
ing it to the: solution of an integral equation involving the 
unknown difference of velocity potentials across the plate by 
a simple use of Green's integral theorem in the fluid medium. 
The kernel of this integral equation is expanded in a series 
involving di fferent orders of the sine of the angle of incidence 
which is assumed to be small. This expansion of the kernel 
suggests th\~: corresponding form of the expansion of the un
known function in the integral equation and this is then used 
to solve the integral equation approximately. A somewhat 
similar typ\~ of technique of solving the integral equation 
approximately was successfully used by Goswami5

,II,I2 and 
MandaI and Goswami.1 3 

2. STATENIENT OF THE PROBLEM 

We consider the scattering of surface waves by a sub
merged fixed vertical plate in deep water and use a coordi
nate system in which they axis is taken to be vertically down
wards, the mean-free surface is the plane y = 0, and the 
positionoftheplateisgivenbyx=O,a<y<b, - 00 <z< 00. 

Assuming tlhe fluid to be inviscid and incompressible and the 
motion to b ,e irrotational and simple harmonic in time with 

circ ular frequency a and small amplitude, a velocity poten
tial \ exists and it may be taken to be the real part of X (x, y,z) 
e - ic ,( satisfying the equations 

V2X = 0, in the fluid region, 

-aX + KX = 0, on y = 0, 
t=1y 

~\r. = 0, on x = 0, a <y < b, 
a, " 

where K = ~/g. 
A vvave represented by Xo = exp( - Ky + ipx + ivz), 

where p = K cos a, v = K sin a is assumed to be incident at 
an angle a to the normal ofthe plate from negative infinity. 
Such a wave will be partially reflected and transmited by the 
plate, and in view of the geometry of the plate it is reasonable 
to assume X (x, y,z) = tP (x, y)eiVZ 

• Then tP must satisfy 

atP - + KtP=O, y=o, ay 
atP 
- =0, x=o, a<y<b, ax 

(2.1) 

(2.2) 

(2.3) 

and it and its derivatives are continuous everywhere except 
possibly acros~; x = 0, a <y < b. We also require that tP and 
its first derivatives are bounded everywhere away from the 
lines x = 0, y = a and x = 0, y = b and that near these lines 
[X2 + (y _ a)2J 1/2 grad tP and [x2 + tv - b )2J 1/2 grad tP, 
respectively, are bounded. This is caUed the edge condition. 
Finally we assume that as Ix 1-+ 00, tP lx, y) has the asympto
tic forms 

tP (x, y) - exp(ipx - Ky) + R exp( - ipx - Ky) (x-+ - (0), 

tP (x, y) - T exp(i,LLX - Ky) (x-+ + (0), 
(2.4) 

where Rand T ar,e the (complex) reflection and transmission 
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coefficients, respectively. Let us write <P (x, y) = CPo(x, y) 
+ cp(x, y), where CPo(x, y) = exp( - Ky + iJlx) and cp(x, y)e iVZ 

is the scattered velocity potential. cp(x, y) also satisfies (2.1), 
(2.2), and the edge conditions stated above, and by the condi
tions (2.4) cp(x, y) represents an outgoing wave at infinity. 

3. REDUCTION TO AN INTEGRAL EQUATION 

Following Levine,14 the generalized Green's function 
satlisfying (2.1), (2.2), and G, grad G being bounded at a large 
dist ance, and G representing an outgoing wave at infinity, 
may be obtained as 

G (x, y;S-,7]) =Ko(vp)-Ko(vp*) +i /1TK21/2 exp!-K(y+ 7])+i(K 2 -y) 1I2Ix-s-ll 
(K -v-) 

foo (k2 - y)1I2 COS[(k2 - y)I/2(y + 7])] -Ksin[(k 2 - y)I/2(y + 7])] 
+ 2 2 2 _ 2 exp! - k Ix - S- I 1 dk, 

v K +k -v 
(3.1) 

wherep2,p*2 = (x - S-)2 + (Y+7]f 
Now applying Green's theorem to cp(x, y) and 

G (x, y;S-,7]) in the fluid region we obtain 

(6 aG 
21Tcp(S-,7]) = L fly) ax (O,y;S-,7])dy, 

where 

f( y)=cp( + 0, y) - cp ( - 0, y). 

By (2.3) and (3.2), we have 

1
,6 a2G 

- i21TK cos ae-KT/ = fly) -- (O,y;O,7])dy, 
a as-ax 

(3.2) 

a<7J<b. (3.3) 

Writing € = sin a and followir. g MandaI and Goswami \3 we 
can obtain 

a2
G (0 .0 ) - azGo (0 '0 ) as-ax ,y, ,7] - a7]2 ,y, ,7] 

- ~ K 2€lGO(0, y;o,7]) + 0 (€41n €,€4), 
2 

a <y, 7] < b, (3.4) 

where 

I
y -7] I Go(O,y;O,17) = -In --
y+7] 

-2 (00 Ksink(p+7])-kcosk(Y+7])dk 
Jo K2 + k 2 

+i21Texp!-K(Y+7])}, 

and Go(x, y;S-,7]) is the expression (3.1) when a = 0. From the 
expansion (3.4) it is reasonable to .expandf(y) in the follow
ing form: 

f( y) = fo( y) + €lfl(Y) + 0 (€4 In €,€4). (3.5) 

By (3.3), (3.4), and (3.5), and by noting the coefficients of 
terms involving a different order of €, we obtain 

- i21TKe - K'T/ = d 22 r fo( y)Go(O, y;O,7])dy, a < 7] < b, 
d7] L 

and 

d
2 ib 

i1TKe- K'T/ = --2 fl(y)Go(O,y;O,7])dy 
d7] a 

K2lb - - fo(y)Go(O,y;O,7])dy, 
2 a 

Let us now define a function tP( y) by 

¢(y) = Kf(y) +f'(y) 
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(3.6) 

a<7]<b. (3.7) 

r--------------------------------------
so that f( y) = e - Ky f eKU¢(u)du. (3.8) 

Then ¢( y) may be expanded as 

¢( ~l) = ¢o( y) + €l¢I( y) + 0 (€4 In €,€4). (3.9) 

Now int egrating both sides of(3.6) with respect to 7], we have 

Ao + i2':7.~ - KT/ = ~ i6 

fo( y)Go(O, y;O,7])dy, a < 7] < b, 
d7] a 

(3.6a) 

and by (3. 6) and (3.6a), we obtain 

i
6 

, 2ydy 
¢o\ y) 2 2 = KAo· 

a Y -7] 
(3.10) 

The singulal' integral equation (3.10) is a Cauchy-type one 
and followin g Mikhlin,15 

Do(d~ _ y2) 
¢o(Y)= (l_a2)1/2(b 2 _y2)1/2' a<y<b, (3.11) 

where Do( = -- KAo/1T),d ~ are constants to be determined. 
Sincef(b) = 0. , by (3.8) 

f ¢(u)eKU du = 0, 

and therefore, 

f ¢o(u)eKu , iu = 0, f ¢1(U)~U du = 0, etc., (3.12) 

so that d ~ may be obtained from 

i
6 (d ~ - U2)~U du 

a (u 2 _ a2)1/: l(b 2 _ U2)1/2 = 0. 

By (3.6) and (3.8), w. e obtain 

f ¢o(y) [2 100 
sink, y(K S;2k: ~2k cos k7]) k dk 

- i1TK exp! - K -(y + 7])J ] dy = i21Te- KT/, 

Now by (3.11) and (3.1· l), we obtain 

2i 
Do= -, 

Po - go - ire' 
where 

a <7] <b. 
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(3.13) 

(3.14) 

(3.15) 

1781 



                                                                                                                                    

and 

i
b (d ~ - u2 )e - Ku du 

ro = a -,,;-.:..--....:----(U 2 _ a2)1/2(b 2 _ U2)1/2 . 

Similarly from (3.7) and (3.11), we obtain 

K2DO(di _ y4) 
tPI( y) = 4( y2 _ a2)1/2(b 2 _ y2)1/2 

+ i(PI - ql - irl + ~:a (1 -Ka)) 

K2D~(d~ _ y2) 
x--~--~~~~~ 

8( y2 _ a2)1/2(b 2 _ y2)1/2' 

where 
a<y<b, 

and 

(3.16) 

4. REFLECTION AND TRANSMISSION COE,rFFICIENTS 

As 5- - 00 and + 00, respectively, we have by (3.2) 
and (3.8) the complex reflection and transmi~ lsion coeffi
cients Rand T as 

1 ib 

R = - - tP(y)e-KYdy, 
2 a 

1 ib 

T = 1 + - tP( y)e - Ky dy, 
2 a 

so that T = 1 - R and hence 

To= l-Ro, Tl = -RI, etc., 

where 

R = Ro + cR I + 0(£4 In £,£4), 

T= To + cTI + O(~ In £,£4). 

Now by (4.1), (4.2), (3.11), (3.15), and ( 3.16), we have 

etc. 

Ro= -~oro, 

RI = - i-hK2D~(ro(PI - ql) -. rl(po - qo) 

+ ....3.-. (1 - Ka)roeKa
), K3 

5. DISCUSSION 

(4.1) 

(4.2) 

(4.3) 

The reflection and transmiss ion coefficients obtained 
here are valid for all angles of inc idence (0° c;;;;a < 90°) of the 
surface wave and for all wavelen gths other than short ones. 
We have calculated these coeffic; tents numerically for differ-
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FIG. l.ITI and IR I againsta(deg). 

ent values of a in the range 0° C;;;;a C;;;; 15° thus enabling us to 
retain only up to two terms in the different analytical ap
proximations. However, by taking an appropriate number of 
terms in these approximations, these coefficients can be cal
culated for values of a beyond 15°. 

Thus the integral equat.ion method is found to be simple 
and straightforward and gives equally good results in all the 
cases of partially immersed as well as submerged fixed verti
cal barrier and plate in case of oblique incidence of a surface 
wave train. In contrast to this, Evans and Morris lO found by 
using the method of variational principle that the results are 
not so good in the case of ~lUbmerged fixed vertical barrier in 
comparison to those foun.d in the case of a partially im
mersed fixed vertical barrier. 

It should be noted that IRol, ITol give the corresponding 
results for a normally incident wave train and are in com
plete agreement with thoBe obtained earlier by Evans.6 Tak
ing Kb = 2Ka = 0.8 and Kb = 2Ka = 1.0, respectively, IR I 
and IT I are calculated fora = 0', 2S, 5°, 7S, 10°, 12S, and 
IS', and plotted in Fig. 1. 

It appears from the: figure that for fixed Ka (and hence, 
Kb ), transmission coeffitcient increases and reflection coeffi
cient decreases with a, which is similar to the situation aris
ing in the case of a partilally immersed barrier (cf. Evans and 
Morris,1O MandaI and Goswami 13). 
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A variational principle {j f f L d V dt = 0 is formulated for electromagnetic problems in the time 
domain for a medium which is linear, static, inhomogeneous, and anisotropic. The principle 
involves all four electromagnetic field vectors (E,H,D,B) and no "adjoint-type" fields. Both the 
two "curl" Maxwell equations as well as the two constitutive equations emerge as the four 
associated Euler-Lagrange equations. The problem of possible variations in the field functions at 
the temporal boundaries is solved by using the constitutive equations as a constraint at one of the 
temporal boundaries. 

PACS numbers: 03.50.De, 02.70. + d 

I. INTRODUCTION 

Recently there has been an increasing interest in the 
solution of time-dependent electromagnetics problems. 
Since an exact solution is usually unattainable, one is led to 
seek an approximation method. Variational methods for ap
proximately solving such problems offer not only elegance 
but also the possibility of computational efficiency. 

Variational formulations for electromagnetics prob
lems in the frequency domain have been proposed, e.g., by 
Morishita and Kumagai) and Mohsen. 2 A criticism of the 
former is that it involves varying the potentials (A and ¢ ) 
rather than the electromagnetic fields (e.g., E and H). The 
latter reference is formulated purely in terms of the electro
magnetic fields (E and H). However, it also employs two 
"adjoint" electromagnetic fields (Ea and Ha); thus one is 
forced to use four electromagnetic field vectors only two of 
which have direct relevance to the actual problem. 

Recently Mohsen3 formulated a variational principle 
{j f f:; L d V dt = 0 for electromagnetics problems directly in 
the time domain. This principle also employs the two elec
tromagnetic fields (E and H) as well as the two adjoint elec
tromagnetic fields (Ea and H a 

). Here the adjoint electro
magnetic fields satisfy Maxwell's equations with the 
permittivity and permeability tensors (E and,u) replaced by 
their transposes. 

Before proceeding, we raise two points concerning 
Mohsen's principle. 

(i) In the time domain, the permittivity and permeabil
ity tensors must be symmetric. Thus there is no distinction 
between the electromagnetic fields (E and H) and their ad
joints. Of course, all four of these fields must be regarded as 
independent for variational purposes. 

(ii) In the derivation of the equivalence of Maxwell's 
equations and the variational principle, the fields are as
sumed to have no variation at t = t) and t = t2 • We may 
regard t) as the initial time; using the (presumed given) initial 
fields at t = t) assures no variation in the fields at this time. 
However, we cannot fix the fields at their correct values at 
t = t2 since these are generally unknown. This seems to cast 
doubt on the ability to demonstrate the equivalence of Max
well's equations and the variational principle. 

The purpose of this article is to develop a variational 

principle for electro magnetics problems which (i) is in terms 
of the electromagnetic fields and not the potentials, (ii) is 
equivalent to Maxwell's equations, (iii) employs no "adjoint
type" fields, and (iv) does not suffer from the above difficulty 
at t = t2 • 

II. FIELD EQUATIONS 

The four (unknown) electromagnetic field vectors 
(E,H,D,B) are functions of position r and time t. These field 
vectors obey Maxwell's equations 

aB 
VxE= - at -K, 

V H aD J 
x =+at+' 

V.D=p, 

V·B=m. 

(la) 

(lb) 

(2a) 

(2b) 

Here J(r,t) and K(r,t) are the (given) electric and magnetic 
current densities;p(r,t ) and m(r,t ) are the corresponding elec
tric and magnetic charge densities. These are related by 
equations of continuity, 

V.J + ap =0, 
at 
am 

V·K+ - =0. at 

(3a) 

(3b) 

The introduction of fictitious magnetic current and charge 
densities preserves the theory under duality transforma
tions.4 

In view of Eqs. (1) and (3) the second pair of Maxwell's 
equations (2) are automatically satisifed if they are obeyed 
merely at any single value of time, say t = t). Therefore, we 
shall concentrate on satisfying the first pair of Maxwell's 
equations (1); the second pair of Maxwell's equations (2) are 
regarded as having a secondary role. 

The two electric field vectors (E and D) are related 
through a constitutive equation 

D = E·E. (4a) 
Similarly, the two magnetic field vectors (H and B) are relat
ed through a constitutive equation 

B =,u·H. (4b) 
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The permittivity e and permeability ji are assumed to be 
nonsingular tensors which are functions only of the position 
r and not of the time t: 

e = Elf) and ji = ji(r). (5) 

It can readily be shown by a thermodynamic argument (Pan
of sky and Phillips5) that these two tensors must be symmet
ric; this symmetry will be assumed in what follows. 

In summary, we shall be concerned with solving Max
well's equations (1) for given electric and magnetic current 
densities (J and K). The medium under consideration can be 
classified as being linear, static (i.e., time-independent), inho
mogeneous, anisotropic, and nondissipative. 

III. VARIATIONAL PRINCIPLE 

The variational principle which will be used is of the 
form 

It'l ( atft ) D L~, --' ,qj dV dt = O. 
t, v aqj 

(6) 

Here the tftj are the field functions (the twelve components of 
the four electromagnetic field vectors), the qj stand for 
(x,y,z,t) and dV = dx dy dz. The Euler-Lagrange partial dif
ferential equations which correspond to (6) are 

4 a ( aL ) aL . I - - - = 0 (j = 1,2, ... ,12). 
j~ I aqj a(atftJaqj) a~ 

(7) 

The equivalence of the variational principle (6) and the corre
sponding Euler-Lagrange equations (7) requires a certain 
behavior of the field functions at the (spatial and temporal) 
boundaries of the region of integration; this matter will be 
dealt with in Sec. IV. 

The "Lagrangian density" L is now chosen to be 

L = (H - B.ji-I). (VXE + ~~ + K) 

-(E-D.e-I).(VXH- a: -J). (8) 

In passing we note that (i) L is bilinear in the field functions 
and their first partial derivatives, (ii) L depends on r (but not 
t ) via the inverse permittivity and permeability tensors, and 
(iii) L depends on rand t via the electric and magnetic current 
densities. 

The twelve Euler-Lagrange equations (7) may be com
bined into four vector equations associated with the vari
ation of each of the four electromagnetic field vectors. These 
four partial differential equations (and their associated elec
tromagnetic field vector) are 

for E, -VX(H-B.ji-I)+ (VXH- aa~-J) =0; 

(9a) 

for H, +VX(E-D.e- I)- (VXE+ aa~ +K) =0; 

(9b) 

for D, + alE - D·e- I
) 

at 
- e- I

• (VXH - aa~ - J) = 0; 
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(9c) 

(9d) 

Introduce four auxiliary electromagnetic field vectors (If, 
7I",fP ,&11) defined by 

If = E - D·e- I
, 

71"= H - B.ji-I, 

fP = e·E - D, 

&11 = ji.H - B. 

(lOa) 

(lOb) 

(lOc) 

(lOd) 

As a consequence of these definitions, the auxiliary electro
magnetic field vectors (If ,7I",fP ,&11) satisfy the constitutive 
equations 

fP = e·lf, 

&11 = ji .71", 

(1Ia) 

(lIb) 

regardless of whether the constitutive equations are obeyed 
by (E,H,D,B). Using the definitions (10), Eqs. (9b) and (9d) 
can be combined to yield 

Vx If = _ a&11. 
at ' 

similarly, Eqs. (9a) and (9c) yield 

afP 
VX7I"= +-. at 

(12a) 

(12b) 

Therefore the auxiliary electromagnetic field vectors satisfy 
(i) the source-free Maxwell's equations (12), and (ii) the con
stitutive equations (11). Assuming that the auxiliary electro
magnetic field vectors vanish at some single value of time, 
say t = t I [i.e., that the constitutive equations (4) are satisfied 
at t = t I]' and that the spatial boundary conditions cause no 
difficulty (see Sec. IV), the unique solution of Eqs. (12), (11), 
and (5) is 

If = 0, 71" = 0, fP = 0, &11 = O. (13) 

Thus, using (10), it follows that the constitutive equations (4) 
are satisfied for all t. Finally, substitution of (13) into either 
(9b) or (9d) gives the Maxwell equation (la); similarly, substi
tution of(13) into either (9a) or (9c) gives the Maxwell equa
tion (lb). 

Thus, assuming correct initial and boundary condi
tions, the variational principle (6) together with the Lagran
gian density (8) implies that the two Maxwell equations 

aB 
VXE= - - -K (la) at ' 
v X H = + aD + J (1 b) at ' 

as well as the two constitutive equations 
D= e·E, (4a) 

B =ji·H (4b) 
are all satisfied. 

IV. SPATIAL AND TEMPORAL BOUNDARY 
CONDITIONS 

The equivalence of the variational principle (6) and the 
corresponding Euler-Lagrange equations (7) is based upon 
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the neglect of certain terms which arise from (spatial or tem
poral) integration by parts. Those terms which arise from 
spatial integration by parts (i.e., Gauss' theorem) are 

_ (" r !(H - B.,u- IHnX8E) 
Jt l Js 

- (E - D·E- IHnx15H)JdSdt. (14) 

Here dS is an element of the surface area S which bounds the 
original volume V, and n is a unit outward normal vector at 
this bounding surface. Those terms which arise from tempo
ral integration by parts are 

Iv!(H - B.,u-I)·(15B) + (E - D.E- I).(15D)J I:~:: dV. 

(15) 

We must have that both (14) and (15) vanish in order to ob
tain the equivalence of(6) and (7). 

The vanishing of the integrand in (14) at the spatial 
boundaries can be achieved in the usual manner. For exam
ple, if we were dealing with a wave packet in an unbounded 
region then the appropriate spatial boundary condition is the 
vanishing of all electromagnetic field vectors at large dis
tances; if we were dealing with an electromagnetic field in a 
cavity with perfectly conducting walls then the appropriate 
spatial boundary condition is the vanishing of the tangential 
component of E (as well as D'E - I). In either of these two 
examples the "natural" spatial boundary conditions are suf
ficient to make (14) vanish. 

In the variational principle (6), we shall regard the time 
t = t I as the initial time. Thus we shall consider the four 
electromagnetic field vectors (E,H,D,B) as being given at 
their argument (r,t d. The vanishing of the integrand in (15) at 
t = t I then occurs automatically if one imposes these initial 
conditions: for given initial fields there can be no variation 
8 Band 8 D at t = t I' The remaining condition which is re
quired is the vanishing of the integrand in (15) at t = t2• This 
cannot be done by fixing the fields when t = t2 since these 
fields are unknown; in fact this is the very problem-we are 
seeking to predict the future fields (t = t 2 ) from the initial 
fields (t = td. Instead, we choose to invoke the (reasonable) 
constraint that the four electromagnetic field vectors obey 
the constitutive equations (4) when t = t2• Clearly this is suf
ficient to make the integrand in (15) vanish at t = t2• 

In summary, the boundary and initial conditions which 
we propose are 

1786 

(a) the usual "natural" spatial boundary 
conditions [e.g., the vanishing of the 
tangential component ofE (and D·e- I) 
for the case of perfectly conducting walls]; (16a) 

(b) the usual initial conditions on 
the four electromagnetic field vectors 
(E,H,D,B) at t = t l ; (16b) 

(c) the constraint that the four 
electromagnetic field vectors obey the two 
constitutive equations (D = i·E and B = ,u.H) at 
t = t 2 • (16c) 
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V.SUMMARY 

A variational principle for electromagnetic problems in 
a linear, static, inhomogeneous, and anisotropic medium has 
been formulated. This variational principle is 

8 (" r L dV dt = 0, (6) 
Jt 1 Jv 

where 

L=(H-B.,u-I).(VXE+ ~~ +K) 

-(E-D.e-I).(VXH- ~~ -J} (8) 

All four electromagnetic field vectors (E,H,D,B) are treated 
as independent for variational purposes. This leads to four 
vector Euler-Lagrange equations. Two of them are the two 
"curl" Maxwell equations: 

VXE= - aB -K, 
at 

VxH= + aD +J' at ' 
the other two are the two constitutive equations: 

D=e·E, 

B=,u.H. 

(la) 

(lb) 

(4a) 

(4b) 

The usual spatial boundary conditions (16a) and the usual 
initial conditions aU = tl (16b) are assumed. In addition, the 
four electromagnetic field vectors are assumed to satisfy the 
constraint of obeying the two constitutive equations at t = t2 

(16c). 
Two features of this variational principle are worthy of 

note. 
(i) All four electromagnetic field vectors (E,H,D,B) are 

treated on an equal footing for variational purposes. No ad
ditional (artificial) "adjoint-type" fields are needed. Thus all 
four variational fields have a direct relevance in the actual 
problem. 

(ii) Both the two "curl" Maxwell equations and the two 
constitutive equations arise as a result of the variational prin
ciple; in particular, the constitutive equations are treated on 
an equal footing with the Maxwell equations and are not 
invoked as an a priori constraint. The following attractive 
possibility then exists: by relaxing the requirement that the 
constitutive equations be exactly satisfied, the optimized tri
al electromagnetic fields may be able to satisfy more closely 
the Maxwell equations. 
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The Debye potential formalism is a simple and elegant method of representing and analyzing 
radiation fields in classical electromagnetism. Despite this, there are a number of unanswered 
questions about the formalism. One of these, the transformation properties of the potentials under 
Lorentz boosts, is dealt with in this article. 

PACS numbers: 03.50.De 

I. INTRODUCTION 

Of all the commonly used formalisms for solving the 
source-free Maxwell equations, few can approach the Debye 
potential formalism I in the twin categories of economy and 
simplicity. The two Debye potentials concisely contain the 
two degrees of freedom per space-time point of the electro
magnetic field. There are no extra components, no difficult 
vector decompositions, and no vector harmonics. All of the 
gauge freedom normally associated with the usual potentials 
A and l/> is conveniently "frozen out." 

The Debye potentials are commonly referred to as "sca
lar" potentials. This is understandable because they trans
form as scalars under continuous rotations in 3-space, and 
they satisfy the scalar wave equation. 2 From the last proper
ty one might erroneously conclude that the potentials be
have as 4-scalars under Lorentz boosts. Their actual behav
ior under these transformations is quite complex and seems 
not to have been clarified in any of the literature on electro
magnetic radiation. The pupose of this paper is to address 
this issue. 

In order to establish notational conventions, Sec. II will 
provide a brief review of the Debye potential formalism. Im
portant identities needed later in this article will be derived. 
Section III contains the derivations of the transformation 
properties of the Debye potentials under Lorentz boosts. 
These will be presented in 3-vector notation. Because of the 
way in which the Debye potentials are defined, little nota
tional simplicity is obtained by casting these results in 4-
vector formalism. 

II. THE DEBYE POTENTIAL FORMALISM 

Although the Debye potential approach is applicable to 
electrodynamics in all situations, it is simplest when sources 
and matter are absent. These conditions are normally ob
tained when treating the radiation fields of antennas at 
pCJints far from the localized charge and current distribu
tions producing the radiation. Assuming no sources, dielec
trics, or magnetic materials, Maxwell's equations in CGS 
units reduce t03 

V·E=O, 

V·B = 0, 
VXE+aoB=O, 

(1) 

(2) 
(3) 

VXB-aoE=O, (4) 

where ao = c-1at • The Debye potential formalism consists 

of expressing the electric and magnetic fields in the form4 

E = Lao¢ + MIf, (5) 

B = Laolf - M¢, (6) 

where Land M are vector operations defined by 

L=VXr= -rXV, (7) 

M=VxL. (8) 

The functions ¢ and If are the Debye potentials. 
The operator L is proportional to the angular momen

tum operator in quantum mechanics, and so many of its 
properties are familiar. It behaves as a 3-vector under con tin -
uous rotations in 3-space, but exposes its true pseudovector 
nature under reflections.5 Because the electric field E is a 3-
vector, it is apparent from Eq. (5) that ¢ must be a pseudosca
lar under transformations in 3-space. From Eq. (7) it is easily 
shown that 

V·L = 0, 

r·L = 0. 

(9) 

(10) 

The second operator M is the curl of L but can be ex
pressed in other convenient forms as well, for example, 

M = - r..1 + V(r·V) + V, (11) 

where..1 = V·V is the Laplacian. Under rotations and reflec
tions in 3-space, M transforms as an ordinary 3-vector. Since 
E is a 3-vector, one sees from Eq. (5) that If is a 3-scalar. 
Useful identities satisfied by Mare 

V·M =0, (12) 

r·M= -L·L, 

L·M=O. 

(13) 

(14) 

The elegance of the Debye potential formalism is appar
ent with the observation that E and B in Eqs. (5) and (6) 
satisfy the source-free Maxwell equations if and only if the 
Debye potentials ¢ and If satisfy the scalar wave equations: 

D¢ = 0, (15) 

DIf = 0, (16) 

where 0 = - a ~ +..1 is the d' Alembertian. These simple 
results are immediate consequences of the fact that Land M 
commute with the Laplacian:6 

(17) 

M..1 =..1 M. (18) 
A very important joint property of the operators Land 
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M is that they are orthogonal. For arbitrary functions F and 
G 

L(LF)-(MG) dv = 0, (19) 

where Vincludes all of3-space. The validity of this result is a 
direct consequence of the divergence theorem, which allows 
the volume integral to be written as 

i(Fr)X(MG).n da, 

with the help of Eq. (10). Taking S to be a spherical surface 
expanding to spatial infinity, one immediately obtains Eq. 
(19) since n = r. 
III. TRANSFORMATION OF THE DEBYE POTENTIALS 
UNDER BOOSTS 

The Lorentz transformation properties of the electric 
and magnetic fields are, of course, well known, so one should 
in principle be able to derive the transformation equations 
for the Debye potentials directly for Eqs. (5) and (6). In prac
tice this approach is difficult because the transformation 
equations for M are unwieldy. A simpler strategy begins by 
using Eqs. (10) and (13) to express the Debye potentials in 
terms of simple dot products: 

roE = - L 2t/J, (20) 

roB = + L 2rp. (21) 

The scalar operator L 2 = L·L will occur so frequently in 
conjunction with the Debye potentials that it is useful to 
define alternate potentials: 

~ -L 2rp, (22) 

(23) 
We must now relate unprimed quantities measured in 

the lab frame Y to corresponding quantities in the moving 
frame Y'. If Y' moves with velocity v = (3c = /3cf so that 
the x' axis is conlinear with the x axis and the origins coin
cide at t I = t = 0, then 7 

XU = y(xo' + /3xl'), (24) 

Xl = r(x l' + /3xo'), (25) 

x 2 = x 2
', (26) 

x 3 = xY
, (27) 

wherexo = ct, Xl = x,x2 = y, andx3 = z. The fields E and B 
then transform according to: 

EI=EI" (28) 

E2 = r(E2, + /3B3')' (29) 

E3 = r(E3, - /3B2' ), (30) 

BI=BI" (31) 

B2 = r(B2, - /3E3' ), (32) 

B3 = r(B3, + /3E2' ). (33) 

With these well-known results we can now obtain ex
pressions for ~ and ;p in terms of primed quantities. Using 
Eqs. (25)-(27) and Eqs. (31)-(33), we find that Eq. (22) be
comes 
;p = r[ (Xl' + /3xU')B I , + x 2'(Bz' - /3E3,) + x3'(B3, + /3E2,), 
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;p = r[ r'-B' + /3 (Xo' B I , - x 2'E3' + x3'E2, n, 
~ = r[;P '+ (3-(xO'B' - rIXE')), 

(34) 

where;P ,-L' -L' rp I is defined in the primed frame just as ~ is 
defined in Eq. (22). Likewise one obtains for ;p 

;p = r[;P' - (3-(xo'E' + r'XB')], (35) 

where ;P'-L'-L't/J' is defined as in Eq, (23). 
If observers in Y' express the fields E' and B' in terms 

of Debye potentials rp' and t/J', then we have in accordance 
with Eqs. (5) and (6) 

E' = L'ao'rp' + M't/J', (36) 

B' = L'ao,t/J' - M'rp', (37) 

The operators L' and M' are defined similar to Eqs. (7) and 
(8). We can now eliminate E' and B' from Eqs. (34) to obtain 

~ = r{~' - (3_[(XOM' + r'XL'ao')rp I 

- (xO'L' ao' - r' X M')t/J' ] }, 

~ = r{;P , - (3- [(XO'V' + ao' r') X L'rp , 

- (Xo
' aa' + 1)L't/J']), (38) 

where, of course, 

xo'aa' ==x°'ao' + xa'aa" 

In like fashion the expression for;P in Eq, (35) can be reex
pressed as 

;p = r{;P' - (3- [(xO'ao' L' - r' XM')tP' 

+ (xOM' + r' X L' ao' )t/J' ] }, (39) 

;p = r{;P' - (3. [(XO'V' + ao' r') X L't/J' 

+ (xa'aa' + 1)L'tP ']}. 

Note that Eqs, (38) and (39) are equivalent under the ex
change transformation: 

tP--t/J, t/J-- - tP, (40) 
This property can be traced back to a similar exchange sym
metry with regard to E and B in Maxwell's equations with
out sources, 

One may regard Eqs, (38) and (39) as the transformation 
equations for the Debye potentials. Given the potentials tP I 
and t/J' determined in Y', we can calculate ~ , and ;p' using 
Eqs. (22) and (23) expressed in primed coordinates, and then 
obtain ~ and ;p from the equations above, The alternate po
tentials;P and ;p contain all the information carried by tP and 
t/J, except for additive functions of r = Irl, which are annihi
lated by the operator L 2 = L-L. However, these same func
tions would be annihilated by Land M as well, so they can
not contribute to the fields E and B. In the language of 
multipole analysis, these additive functions are pure mono
pole terms which do not pertain to radiation fields anyway. 

The transformations given by Eqs. (38) and (39) clearly 
indicate that the Debye potentials are not Lorentz scalars. 
Their complex transformation properties under boosts can, 
of course, be traced back to their definitions in terms of the 
operators Land M, and the central role played by the three
vector r in each of these vectors. No significant simplifica
tion can be achieved, even with the elimination of the super
fluous operator L 2 = L-L contained in the potentials ~ and 
;p, as will now be shown. 
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The exchange symmetry in Eqs. (40) is of great utility at 
this point. Any reduction of Eq. (38) will be imitated by a 
similar reduction ofEq. (39), but with ¢ replaced by t/J and t/J 
replaced by - ¢, simultaneously. Clearly, then, it suffices to 
reduce only one of these, say Eq. (38). In component form 
this equation becomes 

~ = r[ L I, L I,¢' + f3 (xa' oa' + I)LI' t/J'] 

+ r[ L z' + f3 (00' x3' + a3,xO') ]Lz'¢' 

+ r[ L 3, - f3 (ao' xZ' + az,x°'j]L3'¢" 

Because L' and x a
' a a' commute, we get 

~ =rL d L I,¢'+f3(xa'aa' + I)t/J'] 

+ r[ L z' + f3 (ao,x
3

' + a3,x°'j]Lz'¢' 

+ r[ L 3, - f3(ao'x
Z' + aZ,x°,)]L3,¢'· (41) 

We now need the transformation equations for the com
ponents of L under Lorentz boosts. Using Eq. (7) and Eqs. 
(25H27) we readily find that8 

LI=LI" 

L2 = r[ L 2, + f3 (ao,x
3' + a3,xo')] , 

L3 = r[L 3, -f3(ao'x
Z' + az'xo')]. 

We can then reduce Eq. (41) to 

~ =LIr[L I¢' +f3(xaoa + I)t/J'] 

+ LzLz'¢ 1 + L~3'¢'. 
Utilizing Eq. (22), we get 

0= LI [L I¢ - rLI¢ 1 - f3r(xaaa + I)t/J'] 

+ L z [ L z¢ - L z' ¢ '] + L3 [ L 3¢ - L 3, ¢ '] . 

Again, applying Eqs. (43) and (44), 

or 

0= LI [LM - r¢ ') - f3r(xaaa + I)t/J'] 

+ L z [Lz(¢ - r¢ ') + f3r(aoX3 + a3xO)¢ '] 

+ L3 [L3(¢ - r¢ ') - f3r(aoX2 + azX°)¢ '] 

0= L 2(¢ - r¢ ') - r(3·L(xaaa + I)t/J' 

+ r(3xL·(aor + XO V)¢'. 

(42) 

(43) 

(44) 

(45) 

(46) 

The last result may also be regarded as a transformation 
equation for the potential ¢, although it is not in standard 
form with primed quantities on one side of the equation and 
unprimed ones on the other. To apply it, one must express 
the primed arguments of ¢ 1 and t/J' in terms of the unprimed 
ones, using Eqs. (24H27). Also, we observe from Eq. (46) 
that the scalar operator L 2 cannot be eliminated from the 
transformation equation without introducing its inverse 
elsewhere. Our last task will be to see what the result of this 
further reduction is. 

There are three distinct terms in Eq. (46). The first pre
sents no problem in our efforts to eliminate L 2, since it con
tains this operator explicitly. The second term, 

- r(3·L(xa aa + I)t/J', 

requires that we introduce L 2 and its inverse, denoted by 
L -z, as follows: 

- r(3'L(xa aa + I)L 2(L -zt/J'). 
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Because L 2 commutes with xaa a and L, we find that this last 
expression becomes 

- L 2y(3'L(xa aa + I)(L -2t/J'), 

and so Eq. (46) becomes 

0= L 2 [(¢ - r¢ ') - r(3'L(xa oa + I)(L -2t/J')] 

+ r(3 x L·(aor + XO V)¢'. (47) 

The last term in Eq. (47) can be dealt with in a similar 
fashion: 

r(3xL.(aor + XO V)L 2(L -2¢ '). 

It is not too difficult to show that 

(3xL'rL 2 = - L 2(3xr·L 

and likewise that 

(3XL.VL 2 = - L z(3 X V'L, 

(3 X L·VL z = - L z(3.M. 

(48) 

(49) 

(50) 

These identities allow one to transform that last term of Eq. 
(47) into 

- L zr(3X(aor + XO V)'L¢', 

and so Eq. (47) becomes 

0= L Z[(¢ - r¢ ') - r(3'L(xa aa + I)(L -zt/J') 

- r(3 x (aor + XO V).L(L -2¢ ')], 

from which we conclude that 

¢ = r{¢' + (3. [(xa aa + I)L(L -Zt/J') 

+ (aor + XO V)XL(L -2¢ ')]}. (51) 

Using the exchange symmetry in Eqs. (40), we immediately 
obtain the corresponding equation for the potential t/J: 

t/J = r{ t/J' - (3. [(xa oa + I )L(L -2¢') 

- (aor + XO V)XL(L -Zt/J')]). 

Like Eq. (46), the last two results may be regarded as 
transformation equations for the Debye potentials, even 
though they are not in standard form. The biggest obstacle to 
applying them is dealing with the inverse operator L -2 

which acts upon unprimed coordinates. The primed argu
ments of the potentials ¢' and I/l must be replaced by un
primed arguments in accordance with the Lorentz transfor
mation in Eqs. (24)-(27). 

IV. CONCLUSIONS 

The Debye potential formalism is ideally suited to ana
lyzing the electromagnetic radiation produced by localized 
sources. The potentials transform as scalars under rotations 
in 3-space, but display more complex behavior under Lor
entz boosts. Several expressions for their transformation 
properties have been obtained, with those in Eqs. (38) and 
(39) being the most natural. 

It was observed in Sec. II that if the fields E and B 
satisfy the source-free Maxwell equations, then the poten
tials must satisfy 

D¢=O, 

Dt/J= O. 

The transformation equations obtained for the Debye poten-
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tials guarantee that these equations will be satisfied in all 
Lorentz frames if they are satisfied in one frame. 

'See, for example, A. Nisbet, Proc. R. Soc. (London), Ser. A 231, 250 (1955); 
J. Cohen and L. Kegels, Phys. Rev. D 10,1070 (1974). 

2These points will be clarified in Sec. II of this article. 
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3See, for example, J. Jackson, Classical Electrodynamics (Wiley, New York, 
1962), Chap. 7. 

4These simple equations apply only to the case of no sources and no matter. 
'Under reflections r~r, the potential rfJ transforms as ~ - rfJ. 
6Equations (5) and (6) obviously satisfy the divergence conditions (1) and (2). 
The wave equations arise as a result of applying Eqs. (3) and (4) to E and B. 

7In what follows all indices will be manipulated with the Lorentz metric Tf!'v 

whose signature is Tf = [- 1,1,1,1]. 
·One also needs to use the corresponding covarient transformations of the 
partial derivatives. 
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For time-independent and time-dependent inverse source problems the degree of nonuniqueness 
of solutions is characterized. 

PACS numbers: 03.50.De, 03.65.Nk, 03.80. + r 

I. INTRODUCTION 

1. Recently a number of authors discussed the inverse 
source problems 1-5 (see also the bibliography in Refs. 1 and 
5). The problem under discussion is as follows. Let 

(V2+k2)U=h, xER3
; h=O, Ixl>a. (1) 

Suppose the Cauchy data is given for u near infinity: 

Ullxl=R =Uo,'!!!!""/ =U 1, R>l. 
Jr Ixl =R 

Can one determine h from the data (2)? 

(2) 

(3) 

Most of the authors ask a slightly different but equivalent 
question. Namely, can one determine h from the radiation 
pattern/(B,t/J,k), which is defined by the formula 

/((},t/J,k ) = lim (eikr

) - 1 u(x,k ), 
r-+ 00 41Tr 

r = lxi, x = (r,B,t/J), (4) 

where u is the (unique) solution to (1) satisfying the radiation 
condition? The equivalence of the data (3) and (4) comes from 
the fact that the asympotics of u at infinity can be differenti
ated. On a more formal level, the Cauchy data (3) defines the 
solution of the homogeneous equation (1) uniquely in the 
domain Ixl >a, and the radiation pattern (4) does the same 
(because of the Rellich's uniqueness theorem, see, e.g., Ref. 
6). The problem (3) is the time-independent inverse source 
problem. 

2. This problem for Maxwell's equations was discussed 
in detail in Ref. 7 (see also Ref. 8, pp. 208-211). The problem 
for Maxwell equations has some features which the scalar 
problem (1 )-(4) does not have. In particular, the radiation 
patterns for Maxwell's equations is a two-component vector 
field defined on the unit sphere S 2 C R3 and tangent to this 
sphere (it is two-component in the spherical coordinates: /r 
= 0). On the other hand, the sourcej(x) in Maxwell's equa

tions: 

VXE=ikH, rotH= -ikE+j, E=f.i= 1, 

is a three-component vector. The corresponding radiation 
pattern is 

/ = ik (1",0", + Ioao), (5) 

where Or> ao, a", are the unit vectors ofthe spherical coordi
nates at the point x = (r,8,t/J ), I = (I" 10 , I",), 

1= J exp! - i(k, y)j j( y)dy, k = (k,B,t/J), J == L; 
It is clear from (5) that the radiation pattern/(k,8,t/J ) given for 
a fixed k = ko as a vector field on the unit sphere does not 
determine I uniquely, and therefore does not determine the 
sources j uniquely. The degree of non uniqueness can be de
scribed as follows: in order to determine the sources unique
ly one should specify: (I) one scalar function I,(ko,8,t/J), and 
(2) three functions/o(k,B,t/J )J", (k,B,t/J ), Ir(k,B,t/J ), 0 < k < 00, 

which are equal to the functions/o(ko,B,t/J )J",(ko,B,t/J ), 
I r (ko,B,t/J ) at k = ko' Here we did not impose the important 
requirement that the sources have compact support. If this 
requirement is imposed then the functions Ir(k,B,t/J), 
/0 (k,B,t/J )J", (k,B,t/J ) should satisfy the condition that the vec
tor function I = Iror + (l/ik If,,,a,,, + (l/ik lfooo be an en
tire function ofk of exponential type, i.e., II I <c 1 exp(c2k ) for 
some constants C1,C2 > O. This requirement comes from the 
Paley-Wiener theorem which says that a function I (k) is a 
Fourier transform of a functionj with compact support iff I 
is an entire function of exponential type. In addition, JEI- 2 if 
lEI- 2(R3

). This analysis, a computational scheme for finding 
j from the radiation pattern, and some examples are given in 
Ref. 7. 

One should have in mind that in some concrete inverse 
source problems (e.g., synthesis of linear or spherical anten
nas) the uniqueness of the solution holds because of some 
special assumptions about the sources. There is an extensive 
literature on this subject (see, e.g., Ref. 9). In order to explain 
how the uniqueness holds, consider the linear antenna syn
thesis problem. The sources are currents along the line seg
ment - 1 < z < I. The currents are defined by one scalar 
functionj(z) in this case. The radiation pattern is proportion
al to JI_I exp(ikoZ cos 8 )j(z)dz=/(8), 0,;;8<17'. This can be 
written as JI_I exp(iAz)j(z)dz = /(A), - ko<A<ko, 
A = ko cos 8. The last equation clearly has no more than one 
solution. It is solvable iff/(A ) is an entire function of exponen
tial type <I of A. 

3. In the scalar case one has 

/= - -l-JexPI-i(k,y)Jh(y)dY. 
417' 

Thus, the knowledge of/(ko,B,t/J ) does not determine the 
sources h (y) uniquely. The degree of nonuniqueness can be 
described as follows: given the radiation pattern at k = ko 
one can fix a (arbitrary continuous in k ) function/(k,B,t/J ) for 
o < k < 00 such that /(k,B,t/J ) I k = k" = /(ko,B,t/J ). These data 
determine the Fourier transform of the sources and there-
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fore the sources h (y) uniquely. In this argument we did not 
impose any a priori conditions on the sources. If one assumes 
(as is natural) that hEL 2 and h = 0 for Ix I ;;>a, then the radi
ation pattern is an entire function of k of exponential type 
and the corresponding extension/(k,e,<p ) should satisfy this 
necessary requirement. This requirement is also sufficient 
for hEL 2 and h = 0, Ix I ;;>a if/EL 2. This is a complete descrip
tion of the degree of non uniqueness in the scalar problem of 
finding the sources from the radiation pattern given at a 
fixed frequency. 

4. The reason why the problem (3) is discussed here is 
that the similar problem arises in time-dependent cases. 
Consider, for example, the following time-dependent inverse 
source problem. Let 

Utt -Llu =/(x,t), - 00 <t< 00, xER3
, 

/ = ° of tEf(O,T). (6) 

Suppose that 

u(O,x) = uo(x), u,(O,x) = ul(x), (7) 

u(T,x) = vo(x), u,(T,x) = VI(X). (8) 

Can one find the sources/(x,t) from the data (7), (8)? (9) 

Because of the uniqueness of the Cauchy problem for Eq. (6) 
the data (7), (8) determine the solution of (7) for t < 0 (t > T) 
uniquely. In Sec. II the description of the degree of non un i
queness of the solution to problems (3) and (9) are given. 

II. DESCRIPTION OF THE DEGREE OF 
NONUNIQUENESS IN THE INVERSE SOURCE 
PROBLEMS 

1. Consider first problem (9). Taking the Fourier trans
form in x, one obtains 

w + k 2W = g(t,k), 

W = _1_ fU(X,t ) exp [ - i(k,x) j dx-u, g=]; (to) 
(21T)3 

w(O,k) = wo=uo' w(O,k) = WI==U h w = dw, (11) 
dt 

w(T,k) = Po Va, w(T,k) = PI=VI, (12) 

Here k = (k l ,k2 ,k3 ), k 2 = k~ + ki + k L k = Ikl. The 
problem (to), (11) can be solved explicitly, 

_ i' sin { k (t - s)) ( k)d w - gs, s 
a k 

sin kt + Wa cos(kt) + WI--' (13) 
k 

From (13) and (12) one obtains 

i

T sin[k(T-s)) d 
Pa= g s 

a k 

sin(kT) + Wa cos(kT) + WI , 
k 

(14) 

PI = iTcos! k (T - s) jg ds - kWa sin(kT) 
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+ WI cos kT. 

This can be written as 

sin(kT) iT cos(ks)g ds - cos(kT) 
k a 

X iT sin(ks)g ds = bo(k ), 

cos(kT) IT . cos(ks)g ds + sm(kT) 
k 0 

X iT sin(ks)g ds = bl(k), 

where bo, b l are known explicitly: 

bo = Po - Wo cos(kT) - (w/k ) sin kT, 

b l = PI + kOJo sin(kT) - WI cos(kT). 

( 15) 

(16) 

The determinant of the system (15) is 1/ k > O. Thus, one can 
uniquely find from (15) the two integrals 

iT cos(ks)g(s,k)ds = <pI(k), 

iT sin(ks)g(s,k)ds = <p2(k), (17) 

where <pI(k) and <P2(k) are given explicitly. 
It is now possible to describe the degree of non unique

ness of the solution to the inverse source problem (9). Name
ly, the data (11), (12) determine <PI and <P2 in (17). Equations 
(17) determine g, the Fourier transform of the sources, of the 
form 

g = cl(k) cos(ks) + c2(k) sin(ks) + gl(s,k), (18) 

where cdk) and c2(k) are uniquely determined by <PI and <P2' 
while g I (s,k ) is an arbitrary function orthogonal to cos(ks) 
and sin(ks) in L 2([0,T]): 

iT sin(ks)gl(s,k)ds 

T 

= i cos(ks)gl(s,k)ds = 0 'rJ k. (19) 

This is a complete description of the degree of nonunique
ness of the solution to problem (9) in the case when no condi
tions are imposed on the sources/(x,t ) except the last condi
tion (to) and, say, the mild requirement like/(x,t)EL 2(R3

) for 
any t and is of class C 2 in time. If one requires additionally 
that/(x,t) = 0 for Ixl;;>a (the sources have compact support), 
then g I should satisfy not only Eqs. (19), but also ensure that 
the functiong defined by formula (18) be an entire function of 
exponential type in the variables k = (kl,k2,k3)' Since g de
termines the sources/uniquely, one can say that the solution 
of problem (9) is defined nonuniquely up to an additive term 
orthogonal to a two-dimensional subspace. The method of 
this section can be applied without any changes to the ab
stract time-dependent inverse source problem. This problem 
is similar to the problem (6)-(9), but Eq. (6) is of the form 
UtI + Au = /(t), - 00 < t < 00, where A> 0 is a self-adjoint 
operator on a Hilbert space h,f(t )Ell. One assumes that the 
eigenfunction expansion theorem for A is known and the 
eigenfunctions satisfy the equation A<p = k 2<p, and obtains 
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the same equations (10)-(12) in which w is the coefficient of 
the expansion of u in the eigenfunctions ¢ (analog of the 
Fourier transform). The rest of the argument is unchanged. 

2. Let us consider problem (1)-(3). The Cauchy data (2) 
determines uniquely the solution to Eq. (1) in the domain 
Ix I >a in which (1) is homogeneous. Let 

au I 
ulr=a = "'0' -a = "'1> r r=a 

(20) 

where "'0 and "'I are uniquely determined by Uo and ul. (Of 
course, as is well known, the data Uo and u I for an elliptic 
equation cannot be given arbitrarily.) One can also find "'0 
and "'I from the knowledge of the radiation pattern. Let 
G (x, y) be the Green's function (V2 + k 2)G = - o(x - y), 
Ixl <a, G Ilxl = a = O. Then, the solution of the problem 

(V2+k2)U=h, Ixl<a, ullxl=a ="'0 (21) 

can be found explicitly provided that k 2 is not an eigenvalue 
of the Dirichlet Laplacian in the domain Ixl <a. Namely, 

u = G (x, y)h dy + "'0 ds, xEfiJ, (22) 1 i aG(x,s) 

y r aN 

wherefiJ = [x:lxl<aJ,r= [x:lxl =aJ,N=Ns is the out
er unit normal to r at the point s. From (22) and the second 
condition (20) one obtains an equation for h. Since the prob
lem is linear and one is interested in the description of non
uniqueness, one can take "'0 = "'I = O. In this case the equa
tion for h which follows from (20) and (22) is of the form 

0= r aG (s,y) h dy, sEF. (23) 
Jy aN 

To describe the degree of nonuniqueness of the solution to 
problem (3) one should describe the set of solutions to Eq. 
(23). If",o = 0 and "'I = 0 then u=Oin Ixl>a. Therefore one 
describes the nonradiating sources. This question was often 
discussed in the physical literature. 5 The following is a de
scription of the set of all solutions ofEq. (23). Let us multiply 
(23) by a smooth function ¢ (s) and integrate over r to obtain 
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0= f dy h (y)F(y), 
J!2' 

(24) 

where F(y) = f r(aG (s,y)/aN)¢ (s)ds is the solution of the 
Dirichlet problem, 

(V2 + k2)F= 0 in fiJ, (25) 

Fir = - ¢. (26) 

Therefore F runs through the set of functions satisfying the 
homogeneous Helmholtz's equation in fiJ. Equations (23) 
and (24) are equivalent. Thus one obtains the following state
ment. The set of all solutions of (23) (i.e., the set of all nonra
diating sources) is precisely the set off unctions orthogonal to 
all of the solutions (inL 2 say) ofEq. (25). For example, if fiJ is 
a ball of radius a with center at the origin, then a basis in the 
set of solutions of Eq. (25) forms the functions 
r - I12Jn + 1/2 (kr)Ynm (O,¢), where I n is the Bessel function 
and Ynm are the spherical harmonics. 

Remark: It seems that the first paper on antenna syn
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On jOint lower bounds of position and momentum observables in quantum 
mechanics 
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A new theorem on joint lower bounds of unsharp position and momentum observables is 
formulated and proven. It is developed as a straightforward formal generalization of a similar 
theorem for the spectral projections of the usual observables which has been employed to express 
the strict incompatibility of position and momentum. The relevance of our theorem to the 
problem of joint measurements in quantum mechanics has been discussed elsewhere. 

PACS numbers: 03.65.Bz 

I. INTRODUCTION 

Usually the incompatibility of quantum mechanical po
sition and momentum is expressed rather formally by means 
of the commutation relation [£2 ,&'1- = ifzI. It was Jauch l 

who used a theorem on the intersections of the ranges of the 
spectral projections of £2 and &' to point out the nonexis
tence of a well-behaved joint probability distribution. This 
"Jauch theorem" (J) (which will be reported in Sec. II) repre
sents a much more intuitive and very strong explication of 
the incompatibility of £2 and &'. 

On the other hand, it has been shown in recent years 
that by introducing "unsharp" or "fuzzy" observables 
Qf' Pg a notion of joint measurements becomes possible for 
certain pairs of "Fourier related" Qf' Pg , with measuring 
unsharpnesses obeying the uncertainty relation 

.Jq-.Jp>!fl (1) 

(see Sec. 111).2-4 
The purpose of the present paper is to generalize 

theorem (J) from ordinary observables to the full class of 
unsharp position and momentum observables. We arrive at a 
theorem (J), the proof of which will be seen to be fully inde
pendent of the uncertainty relation (1). This gives rise to a 
real extension of the class of pairs Qf' Pg , which are compati
ble in the sense defined below. 

The physical interpretation of these results has been 
studied in Ref. 5, where a detailed analysis ofthe significance 
of the uncertainty relation to the possibility of joint measure
ments is given. 

II. INCOMPATIBILITY STATEMENT: JAUCH THEOREM 
(J) 

Let 1'2(~ ,dq) and 1'2(~ ,dp) be the configuration and 
momentum space representations of the state space diY of a 
(one-dimensional) quantum mechanical particle. In the stan
dard framework, position and momentum observables are 
defined as projection-valued measures on the Borel sets 
E8(~)of~ 

Q: E8(YP)-+&'(£'), X-+Q(X), 

(Q (X )I/t)(q) = X x (q)-I/t(q), 

P: E8(YP)-+&'(£'), Y-+P(Y), 

(P(Y)¢)(p) = Xy(p)-¢(p) 

such that 

(2) 

(3) 

are the usual Fourier-Plancherel equivalent position and 
momentum operators on diY_ We denote by ~(£') the set of 
all effects, i.e., of all self-adjoint operators A lying between 0 
and I, O<A<J; for any two A, B E ~(£') we define the set 
l' t:(A ,B ) of positive lower bounds as 

1't:(A,B) = lEE ~(£,)IE<;A andE<;B Ik~(£'). 

We call effects A, B incompatible if 1't:(A,B) = I OJ; other
wise they are called compatible. 

Finally,letP /\ Q (P,QE &'(£')) be the projection onto 
the intersection PdiY n QdiY ofthe ranges of P and Q. Then 
we may formulate the following: 

Theorem (J): For arbitrary measurable sets X, Y with 
finite Lebesgue measures, it is 

Q(YPIX) /\ P(YPIY)#O, 

i.e., l' t:(Q(YPIX), P(YPIY))# 101 (J-O) 

[moreover, dim(Q(YPIX) /\ P(~/Y)£') = 001, 
Q(X) /\ PlY) = 0, i.e., l' t:(Q(X), PlY)) = 101-

(J-I) 
Further, for semibounded X, Y with finite measures, 

Q(X) /\ P(YPIY) = 0, 

i.e., 1't:(Q(X),P(YPIY)) = 10 1, (J-2) 

Q(YPIX) /\ P(Y)=O, 

i.e., l' t:(Q(YPIX), PlY)) = 101. (J-3) 

Statements (J-0)-(J-3) have been established and proven first 
for bounded X, Yby Lenard,6 the extension to semibounded 
X, Y comes from Berthier and Jauch/ and the proof of (J-O) 
and (J -1) for arbitrary X, Y with finite measures is given in a 
more general context by Amrein and Berthier. 8 As an exam
ple, (J-1) means that there is no state I/t E diY such that both 
I/t(q) and ¢( p) have supports with finite measures. Physically, 
there is no possibility of localizing a particle within a finite 
phase space cell. 

This result is fully independent of the uncertainty rela
tion (1) which as a consequence may not be taken as an 
expression of position and momentum incompatibility with
in the standard formalism of quantum mechanics. On the 
contrary, as we shall see now, the UR (1) seems to make 
possible a sort of joint measurement of un sharp position and 
momentum values respecting the limitations given by (J). 
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III. JOINT DISTRIBUTIONS FOR FOURIER-RELATED 
OBSERVABLES 

Unsharp position and momentum observables Qf' Pg 

are defined as effect-valued measures 

Qt= @(~)_W(£'), X-QAX), 

(Qf(X)tP)(q) = v{(q).tP(q), 

Pg: @(~)_W(£'), Y_Pg(Y), 

(Pg(Y)¢)(p) = v:(p).¢(p), 

where 

v{(q): = (xx. f)(q), v:(p): = (yy.g)(p) 

(4) 

(5) 

are smeared-out characteristic functions which are concen
trated on X and Y;/and g are normalized positive distribu
tion functions satisfying 

(f!) ) t= = L q f(q) dq = 0, 

(Li ff!) )2=(Li ff = i dq q2f(q) < IX) , 

~ 

(Li g &' f=(Ligf = J~ dp p2g( p) < IX) • 

From (4)-(6) we get the operators (3): 

f!) = L q Qf(dq), &' = L p Pg(dp) (weakly). 

(6) 

Clearly the standard observables (2) are recovered by setting 
f(q) = 15(q) andg(p) = 15( pl. The unsharpnesses described by 
(5) and (6) reflect the finite resolutions of the position and 
momentum measuring instruments3

•
4 arising from the quan

tum mechanical nature of their interaction with the observed 
object; this interpretation has been justified by means of a 
quantum mechanical theory of measurement by the present 
author.9 We call observables Qf' Pg incompatible iff or any 
pair of bounded measurable sets X, Yin @ (~) the effects 
Qf(X), Pg(Y) are incompatible; otherwise, Qf and Pg are 
called compatible. Ali and Prugovecki4 have shown as a gen
eralization of a theorem by Wigner the following: 

Theorem (AP): For a given pair of positive numbers 
(Liq, Lip), there exists ajoint observable afg for some position 
and momentum observables Qf' Pg with Lif = Liq, Lig = Lip 
if and only if Liq.Lip>ftI2. 

A joint observable afg is a continuous effect-valued 
measure on phase space r = ~2 (ft = 1) 

afg : @(~2)_W(£'), 

Li-afg(Li ) = (217")-1 i 'Jrqp dq dp, 

'Jr qp = exp(zpf!)) exp( - iq&') .'Jr. exp(iq&') (7) 

Xexp( -ip!!2) , 

'Jr>0, tr( Jr) = 1 

with marginal observables Qf' Pg : 

afg(XX~)=Qf(X), afg(~XY)=Pg(Y). (8) 
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It has been shown within a theory of measurement that it is 
reasonable to regard a measurement of afg as a joint mea
surement of Qf and Pg • 

9 Thus (AP) states that the strict in
compatibility of position and momentum (J-l) disappears if 
one considers "Fourier-related" observables Qf' Pg for 
which f(q) = (ql 'Jrlq), g(p) = (pi 'Jrlp) for some state op
era tor 'Jr. In that case there exists some nonzero lower 
bound a of Qf(X) and Pg(Y) [namely, a = afg(X X Y)]: 

a<Qf(X) and a<Pg(Y), a = a(X, Y). (9) 

In the remaining part of this paper we shall investigate 
to which extent the class of pairs Qf' Pg admitting (9) can be 
enlarged by dropping the restriction to Fourier-related pairs. 
It will become clear that it is not the UR which is responsible 
for a relaxation of position and momentum incompatibility 
(J-l) through (9). This will be illustrated by means of some 
examples. 

IV. GENERALIZED JAUCH THEOREM (J) 

Quite surprisingly, it is the structures of the generalized 
"characteristic functions" vi, v: [Eq. (5)], which are re
sponsible for the existence or nonexistence of some positive 
lower bound of the corresponding Qf(X), Pg(Y) [defined in 
(4)], just as it was the case for Xx, Xy in Jauch's theorem (J). 
Namely, we may formulate as "generalized Jauch theorem" 
the following: 

Theorem (J): LetX-Qf(X): = (Xx. f)(f!))-v{(f!)), 
Y-Pg(Y): = (Xy.g)(&,) v:(&') be unsharp position 

and momentum observables characterized by some distribu
tion functions J, g (cf. Sec. III). There exists a positive lower 
bound of Qf(X) and Pg (Y) for given measurable sets X, Y, 
that is, 

Y i(Qf(X), Pg(Y))i= {OJ 

if and only if the ranges of the respective square root opera
tors possess nontrivial intersection 

R(Qf(X)\/2)()R(Pg(y)\/2)i={OJ. (10) 

A necessary condition for this is the following: 

Q (supp (v{j) 1\ P(supp {v:))i= {OJ. (11 ) 

The proof will be given in the Appendix. At present it is 
an open problem whether the last relation (11) is also suffi
cient; clearly this is the case for standard observables 
(f = g = 8). Let us call Qf' Pg a second type couple if there 
exist bounded measurable sets X, Y such that (10) holds true; 
otherwise, they shall be called afirst type couple. Then our 
theorem immediately implies the following: 

Corollary: Qf' Pg are compatible ifand only if they area 
second type couple. 

According to Theorem (AP) Fourier couples are second 
type couples and thus compatible. In the next section we 
shall show the existence of non-Fourier second type couples 
which means that it is possible to break the verdict (J-l) inde
pendently of the UR (1). 

V. SOME APPLICATIONS AND EXAMPLES 

First we present a relaxation of the verdicts (J-2) and (J-
3). Take Qf with supp {fJ =!!ll, X a measurable set with 
finite measure. Then XX'. f = 1 - Xx. f is strictly positive 
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so that QJ(X ') = QA~ IX) is positive definite and therefore 
R (QJ(R IX)I/2) =~. We obtain for any Pg and arbitrary 
(bounded) measurable set Y 

..? 6(Qf(R IX), Pg(Y))~ (0) . 

Similarly, forsupp (g) = &t, Ywithfinitemeasureandarbi
trary f, X 

..? 6(Qf(X), Pg(&tIY))~ (0) . 

Next the verdict (J-1) can be extended to the following 
subclass of first type couples Qf' Pg • Let supp (I), supp (g) 
as well as X, Ybe bounded sets; then (11) is violated so that 

..? 6(QAX), Pg(Y)) = (0) . 

The incompatibility of first type couples holds independent
ly of the value of the uncertainty product .:1f.:1g. 

The next example proves the existence of compatible 
QJ' Pg with arbitrarily small uncertainty product .:1f.:1g 
«1i12). Let F(q) = Icfo (qW, gO(p) = I~ (pW = g(p) with 
supp (cfo ) being bounded. Take any Iwithsupp (I) = &t. It 
is 

Pg.(Y)<Pg(Y). 

Further, as we shall show, there exist bounded measurable 
sets XO such that 

Qr(XO)<Qj(X) . 

Since Qr' Pgo are a Fourier couple, Theorem (AP) gives 

arg·(XOX Y) E..? 6(QAX), Pg(Y))~ (0) (12) 

In particular, QJ and Pg are compatible even for .:1f.:1g < iii 
2. To prove the second of the above inequalities, we mention 
that for bounded XO the set So = supp (v{.) is bounded. 
Taking smaller and smaller XO makes 
MO = max (v{:(q)lq E SO) arbitrarily small. Further, for 
supp (I) = &t the continuity of v{ = Xx *1 implies 

O<min (v{(q)lqES) = m<min (v{(q)lqESO) 

for any fixed boundedS~So. By takingXO such thatMo<m, 
we obtain 

v{".(q)<Vx(q) for all q E &t, 

which is equivalent to Qr(XO)<Qj(X), This proves (12). 
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APPENDIX: PROOF OF THE GENERALIZED JAUCH 
THEOREM (J) 

In order to specify the necessary and sufficient condi
tions for a nontrivial set of lower bounds 
..? 6(Qf(X), Pg(Y))~ (0), we shall proceed in several steps. 

(1) First we notice that the existence of some effect a ~ 0 
with 

(AI) 

is equivalent to the existence of some effect a: = aPr; with 
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a: = aPr; < Qf(X ), 

0< a < I,S E~, IISI! = 1, Ps = Is) (S I . (A2) 

One simply has to take the spectral projections A (S) of a 

belonging to some subset S of the spectrum of a such that 
there exists a positive number a > 0 as lower bound of S. 
Then, for S with A (S)S = S, we have 

a = aPr;<aA (S)<a. 

(2) If an effect aPr; is to obey (A2), then the following 
restriction for a must hold: 

O<a«QJ(X)r; = (S, Qf(X)S) = IIQAX)I/2s 112 . 

Any vector tP E~, IltPll = 1, can be decomposed into 
tP = KS + AS' with some S' orthogonal to S (SlS '), lis' II 
= 1. If (A2) is to hold, i.e., if 

(tP,aPd) = al(tP,s W«tP, QJ(X)tP) for all tP E~, 

it follows (for S ' lS ) 

0<IKI 2. E + 1..1 12·IIQf(X)I12S '11 2 

+ 2 Re (KA *(S', Qf(X)S)J , 
where 

O<E: = IIQJ(X)I/2S 112 - a. 

Since this must be true for any KE &t, 
..1= (1 - IKI2)1I2. exp( - ir), 0<r<21T, we get [by taking the 
minimum with respect to {j = cos -I(K)] 

[Re (exp(irHs', QJ(X)S) J]2<E·IIQJ(X)I/2S '11 2 

and from this (by maximizing with respect to r) 

I(s ',Qf(X)s W<E·IIQj(X)I/2S '11 2. 

Explicitly written, this gives 

I (QJ(X )1/2tP,Qf(X )I12S) 12 

<IIQj(X)I/2tP I1 2.( IIQj (X)I/2S 112 - a J 

for all tP with (tP,S) = o. (A3) 

(A3) is readily seen to be equivalent to (A2); for a = 0 it 
reduces to an application of Schwarz's inequality. 

Now let us consider the closed subspace 

.Ai x: = QJ(X)I/2([S ]l)=Qx~ 

with projection Qx; for Sx: = QJ(X)I/2S and ¢E.Ai x we 
have 

(tP,Sx) = (QxtP,sx) = (tP,Qx Sx) 

so Schwarz's inequality implies 

l(tP,SxW<lltPI1 2·IIQx Sxl1
2 

for all tPE.Ai x . 

But then (A3) is seen to be equivalent to 

IIQx Sx11
2
<IISx11

2 
- a < IISxl1

2 
(A4) i.e., 

o <a<1I(I - Qx)SxI1 2. 

(3) In the final step we have to investigate the question 
whether for QJ(X) there exists some state S E ~ such that 
the image S x does not belong to the closure.Ai x of the image 
of [5]1 under Qj(X) 112. This is the content of relation (A4) 
which we shall prove now to be equivalent to 

S = Qf(X) I /27] for some 7] E ~, 

i.e., sER (Qj(X)I/2). (AS) 
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LetA = Qf(X)I!2. Then we have to show 

As El' A ([s P) = eff x iff s E A.if" = R (A ). 

We begin by remarking that 

R (A) = R (Q(SO)) = :.if"0, 

So: = supp Ivll, R (A) =A.if"=A.if"°, 

which follows from the fact that A is self-adjoint and one-to
one on .if" 0. Both conditions (A4) as well as (A5) imply 
S E .if" 0: in case of (A5) this is evident. To show that S E .if" ° 
is necessary for (A4), assume S = So + SI EI: .if"0, So E .if"0, 
s11.if" 0, SI #0. Then for 

1/; = So - sdlsol1 2/11s1112 E [5]1 

we have 

A1/; = ASO = As = Sx, 

which means Sx E eff x = A ([s F). SO we have established 
(11) as necessary condition for (10), and it suffices to prove 
the above equivalence under the assumption SE .if" 0. 

Consider a complete orthonormal system in .if" 0, 

I 1/;0 = S, 1/;1' 1/;2"'}' Then the set IA1/;o, A1/;I""} is total in 
.if" 0: from (,p, A 1/;; ) = 0 for all i,,p E .if" 0, it follows that 
(A,p, 1/;;) = 0 for all i such that A,p = 0 and,p = O. Nowas
sume first S = A 1] E R (A ), 1] E .if" 0. It follows that 

0= (s, 1/;;) = (1], A 1/;; ) for all i> 1,1]#0; 

thus 1]1 A ([s F) = Qx.if", i.e., (I - Qx)1] = 1]. Since 
(1],As) = (s,s)#O, we obtain 0#((1 - Qx)1],As) 
= (1],(1 - Qx)As ) and thus As EI: A ([s ] I ). To prove the 

second part of the equivalence statement, assume S EI: R (A ). 
From(A1/;;,,p) = o for all i> 1,,p E.if" 0, weobtain(1/;;,A,p ) = 0 
for all i> 1. But then A,p = A1/;o = AS for some constant A. 
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S El' R (A ) implies A = 0, thus A,p = 0, and ,p = O. Since 
,p E.if" ° is arbitrary, we have proven that already the set 
I A1/;I' A1/;2"'} is total in.if" 0. Therefore, 

A1/;o=AsE [A1/;I,A1/;2"'] = A([S]l). 

To summarize, we have established the following state
ment: there exists some effect a obeying (A 1) if and only if 
there is some nonzero S E .if" obeying one of the equivalent 
conditions (A2)-(A5). A similar chain of equivalent condi
tions may be formulated for Pg (Y). So we arrive at the desired 
result: any vector S #0 lying in the intersection eff of the 
ranges 

eff = R (Qf(X)1/2) nR (Pg (y)1/2) 

will give rise to a positive lower bound of Qf(X) and Pg (Y). 
eff # 0 is a necessary and sufficient condition for 
2" 6(Qf(X), Pg(Y))# 10} . 
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The effects on quantization of using different connections are studied. Through explicit examples 
it is shown that with a proper choice of connection the half-density quantization scheme with the 
B. W.S. condition can produce physically correct results while the complicated half-form 
quantization scheme with the corrected B.W.S. condition can produce physically incorrect 
results. 

PACS numbers: 03.65.Ca, 02.40. + m 

1. INTRODUCTION 

In this paper we discuss an aspect of geometric quanti
zation which seems to have been largely ignored in the past. 
The non uniqueness of the choice of the connection on the 
quantum line bundle is well known but the actual practical 
effects on quantization do not appear to have been systemati
cally discussed in the existing literature. Weare particularly 
interested here in the effect the choice of connection has on 
the so-called B.W.S. and corrected B.W.S conditions. To 
this end we quantize one-dimensional Hamiltonians with 
potential wells and find that, in the examples we discuss, a 
judicious (a posteriori) choice of connection gives the exact 
energy eigenvalues while the standard connection gives ap
proximate energy eigenvalues only. 

Throughout this paper, unless otherwise stated or expli
citly defined, we have adopted the notation and geometric 
quantization schemes described by Woodhouse. I 

The basic elements of geometric quantization are a 
symplectic manifold (M,w) and a Hermitian line bundle B 
over M with (compatible) connection V (a connection means 
a connection compatible with the Hermitian structure in this 
paper) with curvature w/-li. We construct the quantum Hil
bert space:JiP P' or:JiP';, associated with a polarization P' of 
M (we will restrict our attention to real polarizations here) 
from sections s of B which are covariantly constant with 
respect to vector fields in P' and similarly covariantly con
stant half-densities v E .:::1_1 /2(P ') or half-forms v E {j --I /2(P ') 
in some metaplectic structure {j1/2' Explicitly the quantum 
pre-Hilbert space W P' (or W';,) consists of smooth sections 
lJI = s·v of B ®.:::1_ l/2(P') or B ® {j -I 12(P') which obey 

Vxs = 0; Vxv = 0 VXE I(M,P'), 

where I(M,P ') denotes the set of smooth vector fields X such 
that Xm E P:" for each mE M, and which admit a finite in
ner product given byl 

( lJIllJI) = (21rii)1 -- 1/2)" { ( lJI,IP ), JQ , 

whereQ'=MIP, (lJI,lJI)q' =(s,s)mlvl~IEwlm and where 
q'(EQ ') = 1T'(m), 1T' being the projection M--+Q '. (.,.) is the 
Hermitian structure on B and EO) is the Liouville form on M. 
The quantum Hilbert space :JiP P' is then the completion of 
the pre-Hilbert space Wp" 

In quantum mechanics we are normally concerned with 
a symplectic manifold (M,w) where M is the cotangent bun
dle T *Q of some configuration space Q. In this case, there is a 

natural polarization, the vertical polarization which we shall 
denote by P, for which M I P = Q and:JiP P or:JiP'; is identifi
able with the Hilbert space L 2(Q ) of square-integrable func
tions on Q. We shall restrict ourselves to cotangent bundles 
from now on. 

When M is simply connected, all connections V with 
curvature wlfz are equivalent. I We are concerned in this pa
per with what happens when M is not simply connected. 
There is then an infinite set of inequivalent choices for V and 
we would expect that the choice of connection has physical 
consequences. 

Let us review some of the relevant properties of a com
patible connection on B. 

Let s I be any nowhere-zero smooth section of B over 
some neighborhood NCM. Given a connection V we can 
define a connection potential {JI on N obeying d{JI = w by 

VXs l = - (ilfz)(X --.J{JI)s1 VXE V(M), 

where V (M) denotes the set of smooth vector fields on M. 
Note that our {J differs from Woodhouse's notation by a fac
tor fz. Given a second nowhere-zero smooth section S2 on N 
we can define a second connection potential{J2 on N obeying 
d{J2 = w by 

V XS2 = - (ilfz)(X --.J (J2)S2 V X E V (M). 

Since s I and S2 are nowhere-zero there exists a nowhere
zero smooth function u on N such that S2 = us I' It then fol
lows that 

{J2 = {JI + ifz d (In u). 

Now let V' be a second connection on B. We can define 
a corresponding connection potential {J; obeying d{J; = w 
by 

V~SI = - (ilfz)(X --.J{J;)s1 VXE V(M). 

Supposethatsl,s2 are global sectionsonM and that{Jt/3; are 
global connection potentials on M. If there exists on M a 
smooth global function u of the form u = exp(vlifz), where v 
is a real function on M, such that 

(X --.J{J;)SI = (X .J({JI - ifzd(ln U)))sl VXE V(M), 

then V' is equivalent to V with the equivalence mapl 

p:B--+B given by s--+p(s) = us. 

We can readily check that 

(1) (s,s) = (p(s),p(s)), 

(2) p(V xs) = V~ p(s), and 
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(3) V being compatible with the Hermitian structure 
implies V' is also compatible with the Hermitian structure. 

While such a function exits locally it may well not exist 
globally. However, if Mis contractible, then such a function 
u exists globally. The reasoning is simple: (1) df3; = (J) = df31 
impliesf3; = f31 + a, where a is a closed I-form, (2) every 
closed I-form on a contractible M is exact by the Poincare 
Lemma,2 i.e., a = du for some global function u. 

2. QUANTIZATION WITH EQUIVALENT CONNECTIONS 

Let Q = R the real line, M= T*Q= R2, B =M®C, 
and let (p,q) be the usual global Cartesian canonical coordi
nates on T *Q. The vertical polarization P is spanned by a / 
ap. Let So be any nowhere-zero smooth global section of B 
and let '1,'1' be connections on B defined by 

V xSo = - (iHi)(X ..J pdq)so 
, . , VXE VIM). 

V xSo = - (IHi)(X..J f3 )so 

Since M = R2 we can write, by the Poincare Lemma, 
f3' = pdq - iM (In u) for some globally smooth function u. 

Now So is covariantly constant along X E x(M,P) with 
respect to V. Hence, with V as connection, we can write any 
section s polarized with respect to P in the form s = ¢(q)so. 

Now, since V and V' are equivalent we have 

V~uso = uV xSo = 0 

and so, uSo is also covariantly constant along X E x(M,P ) 
with respect to V'. 

With V' as connection we can write any section s polar
ized with respect to Pas 

s = ¢(q)uso = ¢(q)exp( - ivHf)so. 

Given a connection V and a polarization P we construct 
the quantum pre-Hilbert space Wp from sections of 
B ®.J -1/2(P ) [or B ® (L 1/2(P), there being no practical dif
ference between the half-density and half-form quantization 
in this case] of the form 

cf> = ¢ (q)s0IdPI-1/2, 

with scalar product 

(cf> Icf» = (2~)1/2 f: '" I¢ (qWdq. 

(2.1) 

There is also a unique self-adjoint operator in Ji" p cor
responding to any classical observable; of the form 
; = s (q)p + 'I7(q)provided S (q)a /aqisacompletevectorfield 
on Q. 3 The operator expression? is given, according to the 
standard half-density quantization scheme, by 

Now we can repeat this construction with the connection V' 
to obtain the quantum Hilbert space Ji"p which consists of 
elements of the form 

cf>' = ¢ (q)Sb Idpl-1/2, sb = (exp v/ili)so' (2.3) 

and the operator expression? 'in Ji"p is 
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?cf>' = [( - ili(s (q) ~ + ~ ~!) + 'I7(q))¢ (q)] 

x sbldpl-1/2. (2.4) 

Let us introduce a map of Wp onto W;, Uo: Wp -+ W;, by 
cf>-+Uocf> = cf>', where cf> and cf>' are given by (2.1) and (2.3). 
The map Uo is obviously an isometric operator4

,5 with a do
main dense in Ji"p and a range dense in Ji";. Hence Uo ad
mits4 a unique continuous linear extension U to the entire 
Hilbert space Ji"p on which U is isometric. We conclude5 

that U is in fact a unitary map of Ji"p onto Ji";. The opera
tors? and?' are hence unitarily related by ? ' = U?ut. In 
other words, a change to an equivalent connection leads to a 
unitarily equivalent quantum Hilbert space and quantized 
observables, a change which leaves the physics content unal
tered. We can go a step further. We can identify Ji"p with 
L 2(Q ) in two ways: (1) with connection V we can identify Ji"p 
with L 2(Q ) by identifying cf> E Ji"p as given in (2.1) with 
¢ (q) E L 2(Q ); (2) with connection V' we can identify Ji"; with 
L 2(Q )by L 2(Q )byi~entif¥ing cf>' E Ji"; as given in (2.3) with 
¢ (q) E L 2(Q). Then;and ; , both appear as the same operator 
expression3 

. (a 1 as) -If! s- + -- +'17 
aq 2 aq 

inL 2(Q). 

3. QUANTIZATION WITH INEQUIVALENT 
CONNECTIONS 

(2.5) 

Let Qbe the circleSI, M = T*Q= SI ®R, B =M®C, 
and let (Po ,() ) be the usual coordinates of polar angle () and 
its conjugate momentum Po on M [strictly () is not a (global) 
coordinate but this technicality can be overlooked for our 
purposes]. The vertical polarization Pis spanned by a /apo' 

Let So be any nowhere-zero smooth global section of B 
and let V and V' be connections on B defined, respectively, 
by 

Vxso= -(i/Ii)(X .Jpo d())so VXE VIM) 
and 

V~so = - (i/f!)(X ..J(pod() - a))so V X E V(M), 

where a is a closed one-form on M. In this case, since M is 
not simply connected, there exist closed one-forms whch are 
not exact. In particular let us examine the inexact one-form 
a = b d(), b E R. 

To simplify things let us restrict ourselves to the half
density quantization scheme here. 

With V as connection, the quantum pre-Hilbert space 
Wp consists of elements of the form 

cf>=¢(())s0Idpol-1/2, (3.1) 

where V xSo = 0, X = a/apo with finite scalar product 

(1/1' 11/1') = (211"fz)-1/2 f1T I¢(() W d(). (3.2) 

The self-adjoint operator expression Po in Wp for Po is 

Pocf>= [ -iii :e ¢(())] soldPol-1I2. 

Let us now try to repeat all this with connection V'. We 
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could try to construct the quantum pre-Hilbert space Wp in 
terms of 

<P' = ~ '(0 )sb IdPe 1- 1/2, 

where 

sb = (exp vlift)so, v = bO 

(3.3) 

(3.4) 
as before. Since the function v is not globally smooth we are 
faced with two possibilities. The first possibility is when b 1ft 
happens to be an integer. Then So = exp nO lift is single val
ued, i.e., a smooth global section of B. Furthermore V';'sb 
= 0, X = alape, on account of(3.2). As a result we can 

repeat our previous construction to obtain~; and the oper
ator P~, and they are unitarily related to ~p andpe, respec
tively. In particular the spectrum ofpe coincides with that of 
p~. 

The second possibility occurs when b 1ft is not an in-
teger. Then sb in (3.4) is not a smooth global section ofB. The 
above construction loses its meaning. To salvage the situa
tion we can introduce 

<P" =~"(0)(expbOlift)soldpl-1/2, (3.5) 
which becomes globally smooth if ~ "(0 )exp(bO lift) is single 
values, i.e., ~ "(0) must not be single valued in order to main
tainthesinglevaluenessof~ "(0 )exp(bO lift),henceof<P ". We 
can then construct the quantum pre-Hilbert space W;e and 
its completion~; in terms of <P " as before. The correspond
ing operator P; in~; possesses a spectrum nft + b which is 
different from that of P e . Obviously, ~; and P; are not 
unitarily equivalent to ~p andPe and the two connections 
V, V' lead to two physically distinguishable quantum sys
tems. 

We see now that when M is not simply connected differ
ent choices of connections lead to physically different re
sults. There does not seem to be any a priori rules within 
geometric quantization schemes to single out a "correct" 
connection. The seemingly natural choice of the connection 
defined by the connection potentialfi = Pi dqi is not univer
sally applicable since there are known cases where this con
nection is inappropriate, e.g., the Bohm-Aharonov effect 
and the examples discussed in later sections. There is one 
further effect arising from the freedom of choice of connec
tion which seems to have escaped people's attention so far. 
This is that the choice of connection can blur the distinction 
between the half-density and the half-form quantization 
schemes. This will become apparent later. 

4. HAMILTONIANS AND B.W.S. CONDITIONS, A 
GENERAL DISCUSSION 

We wish now to study the effect the choice of connec
tion has on the well-known RW.S. conditions.' To this end 
we propose a quantization scheme to deal with Hamilto
nians for one-dimensional systems on the configuration 
space Q = R in purely attractive potentials V (q). More pre
cisely V(q) satisfies the following conditions: 

av 
q->Oand Lim V(q)= Lim V(q) = Eo· 

aq q~ + co q~ - 00 

For convenience we set q = ° at the minimum Vo of V. 
Let X H be the Hamiltonian vector field on M generated 
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by H and let (T, be its flow. The flow lines of X H in M can be 
found by solving the differential equations 

aq P ap av 
-=-; 
at m at aq 

These flow lines represent the classical orbits of the sys
tem. In general an orbit with energy H will be either closed or 
open and infinite depending on whether H < Eo or H> Eo. 
The flow lines of X H split M into three distinct regions, la
beled by Me , M 0+ , and M 0- , where 

Me = [closed flow lines of Xll J - [(0,0) 1, 
M 0+ = [open flow lines of X ll ; P > ° J, 
M 0- = [open flow lines of X H ; P < ° J . 

The origin (0,0) is the critical point of X ll' i.e., X II = ° 
at (0,0) and none of the flow lines originated outside meets 
the origin. We therefore remove the origin from Me. This is 
critical later as the vector field X H spans a polarization in Me 
but not Me plus the origin, and also Me is not simply con
nected. 

If V(q) is an infinite well, i.e., Eo = 00, M 0+ and M 0-

are empty. For a free particle Me is empty. 
The dividing line between Me and M 0+ is the line K1" 

corresponding to H = Eo; P > ° while the dividing line 
between Me and M 0- is the line Ki" corresponding to 
H = Eo; P < 0. In each region we can label the flow lines 
according to their energy by K;j in M 0+ , Kii in M 0- , and 
K~ in Me. We summarize all this in Fig. 1. 

In a neighborhood U of each point m E Me uM 0+ uM 0- , 

we can find canonical coordinates (H (p,q),t (p,q)), where t is 
the flow parameter along the flow lines of X ll' If m E M 0+ or 
M 0 these coordinates extend to cover all of M 0+ or M 0-
(set t = ° when q = 0). 

If m E Me there will be a value of t, Tsay, dependent on 
which flow line m lies, such that (TT(m) = m. For each flow 
line K~ in Me we can assign a value of T thus constructing a 
function T(H) on the flow lines K~. Let us call T(H) the 
period ofK~. 

If we fix the origin of t in Me by setting t = ° when 
q = 0; P > 0, we can construct canonical coordinates (R ,0 ) by 

0= 2rrt R=(2rr)-I(llT(H)dH. 
T(H) Jv" 

p 

M~ 

--~~--~~------+-------~----~~--q 

FIG.!. 
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These are not global coordinates, so strictly we should 
define two overlapping charts. This technicality can be over
looked for our purposes. 

The advantage of using (R,B ) over (H,t ) is that the period 
of B, being 2rr, is independent of H while the period of tis 
T (H) and hence, dB is a well-defined one-form on Me while dt 
is not. 

We have three distinct regions of M and the flow at of 
X H is complete in each of these three regions. We shall as
sume that we can quantize the Hamiltonian H separately in 
these three regons. Such a quantization procedure has been 
found justifiable for the case of momentum observables by 
McFarlane and Wan. 6 We are particularly interested in Me 
where, as the flow lines of X H are closed, we can apply 
B. W.S. conditions I to try to derive the discrete part of the 
spectrum, En' of the Hamiltonian. 

Let us confine our attention from now on to the region 
Me' The prequantum line bundle B over M can be split into 
three bundles: Be over Me' Bo+ over M 0+ , and Bo- over 
M 0-' We can then choose the connection separately for 
these three bundles. Since M 0+ , M 0- are simply connected, 
the choice of connection in Bo+ ,Bo- will have no physical 
consequences. However, since Me is not simply connected 
the choice of connection for Be is going to affect the spec
trum of the Hamiltonian as we shall see. 

Let So by any nonzero section of Be and let V be a con
nection on Be defined by 

V xSo = - (i/Ii)(X -' /3 iso, X E V (Me). 

where/3isa I-form on Me such thatd/3 = W on Me . Now the 
vector field J / JB defines a polarization P ; onMe . The leaves 
of P; are easily seen to coincide with the flow lines of X H on 
Me. The B.W.S. condition on the leaves K~ of P; arising 
from the half-density quantization scheme is 

,( /3 = 2rrnli, n = integer. 
JK11 

The corrected B.W.S. condition arising from the half-form 
quantization schemel is given by 

,f.: /3 = 2rr(n - !)Ii, n = integer. JKC 
H 

We shall now proceed to examine the effect of a change 
of connection by way of two explicit examples in the next 
two sections. 

5. ONE-DIMENSIONAL SIMPLE HARMONIC 
OSCILLATOR 

The Hamiltonian is given by 

H = !(p2 + q2), 

where we have set the mass and the elastic constant to unity. 
The vector field X H is given by 

J J 
XH=p- -q-. 

Jq Jp 

The classical orbits satisfying the initial conditions q(O) = 0, 

prO) = fill are given by 

q = fill sin t; p = ~2H cos t. 
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Clearly Me = M - [(0,0) J and T (H) = 2rr. The coordinates 
(R,e) are then defined by 

e = 2rrt /T(H) = t, 

1 lH R = - T(H)dH=H. 
2rr 0 

In terms of p and q 

e = tan-I(q/p); R = !(p2 + q2). 

Note that R, hence H, is bigger than zero in Me. Let us 
choose as connection firstly /3 = pdq. 

The B.W.S. condition 

,f.: pdq = 2rrnli, n = integer, 
)KH 

is well known to give 

En = nli, n = 1,2,3, .... 

The allowed valuesofH are then En = nli. n = 1,2,3 ..... The 
corrected B.W.S. condition meanwhile is known to give 

En = (n - !)Ii, n = 1,2,3, .... 

These values form the correct physical spectrum of course. 
Thus the corrected B.W.S. condition gives the correct 

physical results. This is often cited as an example in favor of 
the half-form scheme over the half-density scheme. How
ever, consider the same example with the connection given 
by the connection potential 

/3 ' = p( 1 + !Ii/( p2 + q2))dq _ !Ii(q/( p2 + q2))dp, 

which differs from /3 by !Ii de, i.e., /3' = /3 + !Ii de. 
The B.W.S. condition now gives 

,( /3' = 2rrnli, n = integer. 
JK1f 

The evaluation of the integral serves to illustrate the useful
ness of the coordinates (R,e). Since (as can be verified) 

,( pdq= (21T Rde, (5.1) 
rK~ Jo 

we have 

,f.: /3' = 2rrR + rrIi. JKH 

Hence, 

En = (n - !)Ii, n = 1,2,3, .... 

The corrected B. W.S. condition on the other hand gives 

En = nli, n = 1,2,3 .... 

Thus with a different choice of connection, the B.W.S. 
condition gives the physically correct spectrum while the 
corrected B. W.S. condition gives a physically incorrect spec
trum. 

6. THE MODIFIED POSCHL-TELLER POTENTIAL 

The modified Poschl-Teller potentiaf is 

V(q) = - !1i2a 2
;{ (;{ - l)1cosh2(aq), 

where a,;{ are real constants and;{ > 1. This potential is 
purely attractive and negative with a minimum value Vo at 
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q = ° rising to the maximum value zero at infinity. The value 
Vo equals VIOl = - ~1l2a21l (11 - 1). The Hamiltonian is 

H = ~p2 - Voicosh2(aq). 

We have again set the mass to unity for simplicity. The vec
tor field X H is 

X
H 

= pJ + 2Voa sinh(aq)~. 
Jq cosh3(aq) Jp 

In this case we have three regions as in Fig. 1. The lines 
Ki" and KE;, which serve to divide M into these regions 
correspond to H = Eo = 0. The regions M 0+ and M 0- cor
respond to the free part of the Hamiltonian. The region Me 
contains closed flow lines of X H and thus we can apply 
B. W.S. conditions on these flow lines as before. 

Explicitly, the flow lines of XH in Me are given by 

sinh(aq) = ((vo - H)IH)1/2sin(( - 2H)1I2at ), 

p = ( - 2H)1/2cos(( - 2H)1/2at )/[H l(Vo - H) 
+ sin2(( _ 2H)1/2at )] 1/2. 

The function T(H) is given by 

T(H) = 21T/(( - 2H)1/2a). 

The coordinates (R,e ) are defined by 

R = _1_ (H T(H)dH = (( _ 2VO)1I2 _ (_ 2H)1/2)1a, 
21T Jvo 

(6.1) 

e = 21Tt IT(H) = ( - 2H)1/2at. 

Let us choose as connection in Be the connection with 
connection potentialp = pdq. We again have, as in (5.1), 

1 pdq = (21T R de = 21TR (H). 
JKH Jo 

The RW.S. condition then gives 

R (En) = nil, n = integer, 

while the corrected RW.S. condition gives 

R (En) = (n - !)Il, n = integer. 

The possible values of R in Me are in the range 
(0,(11 (11- IW 12Il) onaccountof(6. 1). The allowed values ofR 
by the B. W. S. condition are then 

R = nil, n = 1,2, ... and n < (11 (11 - 1))112, 

while the allowed values of R by the corrected R W.S condi
tion are 

R = (n - !)Il, n = 1,2, ... and n < (11 (11 - IW 12 +~. 

Finally, to calculate the discrete part of the spectrum En of 
the Hamiltonian H we use (6.1) to obtain 

and 

En = - ~1l2a2((11 (11 - 1))112 _ n)2, 

n = 1,2, ... ,n < (11 (11 - IW /2 

En = - ~~a2((11 (11 - 1))1/2 _ n + ~)2, 
n = 1,2, ... ,n «A (11- lW /2 + ~ 

for the B.W.S. and the corrected B.W.S. conditions, respec
tively. The physically correct values? are 
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- ~1l2a2(11 - 1 - n)2, n = 0,1, ... and n<:11 - 1. 

Thus, neither the B.W.S. condition nor the corrected 
RW.S. condition gives the correct physical result. In other 
words the half-form quantization scheme produces incor
rect physical results and is thus unsatisfactory in this case 
when the standard connection is used. 

However, let us reconsider the half-density scheme, this 
time using the connection with potential. 

P' = pdq + 1l~1l - I (~ - [J:)de. 

The RW.S. condition now gives 

tc (pdq + h~A - 1(~I1- 1 - [J:)de) 
H 

= 21Tnll, n = integer, 

=:;,21TR + 21T1l~1l - I (~ - [J:) = 21Tnll, 

n = 0,1,2 ... ,n <11 - 1. 

The allowed values for R are then 

R = (n - ~(~Il - 1 - [J:))Il, 

n = 0,1,2 ... and n <11 - 1. 

Consequently we obtain 

En = - ~1l2a2(11 - 1 - n)2, n = 0,1,2 ... ,n <11 - I, 

which are precisely the desired values. 
We could produce the same values using the corrected 

RW.S. condition by choosing the connection with potential 

P" = pdq + 1l(1l - ~ - ~[J:)de. 

7. CONCLUSION 

There are two features which emerge from the examples 
discussed: (I) the B. W.S. condition and the corrected B. W.S. 
condition with the standard connection give, in general, phy
sically incorrect energy eigenvalues while the judicious 
choice of connection for either condition can give physically 
correct eigenvalues; (2) the corrected RW.S. condition can 
be replaced by the RW.S. condition plus an appropriate 
choice of connection. While the general validity of (I) above 
has been shown through the examples discussed the general 
validity of(2) has not been established. But it is not unreason
able to suspect that (2) above may be true for a large class of 
physically relevant cases. If this is so, then the enormously 
complex apparatus of half-form quantization schemes ap
pears to be an unnecessary complication, especially in the 
eyes of physicists. 

In view of what has been said, it is clear that the choice 
of connection in geometric quantization is of physical impor
tance. We have gone some way to give a discussion of this. 
Perhaps we should mention also that the situation involving 
the use of a connection different from the standard one to 
model the Bohm-Aharonov effece is quite a different thing 
altogether. The Bohm-Aharonov effect arises from the mul
tiply connectedness of the configuration space (and subse
quently the phase space), and the connection can be chosen a 
priori on a physical basis by relating it to the magnetic field 
which gives rise to the effect. In our examples there does not 
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seem to be any a priori criteria for selecting the connection. 
There is obviously room for much further work in this area. 

IN. Woodhouse, Geometric Quantization (Oxford U.P. Oxford, 1980), 
Chaps. 4, 5, and 6, p. 119, p. 296; J. Sniatycki, Geometric Quantization and 
Quantum Mechanics (Springer, New York, 1980). 

2C. von Westenholz, Differential Forms in Mathematical Physics (North
Holland, Amsterdam, 1981), p. 165, p. 293. 

1803 J. Math. Phys., Vol. 25, No.6, June 1984 

3K. McFarlane and K. K. Wan, Int. J. Theor. Phys. 22, 55 (1983). 
'E. Prugovecki, Quantum Mechanics in Hilbert Space (Academic, New 
York, 1971). 

5p. Roman, Some Modern Mathematics for Physicists and Other Outsiders 
(Pergamon, New York, 1975), Vol. I, pp. 551-553, p. 564. 

6K. McFarlane and K. K. Wan, J. Phys. A 14, L1 (1981). 
7S. Flugge, Practical Quantum Mechanics (Springer, New York, 1974), p. 
96. 

I. H. McKenna and K. K. Wan 1803 



                                                                                                                                    

The propagator of the time-dependent forced harmonic oscillator with 
constant damping 
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The work of Montroll in deriving the propagator of a time-dependent harmonic oscillator is 
generalized to obtain the propagator of the time-dependent forced harmonic oscillator with 
constant damping. 

PACS numbers: 03.65.Db, 02.90. + P 

I. INTRODUCTION 

From Feynman's formulation of nonrelativistic quantum mechanics the propagator, probability amplitude for a particle 
to go from the point (x',I') to the point (x" ,I "), can be expressed as l

•
2 

K(X",I";X',I')=f
oo 

···foo exp {..!...- r:"L(X,x,I)dl}DX(I), (Ll) 
~ 00 - 00 Ii Jl 

whereL (X,x,1 ) is the Lagrangian of the dynamical system considered and where DX(I ) is designed to indicate that the integral is 
over all paths with fixed end points (x' ,I ') and (x" ,I "). As is well known that for the quadratic Lagrangian, the propagator has 
the form3

•
4 

K (x" ,t ";x',t') = {I a
2
sc1 1/21Tifz} 112 exp{iScI (x" ,I" ;x',1 ')}, 

ax' ax" fz 
(1.2) 

where Sci (x" ,I ";x' ,I ') is the classical action. Here we have assumed that there exists one and only one classical path which 
passes through (x' ,t ') and (x" ,I "). Therefore, the catastrophic phenomenon5

,6 will not be discussed in the present work. 
For the time-dependent harmonic oscillator, Montrolli firstly transforms the path integral (1.1) into the Gaussian 

integral 

f: oo··J: 00 exp{i(yTAY + 2B TY)}}X dYj = (i1T)n12(detA )- 1I2exp( - iB TA -IB), (1.3) 

multiplied by a function of x',x", and 1', where A is an n X n matrix, Yand Bare n X 1 matrices, and Y T and B Tare, 
respectively, the transpose matrices of Yand B. He than carries out the calculations as 1'~ (or n--+oo). His method has 
recently been applied for evaluating the propagator of the time-dependent forced harmonic oscillator. 8 In this paper the same 
method has been generalized to calculate the propagator of the time-dependent forced harmonic oscillator with constant 
damping term. 

In Sec. II we are able to transform our path integral into the Gaussian integral (1.3) multiplied by a function of x', x", and 
1'. In Sec. III we show the details of our calculation (also in the Appendix) as 1'~ and we also write down the propagator in 
terms of two functions, which are, respectively, the solutions of the equation of motion of the time-dependent harmonic 
oscillator with damping and with antidamping. Finally, we discuss the result in Sec. IV and confirm our result for perturbative 
force being zero by directly calculating (1.2) in Sec. V. 

II. FORMULATION 

For the time-dependent forced harmonic oscillator with constant damping term, the equation of motion becomes 

x + yx + w2(1)x = q(1 )Im, (2.1) 

where w(t ) is time-dependent frequency, q(t ) time-dependent perturbative force, and ya constant damping coefficient. Equa
tion (2.1) can easily be obtained by the Lagrangian9 

L (x,X,I) = eyr {m [X2 - w2(1)x2]12 + q(t )x}. (2.2) 

In spite of its interpretation difficulties in quantum mechanics,IO·11 we are going to use (2.2) as our Lagrangian. Hence the 
propagator defined by (1.1) can be written as 

K (x" ,I ";x' ,t ') = lim [IT ( m~yrj ) 112] n-oo j = I 2mfzr) 

(2.3) 

a) Work supported in part by the Conselho Nacional de Desenvolvimento Cientifico e Tecnol6gico (CNPq), Brazil. 
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by Feynman's definition. The extra factor eytJ is necessary for including dissipative effect. 12 For latter convenience we have set 

r = (t" - t ')/n and rj = r(t' + jr). r' = r(t '). and r" = r(t") for any function r(t). Now we letYj = e
yt
/

2 
(mI2IZr)1/2xj; then Eq. 

(2.3) can be rewritten as 

since dXj = e - yt/2(2/Zrlm) I/ZdYj' 

By comparing (1.3) and (2.4) we discover that the matrix A is of the form 

al -d 0 0 0 0 0 0 

-d az -d 0 0 0 0 0 

0 -d a3 -d 0 0 0 0 

A= 
0 0 0 0 -d an_ 3 -d 0 

0 0 0 0 0 -d an_ 2 -d 

0 0 0 0 0 0 -d an_ 1 

with aj = 1 + eyt - wJ? and d = eyt IZ. The column matrix B has the elements 

hi = - y'eyT/2 + (?/2mlZ) I/ZQI = - cr-I/Zeyt,IZx' + a?IZQ1' 

hj = a?IZQj U = 2.3 ..... n - 2). 

and 

hn _ 1 = - Y" eyr/2 + (? 12mlZ) I/ZQn _ 1 = - cr-1/ZeW" + r)/2x" + a?IZQn _ 1 • 

Here. we have set Qj = eyt/Zqj' c = (mI21Z)lfZ and a = (2mlZ)-1I2. By substituting (1.3) into (2.4) we obtain 

( 
meyt" )112 

K(x".t ";X'.t') = lim. exp{iB (x" ,x'.r)} 
T~OO 211'lm det A 

and 

(2.4) 

(2.5) 

(2.6) 
(2.7) 

(2.8) 

(2.9) 

(2.10) 

We have assumed the factor exp{(ir 121Z)( - meyt 
'W,2X,2 + 2eyt 'q'x')} in (2.4) to be one as r-o (or n---+ 00 ). Now we are only left 

to calculate the limit values of r det A and B (x" ,x'.r) as r-o. With the help of Eqs. (2.5H2.1O). these calculations will be 
carried out in the next section and in the Appendix. 

III. CALCULATION 

From the matrix A we define Aj and Dj as the following determinants 

-d 0 
a2 -d ..... A n _ 1 =detA. 

-d a3 

an _ 3 

-d 

0 

It is easy to see that the A j and the Dj satisfy the recurrence relations 

Aj+l =aj+IAj-d2Aj_1. Ao=1 (1~<n-2) 

and 

Dj _ 1 = aj_IDj - d 2dj+ I' Dn = 1 (2~<n - 1). 

-d 0 

an_ 2 -d , ... , 

-d an_ 1 

Furthermore. (3.1) and (3.2) can easily be transformed into the finite-difference equations 

{Dj + I - 2Dj + Dj _ I )/r = - wJ _ I Dj - y(Dj + 1 - Dj)IT 

and 

1805 J. Math. Phys., Vol. 25, No.6, June 1984 
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(Aj+ 1 - 2Aj + Aj _ I)/-? = - O)J+ IAj + r(Aj - Aj _ d/r, 

respectively. From (3.1) and (3.2) we see that the end conditions of Aj and Dj are 

Dn_ 1 = an_I:::::; 1 + o (r):::::;a l =AI' 

(Dn_ 1 - Dn_ 2)1r = {an_ 1 (1 - an -2) + d 2}1r:::::; - (1!r), 

and 
(A 2-Adlr={al(a2-1)-d 2}1r:::::;1!r 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

for r being very small. In order to overcome the difficulties of divergence in (3.6) and (3.7), we now introduce./j and gj by 

./j = rDj and gj = rAj. (3.8) 

Equations (3.3) and (3.4) can then be rewritten as the differential equations 

j + ri + 0)2(t If = 0, f" = 0, i" = - 1 (3.9) 

and 

g - rg + 0)2(t )g = 0, g' = 0, g' = 1 

with the help of(3.5) - (3.7) in the limit as r-o. Therefore we have 

or 

lim(r det A) = lim(rAn _ I) = lim gn _ 1 :::::;g(t ") = g" 
r-+O r-+o 7"-+0 

lim(r det A) = lim(rDd = lim/l :::::;/(t ') = /'. 
T--+O r--..() T~ 

From (3.1), (3.2), and (3.8) we find that the./j and gj are related through the formula 

./j+1 gj -d~+2gj_1 =./jgj_1 -d 2./j+lgj_2 =-?detA =r/l =rgn_ l · 

Hence 

gj = r/l./j+ 21.1;+ l./j+ 2 )-1 + d 2./j+ 2gj _ J./j+ 1 = r/l./j + 2 {I.I;+ l./j + 2)-1 + d 2(fjj+ 1 )-I} 
j+1 

+d~+lgj_2/./j = ... =r/l./j+2 L (fklk+I)-ld 2U -k+II. 
k=1 

Specially, we have 
n-I 

-.2. ~ II' I' )-ld2In-kl d 2 / r £.. VkJk+1 = gn-2 gn-I 
k=1 

with the help of(3.14) forj = n - 2. By using (2.5) and (3.14) we obtain 

B TA -IB = ~t: I.I;./j+ I d
2j

)-1 Ct~ bklk + Id k )2. 

The above relation has been shown in the Appendix. 
By substituting (2.6)-(2.8) into (3.16), we get 

B TA -IB = (flhd2)-I{a?/2 :t: Qklk+ Id k - cr- 1/2 [ err,/% dx' + erlr' + T)/2In dn - 1x"] r 
+ ~t: I.I;./j+ Id2j)-I{a?/2 :t: Qklk+ Id k - cr- 1/2erl" +TI/'indn-lx" r 
+ [/n- Jnd21n -II] -1{a?/2Qn _ In - cr-1/2e'l1r' + TI/'inx"}Zd2(n - II 

= c
2
/2 eY"x'2 + 2c

2 
er"x'x" + c2r {nil(fklk+ tl- Id 2(n - kl}err • X"2 _ 2ac { nil Qk rlk+ Id k } eyr '12x' 

r/l II k=1 II k=1 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

- 2acr ~t: I.I;./j+ J
d2j)-I[t: Qkrlk+ Id

n
+

k 
}ert '

/2
x" + a2

r ~t: I.I;./j+ Id
2j)-J[t: QJk+ Jdk r (3.17) 

after lengthy but straightforward calculations, From (2.10) and (3.17), B (x" ,x', r) has the form 

B (x" ,x',r) = ATx,2 + BTx'x" + CTX"2 + DTX' + ETX" + FT' 

As r-o, we obtain 

. . (me
rr
,)( h) hmAT =hm -- 1-- = 

T->O T->O 2m II 
merrj' 

---, 
2fif' 
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(
meYI ") meYI " limB =lim --- = ---, 

T---+O T T---+O fzll fif' 
(3.19) 

1· C -1' me 1 YIgn-2 _ me +g 
( 

YI')( ) YI"( .") 1m - 1m -- -e -- --- -r -, 
T---+O T T---+O 2m g n _ I 2fz g" 

(3.20) 

1imDT =~I'" q(t)f(t)eYldt, 
T---+O fzl I' 

(3.21) 

lim ET = e
YI

" I" q(t )g(t )dt, 
T---+O fif' I ' 

(3.22) 

and 

limFT = __ I_I" q(t)f(t)eY'dtI
' 
q(O)g(O)dO. 

T---+O mfif' I' I' 

(3.23) 

Equation (3.15) has been used in deriving Eq. (3.20). Equations (3.21)-(3.23) have been shown in the Appendix. 
By substituting (3.12) and (3.18)-(3.23) into (2.9), we finally obtain our principal result: 

( 

yl" )112 { } K(x",t";x',t')= :;"~fif' Xexp 2i;" [j'eYI'x,2+2eYI"x'x"+(rl'-,g")eYI"x,,2 

xexp{~ [X' I'" q(t )f(t )eY' dt + eYI"x" I" q(t )g(t )dt _.l I" q(t )f(t )eY' dt I' q(O )g(0 )dO ]}. 
fif I' I' m I' I' 

(3.24) 

Here we assume that/' = g" =1= 0 for excluding catastrophic phenomenon. The propagator has been written in terms of/(t ) and 
g(t) which are, respectively, the solutions of the equation of motion of the time-dependent harmonic oscillator with damping 
and with antidamping. For r = 0, (3.24) is exactly equivalent to (3.13) in Ref. 8 as we expect. 

IV. RESULT 

and 

It can easily be shown that the solutions of (3.9) and (3.10) are 

I(t) =s(t)e- 11I - I")/2 sin[v" - v(t)] 

g(t) = sIt )e - 111' - 1)/2 sin [ v(t ) - v'], 

(4.1) 

(4.2) 

respectively, where s(t) and v(t) are the amplitude and the phase of the time-dependent harmonic oscillator with constant 
damping (or antidamping). In order to satisfy their boundary conditions, we must have 

s(t) - S,2S-3(t) + n 2(t )s(t) = 0 (4.3) 

and 

r(t)V(t) = s', (4.4) 

wheren 2(t) = it?(t) - r14. We also haves' = s", v' = Y" ands'v' = s"Y" = 1 since/, = g". With the help of(4. 1)-(4.4), (3.20) 
can be rewritten as 

K (x" ,t ";x',t') = [ ~e11~' + I ")12v' ] I12exp{ m~' [(18' _ rs')eY"x,2 _ (18" _ rs")eYI' X"2]} 
2mfr sm q, (t ",t ') 41fr 

xexp{ i;;' [(eY"x,2 + eYI " X,,2)cot q, (t" ,t') - 2eJ1t' + I ")/2X'X" csc q, (t" ,t ')] } 

xexp{ . iii' " , [x'eYI '/2 I'" q(t )sIt )eY1/2 sin q, (t ",t)dt + eYI "12x " I' "q(t )sIt )eY1/2 sin q, (t,t ')dt 
fzsm q,(t ,t) I' I' 

_.l I'" q(t )sIt )eYI12 sin q, (t" ,t )dt I' q(O )s(0 )eYO/2 sin q, (O,t ')dO]}, (4.5) 
m I' I' 

with q, (a,/3) = v(a) - vIP) for any two arbitrary times a and /3. When the perturbative force is absent, q(t ) = 0 and w(t ) is a 
constant, (4.5) reduced to the propagator evaluated by Papadopoulos. 13 For r = 0, (4.6) in Ref. 8 is also reproduced from the 
above equation. However, we should mention that our result is in agreement with (80) of Khandekar and Lawande. 14 Here we 
need both/(t) and g(t) to evaluate the propagator. It seems to agree with the idea of Feshbach and Tikochinsky.ls 

V. CLASSICAL PATH 

Let us define a new function F(t) as 

F(t) = s(t)e - 111- 1')12 sin q, (t,t') = g(t)e - J1t- I') (5.1) 
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which satisfies the differential equation 

F + rF+ ui(t)F= 0, F' = 0 andF' = 1. (5.2) 
Since the Wronskianof/(t )andF(t )att 'isdifferentfromzero, W[f',F'] = f' #0, they are two linearly independent solutions of 
(2.1) with q(t ) = O. Therefore, the classical path of the time-dependent forced harmonic oscillator with constant damping term 
has the form 15 

(5.3) 

where CI and Cz are two arbitrary constants to be determined by the end conditions x' = x' and x" = x". By substituting (5.1) 
into (5.3), we then obtain 

x(t) = ;, {r(t)[x' - eyt' f q(t )g(t )eyt dt ] +g(t)e- yt [eyt"x" - eyt ' j''' q(tif(t)dt ]} (5.4) 

after simplifications. 
From now On we only consider the case q(t) = O. Hence we have from (5.4) 

x(t) = (l/f'){j(t)x' - e - J1t - t 'Ig(t )x"} (5.5) 

and 

:i(t) = (l/f'){j(t)x' - e -l1t - t'l[g(t) - rg(t )]x"}. (5.6) 

With the help of (2.2), (3.9), (3.10), (5.5), and (5.6), we finally get 

Scdx",t ";x',t') = - (mI2/'Hi'eyt
'x" + 2eyt 'x'x" + (rl' - g")eyt'x"Z] (5.7) 

and 

l
azs (x" t"· ' t')1 yt' cI ' ;X, me 

=--
ax' ax" f' 

(5.8) 

after lengthy but straightforward calculations. Now by substituting (5.7) and (5.8) into ( 1. 2) we obtain (3.24) with q( t ) = 0 as we 
expect. 

APPENDIX 

The elements of A - I, represented by aj/; I, are determined by finding the cofactor of A. Therefore we have from (2.5) that 

- I d j - kA D /D Dj - k I' 1'1' ajk = k-I j+1 1= gk-IJj+17JI' 

and 

-I dk-jA D /D d k- j I' If ajk = j-I k+1 1= gj-iJk+1 7 I' 

With the help of (3.14), (A 1), and (A2), (3.16) can be obtained, 
n-I 

ETA -IE = I bja;;;lbk 
j,k= I 

+ ~tll bd;+ Id -jLtl I/mlm+ d- 1d2
(j-m

l
} :~: bklk+ Id

k 

n-l n-2 n-l 

= I 1/;;+ Id
2j

)-1 I I (bmlm + Idm)(bklk+ Id k) 
j=1 m=jk=m+1 

+ ~t:ifJ~+ IdZj)-1 :~~:t~ (bmlm+ Idm)(bJk+ Id
k

) = ~t: ifJ~+ Id2j)-IC~: bJk+ Id
k r. 

after lengthy but straightforward calculations. 

By using (3.14), we get 

lim D7" = lim(2ac) {nil Qk 71k + I d k}e yt '/2 = lim (eyt'IZ) X {nil qk 71k + I el1t ' + kTI/2eYkT12} = lim (_1_) 
7"--0 7"--0 II k = I 7"--0 fill k = I 7"--0 fill 
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since t k = t' + k, 

~~ ET = ~~ (2ac7ert "12) ~tll (fJJ+ Id2j)-I[t: Qk7lk+ Id
n

+ k} 

= lim (7e:"/2){Qn _ J" 7 nil f/jij + I )-Id 21.n - j- I) + Qn _ In _ 17 ni 
2 

f/jij+ I )-Id 21.n -j - 2) + I + ... + QIz7ifIz)-ld n - 2} 
T~ n J=I J=I 

=lim(7ert "12){Qn-Jngn-2 + Qn-2In-lgn-3d + Qn_3In_2gn_4d2 + ... + Ql/zgod
n

- 2} 

T~ fz II In II In _ I II In - 2 11/2 

= lim (ert"/2){qn_17gn_2 +gn-27gn-3 +"'+QI7go}er(n-I)TI2=e
rt

: ('" q(t)g(t)dt, 
T~ fifl fif )1' 

and 

lim FT = -lim{a27 nil (fJJ+ I d 2j)-I[ nil Qk71k + I d k ]2} = -lim (~){Q~ _ J~ 7 nil (fJJ+ I )-ld 2(n -j- I) 
T~ T~ j= I k=j T~ 2mfz j= I 

n-2 n-2 f:.} 
+ [2Qn _ I/ndn - 1+ Qn _ zln -I d n - 2]7 j~1 (fJJ+ Il-Id n 

- 2 + ... + 27 j~1 Qn -l"n _j+ I d n -j + QJ2 ,; 
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Rigorous path integral formulas are given which represent, in two space-time dimensions, the 
fundamental solution of the Cauchy problem for the Dirac equation as well as the retarded and 
advanced propagators for the Dirac particle. It is also shown that the theory can be applied to a 
free particle and a particle in a central electric field in four space-time dimensions and reveals 
some aspects of the path integral. Heuristically discussed is the connection with the phase space 
path integral or Hamiltonian path integral. 

PACS numbers: 03.65.Db, 11.10.Qr 

I. INTRODUCTION 

Suggested by Dirac's remarks' concerning the relation 
of classical actions to quantum mechanics, Feynman2

,3 

made two physical postulates to initiate the idea of path inte
gral in quantum mechanics. In pure-imaginary-time quan
tum mechanics, Kac4 has given a mathematical meaning to 
the path integral in terms of the Wiener measure.5 Namely 
he established a path integral formula representing the solu
tion of the heat equation for the Schrodinger operator with a 
scalar potential, which is called the Feynman-Kac formula. 5 

Its further extension to the Schrodinger operator with both 
scalar and vector potentials is the Feynman-Kac-Ito for
mula5 which involves the Ito integral. The Laplace trans
form of this formula for the Schrodinger operator in four
dimensional space-time with respect to a fifth variable as the 
proper time gives rise to a path integral representation of the 
Euclidean propagator for a Klein-Gordon particle in an ex
ternal electromagnetic field. 

The aim of this paper is to make a path integral ap
proach to the Dirac equation6 

J,rp (t,x) = [ - ala - ieA(t,x)) - imf3 - ieqJ (t,x)]rp (t,x) 
(1.1) 

for a particle of rest mass m and charge e in an external 
electromagnetic field. Here a = (a l,a2,a3), and the a j and f3 
are the Dirac matrices. qJ (t,x)andA(t,x) are, respectively, the 
scalar and vector potentials of the field. The natural units are 
used in which the light velocity c and the constant fz = h /21T 
with Planck's constant h equal 1. 

In this paper we present a construction of path space 
measures and establish path integral formulas which repre
sent the fundamental solution of the Cauchy problem for 
(1.1) as well as the retarded and advanced propagators for a 
Dirac particle, both in two space-time dimensions. The path 
space measures constructed are countably additive and dif
fer from the Wiener measure. They have support, when 
m > 0, on the set of the Lipschitz continuous paths with 
slopes smaller than or equal to the light velocity 1, while, 
when m = 0, on the set of the paths with slopes exactly equal 
to the light velocity 1. This support property reminds us of 
the "Zitterbewegung,,7 of the Dirac particle. The theory can 

also be applied to two cases in four space-time dimensions, 
the path integral for the free Dirac equation and that for the 
Dirac equation for a central electric field, for they are re

duced to the equations with two independent variables by 
use of the Radon transform and the spherical coordinates, 
respectively. The path integral formulas established show a 
close analogy with the Feynman-Kac formula and the Feyn
man-Kac-Ito formula for the heat equation. It is further 
seen by a heuristic argument that they coincide with what is 
obtained from the phase space path integral8 or Hamiltonian 
path integral. 9 

Our construction of each countably additive path space 
measure follows Nelson's method 10 of construction of the 
Wiener measure. Crucial is the proof of continuity of a cer
tain linear functional on the Banach space of the continuous 
functions on the path space defined by use of the fundamen
tal solution for the free Dirac equation, which assures appli
cation of the Riesz-type representation theorem. The prob
lem is connected with the L 00 well-posedness of the Cauchy 
problem for a hyperbolic system of the first order with two 
independent variables. 

The previous work II dealt with related and general 
problems. The present paper focuses on the Dirac equation 
in relativistic quantum mechanics. The new characteristic 
feature is the introduction of conditional path space mea
sures so as to make a direct treatment of the fundamental 
solutions of the Cauchy problems and the propagators. The 
path integral formulas for the propagators (Theorem 2.3) 
were quoted without detailed proof in Ref. 12. 

Section II is devoted to path integral representations for 
the fundamental solutions of Cauchy problems with the 
Dirac equation and the retarded and advanced propagators, 
in two space-time dimensions. The characteristic functionals 
of the path space measures are also given. The proof is given 
in Sec. III. Section IV is concerned with the path integral for 
the Dirac equation in four space-time dimensions. Section V 
refers to a heuristic derivation of the path integral for the 
Dirac equation. All the treatments but in this section are 
mathematically rigorous. 

Cd is the vector space of complex d-column-vectors and 
(Cd)' that of complex d-row-vectors. Md (e) is a vector space 
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complex d X d matrices. The norm of a d X d matrix 
N = (Ajk) is defined by IN 1= max'<J<dl:%= ,IAjk I. (.,.) is 
the bilinear inner product and (-,.) the physicist's inner pro
duct. 
II. PATH INTEGRAL REPRESENTATIONS 

In two space-time dimensions, we give path integral for
mulas for the fundamental solutions of two Cauchy prob
lems with the Dirac equation. 6 One of them is further used to 
give path integral formulas for the retarded and advanced 
propagators. By Ir,sl is meant the interval! t; r<J<s) or ! t; 
r»t»s) according to r<s or r>s. We use the convention of 
summation over repeated Greek indices. 

A. The fundamental solutions of the Cauchy problems 

We consider the Dirac equation ( 1.1) in two-dimension
alspace-time. WewriteA O(t,x) = cP (t,x)andA '(t,x) = A(t,x). 

Set Ap (t,x) = gp" A "(t,x), p = 0,1, with the metric tensor 

(gp,,) = (~ ~ J 
Then Eq. (1.1) becomes 

a,¢ (t,x) = [ - a(ax + ieA ,(t,x)) - im/3 - ieAo(t,x)¢ (t,x)] , 

tER, XER. (2.1) 

Here a and /3 are 2 X 2 Hermitian matrices with a 2 = /3 2 = 1 
and a/3 + /3a = 0. We assume for simplicity that theAp (t,x), 
p = 0,1, are real-valued continuous functions in space-time 
RXR = R2. One Cauchy problem we consider is that for 
(2.1) with data ¢ (r,x) =g(x). 

By putting X O = t and x' = x, (2.1) is rewritten as 

iH¢ (x)= [(ao + ieAo(x)) 

+ alai + ieA,(x)) + im/3]¢ (x) = 0, (2.2) 

where x = (XO ,x')ER2 and ap = a lax p , p = 0,1. H is essen
tially self-adjoint on CO' (R2;l(y), and defines13 a self-adjoint 
operator in L 2(R2;C2). 

We introduce the proper time'4 r to consider the other 
Cauchy problem for 

aTrf(r,x) = - iHt/J(r ,x), TER, xER2
, (2.3) 

with data rf(r,x) = g(x). LetK I (s,x;r,y)andK II (s,x;r, y)bethe 
fundamental solutions of the Cauchy problems for (2.1) and 
(2.2), respectively: 

¢ (s,x) = L K I (s,x;r, y)g( y)dy, (2.4) 

rf(s,x) = (e-ils-rIHg)(x) = i KII (s,x;r, y)g(y)dy. (2.5) 
R' 

Then they admit the following path integral representations. 
Set A (t,x) = (Ao(t,x),A ,(t,x)). M2 (e) is the space of complex 
2 X 2 matrices. 

Theorem 2.1: There exists a unique Y'(RXR;M2(e))
valued countably additive measure v';r on the Banach space 
C(lrrSl;R)oftheone-dimensionalcontinuouspathX:lrrSl~R 
such that for every A (t,x), 

f 
r f(x)K I(s,x;r, y)g( y)dx dy 

JRXR 

= f(f,d1{r(X)g)exp [ - {feAo(t,x(t))dt 
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(2.6) 

with If ,g) in Y(R;(C2)') X Y(R;C2). The support of v';r is on 
the set of the Lipschitz continuous paths X: Ir rSl~R satisfy
ing 

for each a, b with r<a < b<s when r < s 
or r»a > b»s when r> s, 
IX(b) -X(a)I<lb - al 
[lX(b)-X(a)1 = Ib-alincasem=O]. 

The set function v., f;r,g defined by 

V.,f;r,g(·) = <f®g, v.;r(·) = (f,v.;r(·)g) 

(2.7) 

(2.8) 
is a complex-valued countably additive measure on the Ban
ach space C(lr,sl;R) with support on the set of the Lipschitz 
continuous paths X satisfying (2.7) and X (r)E supp g, X (S)E 
supp! 

Theorem 2.2: There exists a unique Y'(R2 X R2;M2(e))
valued countably additive measure v.lr on the Banach space 
C (I r rS I ;R2) of the two-dimensional co~tinuous paths 
X:lr,sl~R2, X(r) = (XO(r),x '(r)), such that for every A (x), 

(f,e - ils - rlHg) = Ii f(x)K II (s,x;r, y)g( y)dx dy 
R1XR2 

= I(J,dl{~{X)g)exP[ - JSeAp{X(r))dxP(r)], 

(2.9) 

with (f,g) in Y(R2;(C2)') X Y(R2;C2). The support of v.~r is on 
the set of the Lipschitz continuous pathsX:lrrSl~R2 satisfy
ing 

for each a,b with r<a < b<s when r < s 
or r»a > b»s when r>s, 
XO(b) -XO(a) = b -a,IX'(b) -X'(a)I<lb -al 

[lX'(b) -X'(a)1 = Ib - alin case m = 0]. (2.10) 

The set function v.,If;r,g defined by 

V.~f;r,g(·) = <f®g, v.~r(·) = (J,1{lr (·)g) (2.11) 

is a complex-valued countably additive measure on the Ban
ach space C (I r rS I ;R2) with support on the set of the Lipschitz 
continuous paths X satisfying (2.10) and X (r)E supp g, X (S)E 
supp! 

Remark 1: 1{r and v.~r may be regarded as conditional 
path space measures (cf. conditional Wiener measure5

). In 
fact, introduce formal conditional path space measures 

V.,x;r, y and V.~x;r, y as 

and 

V..f;r,g(·) = J. r f(x)v..x;r.y(·)g( y)dx dy 
JRXR 

Then Theorems 2.1 and 2.2 look like 

KI(s,x;r,y) = fdv..x;r,y (x)exp [ - {feAo(t,x(t))dt 

+ feA,(t,x(t))dX(t))] (2.6)' 

T. Ichinose and H. Tamura 1811 



                                                                                                                                    

and 

KII (s,x;r,y) = fdv!~x;r,y (x)exp [ -ifeAp(X(7))dXP(7)]. 

(2.9), 

The "support" ofv!,x;r,y [resp., v!,~;r,y] is on the set of the 
Lipschitz continuous paths X satisfying (2.7) [resp" (2,10)] 
andX(r) =y,X(s) =X. 

Remark 2: The characteristic functionals of the path space measures v!,f;r,g and v!~f;r,g are given as follows. Tis the time
ordering symbol. 

(i) 

C!.f;r,g(y)==f dv!,f;r,g (x)exP[ifX(t )Y(t )dt ] 

= L J(p + fY(t)dt) Texp{if[a( P + f Y(t)dt) + mf3 ]du}g(P)dP, 

where 

l(p) = (21T)-1/2.le-iXP!(X)dx. 

(ii) 

C!~r,g(Y)=f dVv!~f;r,g (x)exP[ifX (7)Y(7)d7] 

where 

l(p) = (21T)-IL,e- iXP!(X)dX 

andxp = xP Pp andX(7)Y(7) =XP(7)Yp(7). 
Remark 3: Typical paths which have the property (2.7) or (2.10) are the zigzag paths, which reminds us of the "Zit

terbewegung,,7 of the Dirac particle. 
Remark 4: Feynman and Hibbs3 give briefly a cryptic description of the fundamental solution K ~ (s,x;r, y) of the Cauchy 

problem for the!ree Dirac equation in two space-time dimensions (see also Ref. 15 and Ref. 16), It may be interesting to study a 
relation, 

Remark 5: Daletskii l7 treated some related problem but did construct no countably additive path space measure. 

B. The retarded and advanced propagators 

The propagatorl8 for a two-space-time-dimensiona1 
Dirac particle is a 2 X 2 matrix-valued function (distribution) 
which is a solution of the Green's function equation 

[yP( - iJp + eAp(x)) + m]S(x,y;m) = 8(x - y), X,YEJR2
• 

(2.12) 

Here 'I = f3 and yl = f3a. 'I is Hermitian and yl anti-Her
mitianwithyPJl' +JI'yP =2g P"1,wherep,0"=O,1. The 
convention of summation over repeated Greek indices is 
used. The left-hand side of (2. 12) is nothing but 'I HS (x, y;m ). 

Then the retarded and advanced propagators Sret 

(x, y;m) and Sadv (x, y;m) have the following path integral re
presentations. 

Theorem 2.3: For (j,g) in fiJ (JR2;((?)') X fiJ (JR2;C2), 

f 
( !(x)Sret(x,y;m)g(y)dx dy 

JR2 XR 2 

and 

= if" d7 I(j,dV~o(X)'1g)exp[ - ifeAp (X (s))dxP (S)] 

(2.13) 

Ii 
!(x)Sadv(x,y;m)g(y)dx dy 

R 2xR2 
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= - if '" d7 I(j,dV~o(x)'1g)exp[ - ifeAp (X (s))dXP (S)]. 

(2.14) 
Remark 1: With the formal conditional path space mea

sure v!.~x;o, y introduced in Remark 1 to Theorems 2.1 and 2.2, 
(2.13) and (2.14) become 

Sret(x,y;m) 

= i1'" d7 f dv!.~x;o,y(X)'1 exp [ - ifeAp (X (s))dXP (S)] 

(2.13)' 

and 

Sadv (x, y;m) 

= - i [ 00 d7 I dv!.~x;o, y (X)'1 exp [ - if' eAp (X (s))dX p (s) ]. 

(2.14)' 

Remark 2: For the Feynman propagator SF (x, y;m) we have 
not such a neat formula. 

Proof of Theorem 2.3: We prove only (2.13) for the re
tarded propagator. The proof for the advanced propagator is 
similar. Let (f,g) be in 2C(JR2;(C2)')X fiJ(JR2;C2). Note that H 
is a self-adjoint operator in L 2(JR2;C2) and 
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(E + iH)-1 = 100 

dr e - ETe- iTH. 

Then by Theorem 2.2 we have 

(f,i(E + iH)-lyOg) = if'" dre-ETJ(f,dV;,o(X)yOg) 

xexp [ - i[eAp (X (s))dXP (S)). (2.15) 

Sincefandg have compact support, the r-integral on the 
right-hand side of{2.l5) is reduced to that over a finite inter
val in view of the support property of v}~r,o.g. Therefore, it 
converges to the right-hand side of (2. 13) as EtO, by the 
Lebesgue bounded convergence theorem. On the other 
hand, by definition of the retarded propagator the left-hand 
side of(2.l5) converges to that of(2.13) as Eta. This proves 
Theorem 2.3. 

III. PROOFS OF THEOREMS 2.1 AND 2.2 

We shall prove only Theorem 2.2. Theorem 2.1 will be 
shown similarly. Without loss of generality we may assume 
r = 0 to construct v!.~. The proof consists of three parts. 
First we construct the path space measure v!~o and then 
study its support property. Finally we establish the formula 
(2.9). 

A. Construction of the path space measure 1";;0 
We construct v!;~, following Nelson's method lO

•
5

•
19 of 

construction of the Wiener measure. 
First consider the Cauchy problem for the free equation 

to (2.3), 

JTt/I(r,x) = - iHot/l(r,x) 

=[ - Jo - aJ1 - imp 1t/1(r,x), 

rER, x = (XO,XI)ERZ, (3.1) 

with initial data t/I(O,x) = g(x). Let K ~I(S,x) be the fundamen
tal solution 

t/I(s,x) = (e - iSHOg)(X) = r K g(s,x - y)g( y)dy. 
JR' 

It is given by 

Kg(s,x) = 2- 18(xO 
- s)[Js - aJI - imp 1 

X (Jo(m(sZ _IXIIZ)I/Z)8(s - Ixll)), (3.2) 

where Jo(t) is the Bessel function of order zero, and 8 (t) the 
Heaviside function 8 (t ) = 1 for t> 0, = 0 for t < O. When 
m > 0, for each fixed (s,x)ERXR2

, K~I(S - r,x - y) has sup
port on the union r u (s,x) of the backward and forward 
conoids of dependence 

rIl(s,x) = I (r, yjElR X RZ;Xo - yO =s - r,lxl - yll<ls - rl}. 

When m = 0, its support is exactly on the two characteris
tics. We set 

R II (s,x;r) = r II (s,x)n( I r} X RZ). (3.3) 
Coo (R2;C2) denotes the Banach space of the CZ-valued con
tinuous functions in a2 which vanish at infinity. Its dual 
space, denoted by M (R2;(C2

)'), is the Banach space of the 
(C2)'-valued measures on R2 with bounded variation.20 
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Lemma 3.1: (i) e - iTHo is a continuous linear operator of 
Coo (RZ;C2) into itself, and satisfies 

IINe-iTHOgll<emITIIINgll, (3.4) 

for gin C <.Q (R2;C2). Here N is a unitary matrix satisfying 

NaN-I = (~ _ ~). 
(ii) e - iTHO is a continuous linear operator of M (R2;C2) 

into itself, and satisfies 

(3.5) 

for p in M (R2;C2). 
(iii) e - ;THO is a continuous linear operator Y(R2;C2) into 

itself. 
Proof: (i) implies (iii), and also (ii) by duality. Thus we 

have only to prove (i). Essential is the L 00 well-posedness of 
the Cauchy problem for the first-order hyperbolic system 
with two independent variables,21 which can be solved along 
the characteristics. The solution ¢(s,x) of the Cauchy prob
lem for (3.1) satisfies 

I Nt/I(r,x) I <emlTI maxIINt/I(O,y)l;yER II (r,x;O)} , (3.6) 

which implies (3.4). 
Now we are ready to construct the path space measure 

~.~. Let JRz = RZul oo} be the one-point compactification of 
RZ, and for each fixed SEJR let 2"s,o = illo,slJR2 =. (JRZ)IO,sl be 
the product of the uncountably many copies of R2. By the 
Tychonofftheoremzz 2"s,o is a compact Hausdorff space in 
the product topology. It may be regarded as the space of all 
paths X: I O,s I_JRz, possibly discontinuous and possibly pass
ing through the infinity 00. Let C( 2" s.o) be the Banach space 
of the complex-valued continuous functions on flC's.o and 
C lin (2"s.o) the subspace of those cP in C(2"s,o) for which 
there exist a finite partition, 

O=SO<SI<"'<Sn =swhens>Oor 
(3.7) 

O=SO>SI>"'>Sn =swhens<O 
of the intervallO,s1 and a complex-valued bounded contin
uous function F(xIO),x(ll""'x1n)) on (IRZt + 1 such that 

cP (X) = F(X(sO),x(SI), ... ,x(sn))' (3.8) 

Define, for each fixed SEJR, a functional Ls,o(CP;f, p) 
which is linear in tPE Clin (~s.o) and sesquilinear in 
(f,p)ECoo (JRz;(C2)')XM(JRz;Cz) by 

~ 
Ls,o(CP;f, p) = I dX{n) .. J dX{I) 

R2 JlR2 

1- II 
X f(x1n))K 0 (Sn - Sn _ I'X1n ) - Xln _ I)) 

R' 

XK~I(sn_1 -Sn_l'X1n _ l ) -x1n - 1J ) .. · 

XK~I(SI -SO'X(1) -x10)) 

XF(x(o) ,x(1) ""'X(nJ )d,u(x(OJ)' (3.9) 
When stressing the sesquilinearity of Ls.o(CP;J, p) we shall 
write it also (Ls,o CP)(J, p). 

Then we can make multiple use of Lemma 3.1 to prove 
the following lemma, which is of crucial importance in this 
paper. 
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Lemma 3.2: (i) For each fixed (f, f.l) in 
Coo (R2;(C2)') XM (JR2;C2), Ls,o((/);j,f.l) is well defined on 
C lin (~s,o); it is independent of the choice of F correspond
ing to <P. 

(ii) The following inequality holds: 

ILs,o((/);f, f.l)I..;;;Cemlslll(/) II II! 1I1If.l11 (3.10) 

for every (/) in C lin (~s.o) and every pair (f, f.l) in 
Coo (JR2;(C2)') XM (JR2;C\ with C = IN I IN -11..;;;2. 

The consequence of Lemma 3.2 is the following. Since 
C lin (~s.o) is dense in C (~s,o) by the Stone-Weierstrass 
theorem,22 the inequality (3.10) holds also for (/)EC(~s,o)' 
By Lemma 3.2 Ls,o (/) is a continuous sesquilinear form on 
Coo (JR2;(C2)') XM (JR2;C2), and so on Y(JR2;(C2)') X Y(JR2;C2), 
because both linear embeddings of Y(JR2;(C2)') into 
C"" (R2;(C2)') and of Y(JR2;C2) into M (JR2;C2) are continuous. 
Then the kernel theorem22 enables us to regard Ls,o <P as an 
element in the space 

Y'(JR2 X JR2;M2(C)) = (Y(JR2;(C2)') ® Y(JR2;C2))', (3.11) 

Here note thatM2(C) = C2 
® (C2)'. Hence Ls,o is a continuous 

linear mapping of C (~s,o) into the space (3.11). Further Ls,o 
is weakly compact2J because the space (3.11) is reflexive, and 
even compact24 because the space (3.11) is a Montel space, 
Then the Riesz-type representation theorem25 yields the fol
lowing representation of L.,o in terms of a countably additive 
measure on ~s,o. 

Theorem 3.3: There exists a unique countably additive 
measure l{Io defined on the Borel sets in ~ .,0 and having 
values in Y'(JR2 X JR2;M2(C)) such that 

(a) v!.~o is of bounded q-variation for each continuous 
seminorm q on Y'(R2 X JR2;M2(C)), i.e., 

q-V ar v!~o =sup q(.Ij v!~ (Ej )cj ) < 00, 

where the supremum is taken over all finite partitions {Ej J 
of ~ .,0 into disjoint Borel sets and all collections (cj J of 
complex numbers with ICj I..;;; 1; 

(b) for each (f,g) in Y(JR2;(C2)') X Y(JR2;C2) the set func
tion v!,I[;O,g defined by 

v!~/;o,g(E) = if ® g, v!~(E) = (f,v!~o(E)g), 

is a complex-valued countably additive regular measure on 
the Borel sets E in ~ s,O ; 

(c) IILs,ollq=sup (q(L.,o<P); II<P 11..;;;1, <PEC(~s.o)J 

= q-Var v!fo";;;C 'emlsl 

with a constant C' depending only on the seminorm q; 

(d) for each (/) in C (~s.o), 

Ls.o<P = fS"'s.odv!fo(X)<P (X). (3.12) 

Remark 1: In terms of the formal conditional path 
space measure v!~x;r.y in Remark 1 to Theorems 2.1 and 2.2, 
the expression (3.12) looks like 

(Ls,o(/»)(x,y) = fS"'s.odv!~x;o.y(X)(/)(X). (3.12), 

Remark 2: There is another way to construct a path 
space measure. First note that we can define L sO ((/); f, f.l) to 
establish Lemma 3.2 for the pair C(JR2;(C2)'),M'(JR2;C2) in 
place of the pair Coo (lIe;(C2)'), M (JR2;C2). Here C (JR2;(C2)') is 

1814 J. Math. Phys., Vol. 25. No.6, June 1984 

the Banach space of the (C2)' -valued continuous functions on 
JR2. Its dual space M(JR2;C2) is the Banach space ofthe C2_ 
valued measures on JR2 with bounded variation.22 Define 
Ls;o,1" by 

(Ls;o.1" <P )(/) = Ls.o(<P;f, f.l), 

with a fixed f.lEM (JR2;C2
), for (/)EC (~s,o) and/EC (JR2;(C2)'). 

By the Riesz representation theorem, Ls;o.1" (/) is regarded as 
an element in M (JR2;C2

), so t~at Ls;o,p is a continuous linear 
operator of C (~s,o) into M (R2;C2). Further it is seen26 that 
Ls;o,,.. is weakly compact. Then by the Riesz-type representa
tion theorem,27 there exists a unique countably additive mea
sure v!:of defined on the Borel sets in ~s.o and having values 
in M (R ;(2) such that 

(a) v!;lo,p is of bounded variation; 
(b) for each/in C (R2;(C2)') the set function v!~o.,.. defined 

by 
II - ~ 11 

V s. [;0,,.. (E) = if, vs;o.,.. (E ) 

is a complex-valued countably additive regular measure on 
the Borel sets E in ~ s.o; 

(c) IILs;o.1" II = Var v!~0,f< ..;;; Cemlslif.l II withC = IN liN -II; 
(d) for each <P in C (~s.o), 

Ls;o.,.. <P = fS"' •. odv!~,,.. (X)<P (X). 

. 1_(Oy) 2_(0 ) Notlce we can choose, for f.l, Oy= 0 or Oy= Oy , 

where Oy = 0 (. - y) is the Dirac measure aty, an element of 
M (R2). Further details are omitted. 

B. Support of the path space measure v~;o 

We shall now see the measure v!~o has the support prop
erty as in Theorm 2.2. Let us introduce the infinity path X 00 

by X 00 (1') = 00 for every 1'Elr,sl. It suffices then to show the 
support of v!1 is concentrated on the set 

S(O,s):::: (XE~s.0;X:10,sl~JR2 and (2.10) 
with r= OholdsJu{X"" J. 

For (2.10) implies the Lipschitz continuity of X, and if/andg 
are rapidly decreasing we have (f, vs,o ({ X 00 J )g) = O. For 
O..;;;a < b..;;;s when s > 0 or O;;;.a > b;;;.s when s < 0 let G (a,b ) be 
the set of those X in ~ s.O for which one of the following two 
holds: 

(i) bothX(a) andX(b) are in R2 and either 

XO(b) - XO(a):;;6b - a or IX I(b) - X l(a)1 > Ib - al; 

(ii)oneofX(a)andX(b )isinJR2buttheotheris 00. Then 
the G (a,b) are all open in ~s,o, and 

S (O,s)e = uG (a,b ), 

where the union is taken over all a, b with O";;;a < b..;;;s when 
s>O or 0;;;. a > b;;;.s whens<O. 

To show v!lo vanishes on S (O,sf we have only to show, 
by localization principle of a measure,28 that v!~o vanishes on 
each G(a,b). Since C lin (~s,o) is dense in C(~s.o) we have 
only to prove that Ls.o((/);j,g) = 0 for every <PEC lin (~s.o) 
with supp <Pr;;. G (a,h ) and for every pair (f,g) in 
Y(R2;(C2)') X Y(JR2;C2

). If <P is in C fin (~s,o) there are a finite 
partition (3.7) of the intervaIIO,s\ and a bounded continuous 
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function F(x(O) ,x(l), ... ,x(n)) on (lR2)" + I such that (3.8) holds. 
We may assume that Sj = a, Sk = b for somej < k, so that 
suppFis included in the set of those points (x(O) ,x(l) "",x(n)) in 
(H2)" + I for which one of the following two holds: 

(i)' both XV1 = (x~l' xtl) and X(k) = (X~k) ,x(~)) are in R2 
and either X~k) - x~l i=Sk - Sj or Ixlk) - xtll > ISk - Sj I; 

(ii)' one of xVl and X(k) is in the R2 but the other is 00. 

Therefore, especially, if (x(O) , x(1) , ... ,x(n)) is a point in 
(R2)n + I ,there exists an integer lwithj < l<.ksuch that either 

x~) -X~_I) i=s[ -S[_I or Ix(l/) -xil-I)I > lSI - sl_ll. By 
the support property of the fundamental solution K ~I 
(s - r,x - y), we haveK~1 (SI - SI_I' X(/) - X(/-I)) = o. It 
follows from (3.9) with dll(x(o)) = g(x(O) )dx(o) that Ls,o 
(<P;f,g) = O. 

The assertion for m = 0 will also be seen from the sup
port property of K g(s - r,x - y). This proves the support 
property of v!~o . 

C. Proof of the path integral formula (2.9) 
We prove the formula (2.9) with r = O. We note the 

proof of the path integral formula (2.6) is analogous, though 
more complicated because of the I-dependence of A (I,X). The 
proof of the general case is referred to Ref. 11. 

To prove (2.9) with r = 0, define the operator 

(T(r)g)(x) = r Kg(r,x - y)exp[ - ieAp(Y)(xP - yP)]g(y)dy JR2 
(3.13) 

for g in C ~ (R2;C2), the Banach space of the CZ-valued con
tinuously differentiable functions in R2 which together with 
their first derivatives vanish at infinity. 

We need the following lemma. 
Lemma 3.4: Assume A (x) is in C <f(R2;R2). Then T(r) 

defines a bounded linear operator of C", (R2;CZ) into itself 
and II T(rlll<.CemlTI with a constant C. Further aT (T(r)g) con
verges to - iHg in the norm of L '" as r----+O. 

Proof: The first haiffollows from the L ao well-posedness of the Cauchy problem for (3.1). To show the second note that, 
for fixed (r,x)ERXRz, the support R II (r,x;O) iny of Kg(r,x - y) is bounded, and 

aTKg(r,x - y) = [ayO + aayl - imp ]Kg(r,x - y). 
Thus we have 

aT (T(r)g)(x) = - r !Kg(r,x-y)ao(exp[ -ieAp(Y)(xP -yP)]g(y)) JR2 y 

Then 

+ aK~I(r,x - y)a/ (exp[ - ieAp(y)(xP - yP)]g(y)) 

+ impK ~I(r,x - y)exp[ - ieAp (y)(xP - yP) ]g( y) ldy. 

aT(T(r)g)(x) + i(Hg)(x) 

- {r Kg(r,x - y)exp[ - ieAp(Y)(xP - yP)] [a 0 + ieAo(Y) - ita oeAp(Y))(XP - yP)]g(y)dy JR' y y 

- (a xO + ieAo(X))g(x)} 

- a{ r K ~I(r,x - y)exp [ - ieAp (y)(xP - yP)] [a I + ieA I( y) - ita leAp (y))(xP - yp)lg( y)dy JR2 y Y 

- (axl + ieA](X))g(X)} 

- imp f.LK~I(r,x - y)exp[ - ieAp(Y)(xP - yP)]g(y)dy -g(X)}. 

The right-hand side above converges to zero in the norm of Lao as '1----+0. Lemma 3.4 is thus proved. 
Now we are in a position to prove the path integral formula (2.9) with r = O. By (3.9) in Theorem 3.3 we have for (f,g) in 

Y(Rz;(Cz)') X Y(R2;CZ) with Sj = jsln 

(J,T(sln)"g) = J(J,dv!~o(X)g)exp[ - ijtIAp(X(Sj-1 ))(XP(Sj) - XP(Sj_I))]' (3.14) 

The integrand on the right hand of (3.14) is uniformly 
bounded, and convergent to exp[ - iS~Ap(X(r))dXP(r)] as 
n-+oo for every Lipschitz continuous pathX:10,sl~R2, i.e, 
for almost every path X, because v!~f;O.g has, as seen in Sec. 
III B, support on the set of the Lipschitz continuous paths. 
Thus by the Lebesgue bounded convergence theorem, the 
right-hand side of(3.14) converges to that of (2.9) as n-+oo. 

To show the convergence of the left-hand side of (3.14) 
we assume first that A (x) is in C O'(RZ;RZ). In fact, we show 
that T(sint g converges to e - iSHg in the norm of L 00 as 
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n~oo. 

By Lemma 3.4 we can see that for every gin C ~ (JRZ;C2) 
lIaT(T(r) - e - iTH)gII-+o 

as '1-+0. Since 

IIn(T(sln) - e - i(sln)H)gll 

= n) If1naT(T(r) - e-iTH)gdr) I 
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we have 

Iln(T(sln) - e - i(s/n)H)gII-O as n-+oo. (3.15) 

Further [n(T(sln) - e - ils/n)H)},~ = I is a family of bounded 
operators of C ~ (R2;C2) into Coo (R2;C2) and for each fixed g 
in C ~ (R2;C2), 

Iln(T(sln) - e-i(s/n)H)g11 (3.16) 

is uniformly bounded for n. Therefore, by the uniform boun
dedness principle,22 (3.16) is uniformly bounded for both n 
and g in the unit ball of C ~ (R2;C2). It follows that the con
vergence in (3.15) is uniform on compact subsets of 
C ~ (R2;C2). Since 

II(T(slnr - e-iSH)g11 

= Iljtl T(slnY- I (T(sln) - e - i(s/n)H)e - illn -J1s/n)Hgll 

<Cnemlsl SUP71:lo.slll(T(sln) - e - ils/n)H)e - iTHg11 

with C = IN I IN -II by Lemma 3.1, and the set [e - iTHg; 
'TE10,s11 is a compact subset of C ~ (R2;C2), the theorem is 
proved for A in C 0'(R2;R2). 

Next we assume that A is in C(R2;R2). Choose a se
quence [A In) (x) 1;;= I in C 0'(R2;R2) such that the A In) (x) are 
uniformly bounded on each compact set in R2 and 
A In) (x)-+A (x) on each compact set ofR2 as n-+ 00 • For each n 
define a self-adjoint operator Hln) by (2.2) with A In) (x) in 
place of A (x). Then for (J,g) in Y(R2;(C2)') X Y(R2;C2) 

(J,exp[ - isH(n) ]g) 

= f dv!~o.g(x)exp[ - ifeA ~)(X(1'))dXP(1')]. 
(3.17) 

SinceA (n) (X (1')) converges toA (X (1')) for every Lipschitz con
tinuous path X:I0,sI-+R2 and so for almost every path X 
because of the support property of v!~o.g, the right-hand side 
of (3.17) converges to that of (2.9) as n-+ 00 by the Lebesgue 
bounded convergence theorem. 

On the other hand, Hln) and H are essentially self-ad
joint 13 on C 0'(R2;C2). Forgin C 0'(R2;C2),Hln) gconverges to 
Hg in L 2(R2;C2) as n-+ 00 • It follows29 that for gin L 2(R2;C2), 
exp [ - isH In) ]g converges to e - isH in the norm of L 2 as 
n-+oo. This proves (2.9), completing the proof of Theorem 
2.2. 

IV. THE DIRAC EQUATION IN FOUR SPACE·TIME 
DIMENSIONS 

We consider the problem of the path integral for the 
four-space-time dimensional Dirac equation (1.1). The Dirac 
matrices aj and {3 are 4 X 4 Hermitian matrices satisfying aJ 
={32= l,aj{3+{3aj =0, 1.;J<3,andaja k +akaj =0, 

J;fk. 
Our method does not seem to establish the L 00 well

posedness to get Lemma 3.2 for the Cauchy problem for the 
free equation to (1.1), 

a,l/J (t,x) = [ - jtlajaj - im{3 ]l/J (t,x). (4.1) 

However, we can deal with two special cases, the path inte
gral for the free Dirac equation and that for the Dirac equa
tion for a central electric field, which are reduced to the 
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equations with two independent variables as considered in 
Sec. II. 

A. The free Dirac equation 

We use the Radon transform30 to reduce the problem 
with four independent variables to that with two indepen
dent variables. 3 I 

The Radon transform g of a function g defined in R3 is 
by definition 

g(S,ro) = i g(x)8(s - xro)dx, 
R' 

where SER and ro = (W I ,W2'W3 ) is a unit vector in R3. The 
following Plancherel theorem holds: 

( f(x)g(x)dx = rl(21r)-2 ( dro ( d(js(s,ro)gs(s,ro), 
JR' JI"'I = I JIR 

(4.2) 

wherefs = asfandgs = asg· 
Then the fundamental solution Ko(t,x - y) of the 

Cauchy problem for the free Dirac equation (4.1) admits the 
following path integral representation. Note that there is a 
unitarymatrixN(ro)suchthatN(ro)(~J= I ajwj)N(ro)-1 = a l 
andN(ro){3N(ro)-1 ={3. 

Theorem 4.1: There exists a unique Y'(RXR;M4(C))
valued countably additive measure v,.o on the Banach space 
C(IO,! I;R) of the one-dimensional co~tinuous paths 
8:10,t I-+R such that for (J,g) in YR3;(C4)')X Y(R3;C4

) 

(f('),l/J (t,.)) = f i'XR' f(x)Ko(t,x - y)g( y)dx dy 

= rl(21T)-d dro 
JI"'I = I 

X f(fs(·,ro),N(ro)-1 dv,;o(8)N(ro)gshro)).(4.3) 

The support of v:;o is on the set of the Lipschitz continuous 
paths 8: 10,t I-+R satisfying 

for each a,b with O<a < b<,t when t> 0 
or O;>a > b;>t when t < 0, 
18(b) - 8(a)I<lb - al 
[18(b) - 8(a)1 = Ib - al in case m = 0]. (4.4) 

The set function 

v,J,( .. ",);o.g,I""') (.) = ifs (·,ro),N (ro)-Iv,;o(·)N (ro)gs (.,ro)) 

is a complex-valued countably additive measure on the Ban
ach space C (IO,t I;R) with support on the set of the Lipschitz 
continuous Apaths 8 satisfying (4.4) and 8 (O)ESUpp gs (·,ro), 
8(t )Esuppfs(·'ro). 

Proof: The Radon transform of (4.1) yields 

a,~ (t,s,ro) = [ - (tlajWj )as - im{3 ]~ (t,s,w). (4.5) 

Multiply (4.5) by N(ro) from the left. Then we have 

a,17(t,S,ro) = [ - alas - im{3 ] 17(t,S,ro), (4.5), 

with 17(t,S,ro) = N (ro)~ (t,S,ro). For ro fixed, (4.5), is a first-or
der hyperbolic system with two independent variables t and 
S. In the same way as in the proof of Theorems 2.1 and 2.2 we 
can construct the path space measure v,;o with the property 
mentioned in Theorem 4.1. 
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To get (4.3), differentiate by sboth sides of(4.5). Then if 
¢dt,5,ro)=as¢ (t,5,ro) is t~e solution of the Cauchy probl:m 
for (4.5) with initial data tPs (0,5,ro) = gs (s,ro)=asg(5,ro), It 
has the following path integral representation: 

(Is (.,ro),¢s (t,.,ro)) 

= f(/s(·,ro),N(ro)-1 dy,;o(E)N(ro)gs(·'ro)). 

The formula (4.3) follows from this with the aid of the Plan
cherel formula (4.2). This proves Theorem 4.1. 

Remark: Formal substitution of OlL = 0 (. - x) and Oy 
= 0(' - y) intofand g yields the following intuitive expres

sion of(4.3): 

Ko(t,x - y) = 2- 1(21T)-2 f drofO'(E(t) - xro) 
JI"'I~I 

XN(ro)-1 dy,;o(E)N(ro)o'(E(O) - roy). (4.3)' 

B. The Dirac equation for a central electric field 

The Dirac equation for a central electric field can be 
separated in spherical coordinates. 6 The radial Dirac equa
tion is 
atX(t,r) = - iIr x(t,r), tER, rE(O, 00 ), 

H'~H; + VI'), H; ~ (~ - ~)a, +(; :m) 
(4.6) 

with V = elf>, where K is a positive and negative integer. We 
assume that VIr) is a real-valued continuous function in 
(0,00), and Ir is self-adjoine2 in L 2((0,00 ), dr;(?). The fol
lowing theorem is, though of a rather restrictive character, 
concerned with a path integral representation for the solu
tion X (t,r) of the Cauchy problem for (4.6) with initial data 
X (O,r) = gIrl· 

Theorem 4.2: Letfandg be in Y(R.+;((?)') and 
Y(R+;IC?), restrictions of Y(R;(C2

)') and Y(R;C2) to 
R + = [0,00), respectively. If for each s with O<s,,:;;t when 
t> ° or with O;;;'s;;;.t when t < 0, the intersection 

{rER+;lx - rl<lt - sl, XESUpp f} 

n{rER+; Ir - yl<lsl,yEsuppgJ (4.7) 

does not contain 0, there exists a unique complex-valued 
countably additive measure vKjJ;o.g on the set ofthe one
dimensional continuous paths R: 10,t I--+R + such that for ev
ery VIr), 

(f,e-
itHK

g)L 2((0.oo).dr) = i f(r)x(t,r)dr 
R+ 

n+1 

LK;tJ;o,glf> = i- '~'i- f(r(n))K o+(tn - tn_I ,r(n) - r(n -I))'" 
R+ R+ 

Then the following lemma will be shown with use of Lemma 
4.3 (cf. Lemma 3.2). 

Lemma 4.4: Ltc,IJ;o.g If> is well defined on C fin (&1l 1,0) and 
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= fdVKjJ;o.g(R)exp[ -ii'V(R(S))dSj. 

(4.8) 

The support of v :"J;o.g is on the set of the Lipschitz contin
uous paths R:IO,t I--+R+ satisfying 

for each a, b with O<a < b<t when t> ° 
or O;;;.a > b;;;.t when t < 0, 
IR (b) - R (a)I<lb - al (4.9) 

and R (0) ESUPP g, R (t )ESUpp f 
Proof: We give only an outline of the proof, for it pro

ceeds with a similar argument used in the proof of Theorem 
2.2. 

Let t,f, and g be as in Theorem 4.2. We consider only 
the case t> 0. The free equation to (4.6) is 

asX(s,r) = - iH ~x(s,r), 0< sq, rE(O, 00), (4.10) 

Then for the Cauchy problem for (4.10) we have the 
following lemma [cf. Lemma 3.1 and (3.6)]. Let ro > ° be the 
minimum of the set (4.7), so that IKl/ro is an upper bound of 
IKJlr with r in the set (4.7). 

Lemma 4.3: If r is in suppfwith r;;;.min(supp g) - s, 
then 

I Nx(s,r) I <eMs max{INx (O,u)l; uEsuppg,r - s<u":;r + sJ, 

(
1 i) where M = m + IK11ro, and N = 2- 1

/
2 i 1 . 

Proof: We only note the following. Multiplying Eq. 
(4.10) by N from the left, we have with ll(t,r) = Nx(t,r), 

at ll(t,r) 

~ [(~ - ~)a, +C ~ i; -mo<) ]~It,,) 
(4.10)' 

Notice that Lemma 4.3 yields the support property of 
the fundamental solution K 0+ (s,r) of the Cauchy problem for 
(4.10). 

To construct the path space measure let &1l ,,0 = Il[o,1 I 

R + be the product of the infinitely many copies of 
R+ = R+u{ 00 J, the one-point compactification ofR+. Let 
C (&1l,,0) be the Banach space of the continuous functions on 
the compact Hausdorff space &1l 1,0' and C fin (&1l 1.0) its sub
space of those If> for which there exist a finite partition 
0= to < tl < ... < tn = t of the interval [O,t] and a complex
valued bounded continuous function F(r(O»r(I» ... ,r(n)) on 
(R+)n+ I such that If>(R) =F(R (t(o)),R (t(I)), ... ,R (t(n)))' 

Define a linear functional LK;tJ;o,g on C fin (&1l 1,0) by 

ILtc,IJ;o,g If> I <2~t 11lf> IIII filL 'IIO,oo),dr) Ilgil L ~((O,,,,,),dr) 
for every If> in C fin (&1l 1,0)' where M = m + IKllro. 
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Since C fin (t3f' 1,0) is dense in C (t3f' 1,0)' it follows from 
Lemma 4.4 with the Riesz-type representation theorem27 

that there exists a unique complex-valued countably additive 
measure v K~.f.O,g defined on the Borel sets in t3f'"O such that 

LK;I.f.O,gtP = ( dVK~.f.O,g(R )tP(R) 
J9S't,O 

for ifJEC (t3f' 1,0)' The support property of the measure will be 
seen from that of K 0+ (s,r). 

Once the path space measure v Z.f.O,g is constructed the 
proof of the formula (4.8) will be accomplished as in Sec. 
I1IC. 

Remark 1: The restriction for t and the supports off and 
g in Theorem 4,2 mean that the information which starts 
from g at time ° to reachf at time t has never passed through 
the center of the potential. We need it, for the free Dirac 
equation (4.10) contains the 1/r singularity in H ~, which 
invalidates Lemma 4.3. 

Remark 2: Even when m = 0, it cannot be asserted that 
the support of v K~.f.O,g is on the set of those paths R: 10,t I ~ R + 

satisfying IR (b) - R (a)1 = Ib - al instead of (4.9) for the 
same a,b. The presence of the iK/r term in H ~ tends to warp 
the paths. 

These facts may suggest that the problem is after all 
four-space-time-dimensional. 

V. HEURISTIC DERIVATION OF PATH INTEGRAL FOR 
THE DIRAC EQUATION 

In this section we shall heuristically see what should be 
the path integral for the fundamental solution of the Cauchy 
problem for the Dirac equation (Ll). Our strategy is to ex

I 
Then we have [writing (P(t ),X(t)) again instead of (P'(t ),X'(t))] 

ploit the method of phase space path integralS or Hamilton
ian path integral.9 

We begin with the action33 for a relativistic positive
energy (resp., negative-energy) particle of mass m and charge 
e in an electromagnetic field, 

S (s,r;P,X) = f [P(t )X(t ) =t= ~ (P(t ) - eA(t,X(t )))2 + m2 

-etP(t,X(t))]dt. (5.1) 

Here X(t) and P(t) are the position and momentum. We as
sume for definiteness that s > r. In the formulas with double 
signs, the upper one corresponds to the positive-energy par
ticle and the lower one to the negative-energy particle. The 
method of phase space path integral or Hamiltonian path 
integral assumes that the fundamental solution K (s,x;r,y) of 
the Cauchy problem for the Dirac equation (1.1), which is 
the probability amplitude that a quantized charged particle 
with positive energy (resp., negative energy) at position y at 
time r will be at position x at time s, is given by a formal 
"integral" 

L eiS Is,r;P,X)i» (P)i» (X). 
s.x;r,Y 

(5.2) 

Here i» (P)i»(X) is a formal "measure" TIlE1r,sl 

(217)-3 d P(t)d X(t) on the space 9 s,x;r,Y ofthe phase space 
paths (P(t ),X(t )) satisfying X(r) = yandX(s) = xwithP(t ) un
restricted. In this formal phase space path "integral" we first 
make the change of variables: X'(t ) = X(t ), 
P'(t) = Pit ) - eA(t,X(t )) and next use Dirac's prescription6 

± (P'(t)2 + m2)1/2 = aP'(t) + mfJ. (5.3) 

K(s,x;r,y) = Is"'''';'''' TeX~if[(p(t) + e\.(t,x(t )))X(t) -(ap(t) + m/3) - etP(t,x(t ))]dt }nIE1r,sl(217)-3 aP(t )dX(t), 

where T stands for the time-ordering symbol. We understand (5.4) to be defined with a time division procedure, i.e., 

~ 

K(S,X;r,y)=lim11"'1 IT eXP{i[CPU_I) +eA(tj_I,xU_ I))) xU) -XU_I) 
R' R6 R6j = 1 tj - tj _ 1 

- (ap(j_I) + mfJ) - etP(tj_ I,X(j_ I) )](tj - tj _ I)} 

X (217)-3 dp(o) (217)-3(dp(l)dx(l) ) ... (217)-3(dP(n _ I) dX1n - I))' 

Note that the integrand of the integral on the right of (5.5) is rewritten as 

IT {exp[ix("PU_I) ]exp[ - i(aPU_I) + mfJ)(tj - tj _ 1 )]exp[ - iXV-1)PU-I)] l 
j= 1 

xexpktl [eA(tk - 1 ,X(k - I) )(X(k) - X1k _ 1)) - etP (tk - 1 ,X(k - I) )(tk - tk - 1 )] }. 

(5.4) 

(5.5) 

Here r = to < t 1 < ... < t n = sand x(O) = y, xUI = X(tj ), x(n) = x, and the product TI; = 1 is time-ordered with time increasing 
from the right to the left. The limit is taken for n~ 00 and max1q<n (tj - tj _ 1 )~. If Ko(t,x) is the fundamental solution of the 
Cauchy problem for the free Dirac equation (4.1), then the Pill integrations on the right-hand side of (5.5) yield 
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If a path space measure v •. x;r. y should be constructed from the product of Ko's and the Lebesgue measures dx(}), we should get 

K (s,x;r,y) = Ja",.x;". dV •. x;r. y (x)exp [ - i fe<t> (t,X(t ))dt + ifeA(t,X(t))d X(t)], (5.6) 

where /¥' •. x;r. y is the space of the configuration paths X(t) satisfying X(r) = y and XIs) = x. Thus the formula (5.6), in the 
covariant notation as mentioned before (2.1), is what we have obtained for the Dirac equation (2.1) in two space-time dimen
sions, that is, (2.6) or (2.6)'. 
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A time-dependent canonical transformation is performed in the path integral expression of the 
propagator for a damped harmonic oscillator to reduce it to a harmonic oscillator with modified 
frequency. The transformation is carried out in a properly time-symmetrized expression of the 
lattice space path integral by making expansions about the midpoint of each time interval. 

PACS numbers: 03.65.Fd 

I. INTRODUCTION 

Recently there have been a number of papers dealing 
with the quantization of nonconservative systems. 1-3 In par
ticular, Gzyl4 has recently considered the quantization of a 
damped harmonic oscillator by means of a canonical trans
formation which reduces the problem to standard harmonic 
oscillator with a modified frequency. In the quantum case 
this amounts to a unitary change of representation where the 
solution for the representation functions results in the quan
tization ofthe system.5 

In this paper we wish to consider a path integral quanti
zation for this system where we shall also employ a canonical 
transformation to reduce the problem to a harmonic oscilla
tor. We note that the equation of motion of the damped oscil
lator (for unit mass) is given by 

X +AX +(J}x =0 

which can be obtained from the Lagrangian 

L = ~e'" W - W
2X2) 

(1.1) 

(1.2) 

by the Euler-Lagrange equations or from the Hamiltonian 

(1.3) 

via the Hamilton equations x = aH lap, p = - aH I ax. If 
we now make thecontacttransformationx = exp( - At /2)y, 
in Eq. (1.2) we have 

(1.4) 

where wi = w2 - A 2/4. The term - Ayyl2 does not contri
bute to the equations of motion (it is a total derivative in time) 
so it is easily seen that Eq. (1.4) is essentially the Lagrangian 
for a harmonic oscillator of modified frequency in the y coor
dinate. 

Now previously, Khandekar and Lawande6 have con
sidered a path integral expression for the propagator, based 
on the Lagrangian ofEq. (1.2). They write 

K(x",t";x't') = f exp(~ f" Ldt)§X(t), (1.5) 

which in the lattice space reads 

K(x",t";x',t') = l~ AN J-.J exp {~ 

X I Sk(Xk,Xk_ 1 ,E)} Nif dxk, 
k k=1 

(1.6) 

where 

Sk = Lk_ 1 L dt~EL (Xk,xk _ 1 ,E) 

=l'k[(l/2E)(Xk -xk_ I )2_(EI2)w2xi], (1.7) 

and where 

_ N ( /"k )112 
AN - II -- . 

k = 1 21TiflE 
(1.8) 

The path integration of Eq. (1.6) can then be carried out 
straightforwardly owing to the quadratic form of the La
grangian. 

However, if one could make the transformation 
x = exp( - At 12lY in the path integral, one would presuma
bly need only the propagator for the harmonic oscillator of 
frequency w A (in the y representation) to obtain the propaga
tor of the damped oscillator. However, a moment's reflec
tion will show that in making a transformation such as X k 

= exp( - Atkl2lYk in Eq. (1.6) or Eq. (1.7), one encounters 
many ambiguities in regard to the kinetic energy term 
exp(Atk )(Xk - Xk _ 1 f For instance, the term xi _ 1 exp(Atk ) 
gives rise toyL 1 exp[A(tk -tk_ I )] and terms of order 
E = tk - tk _ 1 must be retained. It is also not obvious as to 
how the modified frequency w A will appear from this trans
formation. 

In the next section of this paper we illustrate how such a 
transformation may in fact be carried out after we first find 
an alternate expression for the Lagrangian path integral in 
which we symmetrize the time variable. It should be pointed 
out that the transformation we are using, in contrast to 
Gzyl's,4 is only a time-dependent contact transformation 
whereas his also involves the momentum. Such transforma
tions that mix coordinates and momenta have no place in 
path integration in the Schr6dinger representation. 

II. PATH INTEGRAL AND CONTACT 
TRANSFORMATIONS 

Since the Hamiltonian ofEq. (1.3) is time dependent, we 
write the equation of the evolution of the state 1 "'(t) as 

I"'(t") = U(t",t')I",(t'), (2.1) 

where 

U(t",t')=Texp f" (- ~ H(t))dt 

is the time-ordered product. We write this as 

(2.2) 
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U(t",t') = lim exp (- ~ EH(iN )) N-oo Ii 

Xexp ( - ~ EH(tN _ tl) 
x ··,x exp ( - ~ EH(t2 )) 

Xexp ( - ~ EH(tl )). (2.3) 

whereE = (t" - t ')/N,tk = t' + kE,andtk = (tk + tk _ I )/2, 
for k = 0,1, ... ,N. Here we have made the ansatz of employ
ing a symmetrized time tk in Eq. (2.3) rather than the cus
tomary tk • The reason for this will become clear shortly. We 
now follow the standard procedure? and introduce the pro
pagator as 

K (x" ,t ";x',t') = (x" I U(t" ,t ')Ix'), 

and with the completeness relations 

f: 00 dxlx) (xl = 1, 

f:oo dplP)(PI=l, 

(2.4) 

(2.5a) 

(2.5b) 

inserted between the appropriate partitions ofEq. (2.3) we 
obtain the phase-space path integral 

K(x",t";x't') 

= f ~P(t)~x(t)exp{~ {" [PX-Hldt} (2.6) 

f
oo N dp N-I 

= lim II _k II dXk N-oo - 00 k= 1 21Tfz k= 1 

X IT exp {~ [pdXk - Xk_ 1 ) 
k = 1 Ii 

( 
- AI./2 W2X2)] } e 2 kAt. 

- E ---Pk + --e 
22' 

(2.7) 

where x" = X N and x' = XO' Note that the time-dependent 
factor of p~ contains tk • This is appropriate because the paths 
in p-space are distributional,8 i.e., taken as constant over the 
interval (k,k - 1) but discontinuous on the endpoints. (A 
better notation might be p k _ 1/2 , see Ref. 8.) We thus have 
used the average time over the interval. Whether one uses tk 
or t k in the factor of x~ is immaterial as the difference is of 
order c, which can be ignored in the limit N-oo. 

We now proceed by evaluating the p-integrals of Eq. 
(2.7). As these are Gaussian one easily obtains 
K(x",t ";x't') 

= lim A;' f···f IT [/'.] 112 
N---+oo k = 1 

E 2 2 At.]} - -W xke 
2 ' 

(2.8) 

where A;' = (21TiflE) - N 12. Note that the continuum limit of 
Eqs. (1.6) and (2.8) is the same although they differ in their 
lattice space formulations. 

We now perform a time-dependent contact transforma
tion such that the explicit time dependence ofEq. (2.8) is 
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removed. As we indicated, one is tempted to make a straight
forward substitution of Xk = exp( - A.tk/2lYk into Eq. (2.8) 
or (1.6). As has been demonstrated elsewhere,9.10 extreme 
caution must be used in implementing canonical transforma
tions in path integrals. It is particularly important to retain 
up to order E. 

To this end we consider a general case of the form 
x = /(t lY, where/(t) = exp( - A.t /2) for our case 
of interest. In analogy to the midpoint method of contact 
canonical transformation discussed in Refs. 9 and 10, we 
here make expansions about the midpoint in the time inter
val, i.e., tk • That is, to order E, we write 

x k =Yd/(td + ~i(tk)E], 
Xk_1 =Yk-l [/(tk)-~i(tk)E], 

(2.9a) 

(2.9b) 

where the dot denotes time differentiation. We then have 

LlXk = xk - Xk _ I 

=/(tk)LlYk + i(tdYk E, (2.10) 

where LlYk = Yk - Yk _ 1 and Yk = (Yk + Yk _ 1 )12. Also we 
have 

(LlXk f = [/(tk )] 2(L1Yk)2 + 2E/(tk It(tk IYkL1Yk 

+ [i(tk WCY~. (2.11) 

With/(t) = exp( - A.t /2) we obtain 

( .. )2 Alk( ..)2 ., - All<":": .. ,f.JXk = e ,f.JYk - EAe Yk,f.JYk 

+ (A. 2/4)cy~eAlk, 

thus the short time action ofEq. (2.8) 

Sk = (l/2E)/'k(L1xd2 - E(w2x2/2)eAtk 

becomes upon substitution of Eqs. (2.9) and (2.12) 

Sk = (l/2E)(L1Ykf - 0Yk L1Yk - (d2)w1YL 

(2.12) 

(2.13) 

(2.14) 

where w1 = w 2 
- A. 2/4. In the continuous limit one easily 

extracts the Lagrangian ofEq. (1.4). 
We must also transform the "measure" part of the path 

integral. Using the symmetrizing procedure discussed in 
Refs. 9 and 10, we have for the general case, to order E 

N-l IT dXk = [/(t"}f(t')l-1/2 
k=l 

N N-l 

X II /(td II dYk. (2.15) 
k= I k= I 

In our case this becomes 
N-l 

II dXk =e-< lt"+t')/4 
k=l 

Now from Eqs. (2.14) and (2.16) we obtain the transformed 
path integral as 

K (x" ,t ";x' ,t ') = e-< It" + t ')14K (y" ,t ";.v' ,t '), (2.17) 

where 

K (y" ,t" ,y',t') = lim A;' f· .. f Nif dYk 
N---+oo k= 1 

N { i [(L1Yk)2 
xIIexp---

k= I 21i E 
- A.YkL1Yk - Ew1Y~ ]}. (2.18) 
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We can remove all the explicit time dependence of the y
representation by using the integral equation 

,p(x",t") = J K(x",t";x't')IjJ(x',t')dx', (2.19) 

Eq. (2.18), and the change of variable x = exp( - At 12)y on 
the endpoints such that we may redefine the wave functions 
as fpty,t ) = e - A1/41jJ(e - AI 12y ,! ) to obtain 

ijAy",t") = J Kly",! ";.v',t ')¢(y',t ')dy'. (2.20) 

We now have only to evaluate the path integral in Eq. 
(2.18). This may be written symbolically as 

K(y",t ";.v',t') = f ~y(t)exp {~ f" L (y,y)dt },(2.21) 

whereL (y,y) is given by Eq. (1.4). As noted earlier, the action 
calculated with this Lagrangian contains a path independent 
term, i.e., 

Thus we are left with a path integral for a harmonic oscilla
tor of frequency W A' The result is of course very well 
known 11 yielding 

K (y" ,t ";.v',t') 

( 
WA )112 

= 21TifI sin wA(t" - t') 

Xexp { 
iWA 

lii sin wA(t" - t') 

X [(y,,2 + y'2)COS W A (t " - t') 

- 2y'y"] - (iA 141Z)(y,,2 _ y'2)}. (2.23) 

Thus we obtain from Eqs. (2.18) and (2.23) the final result 
_A(I" + 1'1/4 

K (x" t" 'x't') = _____ {1 ______ -,.,.-

" [(21TilZl W A )sin W A (t" - t')] 1/2 

Xexp { 
iw A 

21Z sin W A (t" - t') 

X [(~I"X"2 + ~1'X'2)COS wA(t" - t') 
_ 2x"x'eA(I" + 1'112] 
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III. CONCLUSIONS 

This result may be compared with the calculations of 
Iannussis et al. 12 who use the solutions of the Schrodinger 
equation 13 to obtain the propagator by the definition 

K(x"t ";x't') = L 1jJ~ (x't')ljJn(x",t "). 

Their result differs from ours in the sign of the last term. We 
believe ours to be correct as the sign can be directly traced to 
the term -Ayy/2 in Eq. (1.4). 

Now in arriving at the above result we have started out 
with a phase-space path integral in which the time has been 
averaged over each interval of the time lattice. The Lagran
gian path integral, Eq. (2.8) thus obtained differs from the 
usual form ofEqs. (1.6)-( 1.8). Our expression has allowed us 
to follow a procedure analogous to the midpoint method of 
contact canonical transformations of Refs. 9 and 10 to trans
form the problem into the simpler problem of the harmonic 
oscillator. Apparently there is great ambiguity in the correct 
definition of the propagator when time explicitly appears. It 
is not clear how such a transformation could be carried out 
using Eqs. (1.7) and (1.8). Finally it must also be stated that 
there must be ambiguity in the definition of the phase-space 
path integral as it is not clear what form this should have for 
Eqs. (1.6)-(1.8), where the time parameter appears unsym
metrized over the time intervals. We thus conclude that our 
form Eq. (2.7) is the more appropriate. 
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Hestenes' geometric algebra and Dirac spinors are reviewed and united into a common 
mathematical formalism, a unification that establishes the Dirac equation as being manifestly 
covariant under the Lorentz group, and one that needs no matrix representation of the Dirac 
algebra. New and simple methods of amplitude or "trace" calculations are then described. A 
number of problems are then considered within the context of the new approach, such as 
relativistic spin projections, new and covariant C and T-transformations and spinors for massless 
and Majorana fields. 
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1. INTRODUCTION 

The Dirac equation, for over half a century the main 
theoretical tool among the few at the disposal ofthe physicist 
wanting to understand the enigmatic electron and other pre
sumably fundamental spin-! particles, stands virtually alone 
among the great equations of physics in that it is not general
ly regarded as being independent of the reference frame in 
which it is to be employed, that is to say, as being manifestly 
covariant under transformations of the Lorentz group. The 
reason for this is the apparent advantage to be gained by 
regarding the Dirac matrices (r,J in the Dirac equation 
(units: fz = c = 1) 

(iY'ap -m-eY'Ap(x))¢(x)=.O (1.1) 

(with all of the symbols having their usual meaning) as fixed 
matrices,1 with a few especially simple representations2 of 
them being universally adopted and employed. These matri
ces then operate on the four-component column matrix tP(x), 
frequently referred to as a "Dirac spinor," scrambling its 
components which, in tum, represent spin-! particles and 
antiparticles and their spin states. A considerable literature 
exists concerning these matrices,2-4 their representations 
and transformations, their efforts on spinors,5-7 and how 
they are used to calculate results of physical interest,8.9 but 
only rarely (I have found but two examples lO

•
ll and none at 

all in the most recent texts) is it even mentioned that if the 
(rp ) transform as the basis 4-vectors of a reference frame (the 
viewpoint of this paper), abandoning fixed matrix represen
tations, then does the Dirac equation have the appearance 
and structure of a manifestly covariant equation as far as the 
Lorentz group is concerned. 

Not unrelated to the Dirac equation, but for other rea
sons as well, there is considerable current interest in the 
structure of the algebras and groups 12 which have proven to 
be so successful in their applications to modem particle 
physics. In particular, the unitary, orthogonal, and other 
groups as well as the Clifford algebras (among which are to 
be included the Pauli and Dirac algebras), which are not 
unrelated to them, have been for some time, and remain, 
active research topics. Can certain of these algebras be di
rected to the covariance and interpretation of the Dirac 
equation, and, indeed, eliminate all reference to matrices 
and their representations and provide a suitable geometric 
setting for the important Dirac spinors? I believe so. 

The purpose of this paper is to show that the Dirac 
algebra described by Hestenes13

-
17 and others,18-21 a Clif

ford algebra based on the usual four-dimensional Minkows
kian space-time, is the natural formalism in which to embed 
Dirac's four-component spinors. Hestenes' version of this 
algebra is particularly singled out because of its informality, 
its ease of application and manipulation, and its power. 
Transformations within the four-dimensional vector space 
of spinors are accomplished by multiplication by elements of 
the Dirac algebra g;, an algebra isomorphic to the well
known algebra of the Dirac matrices. The whole formalism 
will be seen to be covariant under transformations of the 
Lorentz group, and no need whatever will exist for any ma
trix representation of the algebra or the vector space of spin
ors; most of what follows will even be expressed in a compo
nent-free way. Section 2 will be needed to review the Dirac 
algebra and its subalgebra, the Pauli algebra, and their appli
cation to rotations and Lorentz transformations; Sec. 3 will 
informally define the vector space of Dirac spinors and its 
dual space of "adjoint" spinors, which will then be united, in 
Sec. 4, through an important and fundamental new 
"theorem" that unites the two, and which describes a new, 
simple and useful way of calculating the ubiquitous ampli
tudes and "traces" of relativistic quantum mechanics. Sec
tion 5, finally, will apply these techniques to a number of 
simple problems in relativistic quantum theory, namely: (a) 
calculating spin projection probabilities; (b) the description 
by the covariant Dirac equation of an electron in a magnetic 
field; (c) a new spinor basis needed for massless spin-! parti
cles; (d) expressing the charge conjugation transformation 
(C) and time-reversal transformation (T) in a new and covar
iant way that avoids the specific representations of the Dirac 
matrices hitherto employed [the parity (P) transformation is 
trivially reinterpreted but remains unchanged from what is 
conventional]; and (e) a look at how Majorana fields have to 
be expressed in the new notation, since, among other rea
sons, the charge conjugation transformation described in 
Sec. 5D forbids the existence of self-conjugate fields. 

The literature recognizes two distinct (and, unfortu
nately, confusing) concepts for the appellation "spinor": (a) 
it is currently fashionable,6,7,16,22 for example, to call the 
Lorentz transformation L in a change of reference frame 
such as 

r~ = LrpL -I (1.2) 
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a spinor, or a rotation R in a change of three-dimensional 
basis 

(1.3) 

such objects, in their respective algebras, being represented, 
if necessary, by 4 X 4 or 2 X 2 matrices, or even by quater
nionlike objects; (b) the two-component "Pauli spinor" or 
the four-component "Dirac spinor," such objects being rep
resented by column matrices, and traditionally called "spin
ors." It is in this latter sense only that the word "spinor" will 
be used in this paper, with the unfortunately vaguer terms 
"operator" or "multi vector" being used for the first sense. 

The mathematics that follows is quite informal and 
makes no claim to mathematical rigor; my aim is rather to 
develop and display a practical and simple, but powerful, 
spinor algebra, one with which facility can be readily ac
quired. The formal and technical aspects of the algebras used 
here have been widely developed and discussed in the litera
ture; it is there that the interested reader will be referred in 
the likely event he finds the presentation here too informal or 
incomplete, although many references given here only sam
ple this vast literature. 

2. REVIEW OF THE DIRAC AND PAULI ALGEBRAS, 
ROTATIONS, AND LORENTZ TRANSFORMATIONS 

The notation and formalism used in this paper would 
perhaps be best illustrated by a brief review of Hestenes' 
geometric algebra as it applies to Minkowskian space-time 
and transformations within it. The reader is referred else
where13

-
17 for a complete review and explanation of the alge

bra and its wealth of identities and relationships. 
If A and Bare 4-vectors in Minkowskian space-time 

then a general "geometric product" is denoted by simple 
juxtaposition: 

AB = ~(AB + BA ) + !(AB - BA ) 

A·B +A I\.B 

=B·A -BI\.A, (2.1) 

where A·B is the usual scalar product and the bivector A I\. B 
can be regarded as the antisymmetric tensor product. This 
"exterior" or "outer" product, denoted by" I\. ," essentially 
the same one used with differential forms,23 is defined to be 
associative, a property which, with its antisymmetric nature, 
implies that 

AI\.BI\.CI\.DI\.E=O (2.2) 
for any five or more 4-vectors. The 16-dimensional vector 
space (or 32-dimensional, if multiplication by complex 
numbers is admitted) C(i 4-fiJ, the Clifford algebra based on 
a four-dimensional vector space, has as an arbitrary element 
the multivector 

M = scalar(S) + vector(V) + bivector(B) + trivec-
tor(T) or (2.3) 

pseudovector + pseudoscalar (P ). 
If (YIL ) (f..l = 0,1,2,3) is an orthonormal set of basis 4-vectors 
(which constitutes a reference frame, with Yo the reference 
frame's 4-velocity), or tetrad, 

YIL'Yv =~(YILYv +YvYIL )=77ILv (2.4) 
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(where 7700=1, 77ij= - 8'j)' then M has the form 

M = a + alLYIL + ~aILVYIL I\. Yv 

+ (1!3!),BAILvYA I\. YIL I\. Yv 

(or ,B ILY5YIL ) + ,BY5' (2.5) 
where a, aIL, aILV (= - aVIL),,BAILv (= - ,BILAV, etc.)(or,BIL),,B 
is a set of 16 (possibly complex) scalars, and where24 

(2.6) 

is the unit pseudoscalar, which satisfies (Y5)2 = - 1. 
The subalgebra consisting of even multi vectors of the 

Dirac algebra fiJ is the algebra cr; 3=&,,13.19 the Pauli alge
bra, because a basis triad (a;) (i = 1,2,3) defined by 

a;-y; I\. Yo = Y;Yo 

satisfies 

(2.7) 

(2.8) 

the requirement of a basis in ordinary three-dimensional 
space. Elements of &' have the form25 

= a + a + B (or lb) + i,B 

= (a + i,B) + (a + lb), 

(2.9a) 

(2.9b) 

where a and,Bare real scalars and a and b are (real) 3-vectors, 
and where the unit pseudoscalar i (F = - 1) is defined by 

i==.a l l\.a2l\.a3 = a 1a2a 3 

(2.10) 

a most important, and perhaps surprising, result, one with 
geometric significance, as Hestenes l6 has emphasized. I use 
the notation "i" in the Pauli algebra because ia; = a; i, so 
that in practice, in &', it behaves no differently than the unit 
imaginary; thus &' appears to consist of complex scalars and 
complex 3-vectors, as (2.9b) illustrates. But, since Y5YIL 
= - Y IL Y 5' its behavior in fiJ is quite different. To minimize 

the conflict with traditional notation, the symbol "t' may be 

considered to be f-=T wherever it appears; however, "Y5" 
must be kept fiJ and will be replaced by "i" whenever 4-
vector equations are reduced to 3-vector equations, which 
will be so indicated whenever it is being done. 

The algebras &' and fiJ provide for quite an elegant 
solution to the rotation problem. 13,16 If the triad (a;) is rotat
ed in the right-hand sense by an angle (j about the direction n 
(where the caret denotes a unit 3-vector other than the basis 
vectors) to become the new triad (an, then 

a; = Ra;R ~I, 

where 
R = exp( - ~in(j ) 

= cos(~(j ) - in sin(!(j ). 

(2.11) 

(2.12) 

There is also a Lorentz covariant way of expressing this spa
tial rotation, a way that, to my knowledge, has not appeared 
before, although it is a trivial generalization of (2.11) and 
(2.12). If the spatial4-vectors of the tetrad (YIL ) are rotated as 
above into the spatial 4-vectors of the tetrad (Y~), then yb 
= Yo and 

(2.13) 
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where 

R = exp( - !Ys Nyo(J) 

= cos(!(J) - Ys Nyo sin(!(J), (2.14) 

where N is the unit spacelike 4-vector (N 2 = - 1) that satis
fies N.y 0 = 0 and 

n = N 1\ Yo = Nyo' (2.15) 

Since Yo anticommutes with each of Ys and N, we have 
Ryo = Yo R and so (2.13) could be written 

y~ = RYf'R -I. (2.16) 

Note that (2.11) and (2.12) follow from (2.14)-(2.16) by the 
replacement Ys ~ i after the equation has been written in 
terms of 3-vectors. This illustrates the remarks made in the 
previous paragraph. 

Following Hestenes,13 we can define "conjugate" mul
tivectors of fiJ such as 

M =M, with all 4-vector products reversed, (2.17) 

=S+ V-B- T+P, 

using the notation (2.3), and a kind of Hermitian conju
gate I 3,26 

Mt=VMV, (2.18) 

where Visa unit timelike4-vector( V 2 = 1) [V = Yo, for some 
reference frame (Yf')]' Note that this Hermitian conjugate is 
not a Lorentz-covariant object, a fact that considerably re
duces its utility, except that y~ = - Ys (so It = - i) in all 
frames of reference. The 3-vectors (0';) defined by (2.7) satisfy 
oJ = 0'; in the reference frame (Yf') where V=Yo, and (2.9b) 
becomes 

mt = (a - i/3) + (8 -lb) (2,19) 

= m, with all 3-vector products reversed, 

so this operation of Hermitian conjugation is compatible 
with that generally employed, but is here endowed with geo
metric significance, Note, now, that the rotation multi vector 
R, in either the form (2.12) or (2.14), satisfiesR t = R -I: R is 
unitary [but only, I emphasize, in the reference frame (Yf') 
where Yo has been used for Vin (2, 18)]. Ifa complex scalar (a) 
multiplies a multivector M of fiJ, I will define 

(aM)t=a*Mt, (2.20) 

where the asterisk denotes the complex conjugate and where 
I will always take the basis vectors to be real: r!=Yf' 
(whether or not a real matrix representation might exist
matrices are irrelevant here). 

A proper Lorentz transformation from the tetrad (Yf') 
to the tetrad (Y~) is expressed by 

y~ = LYf'L -I, (2.21) 

with l3 ,
26 L -I =L [note that, from (2. 14),R =R -I,because 

YsNyo is a bivector]. A (proper) infinitesimal Lorentz trans
formation 

y~ = Yf' + El'vy" 

is solved by 

L = 1 - ~E""Yf' 1\ y", 

(2.22a) 

(2.22b) 

which satisfiesL -I = I. Since Ys commutes with thisL, it is 
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an invariant under proper Lorentz transformations. A pure 
boost (that is, a Lorentz transformation with no rotation of 
the spatial axes) from (Yl') to (Y~) is expressed by26,27 

L=H=(l +Yo Yo)[2(1 +Yo'YO)]-1I2, (2.23a) 

with 

H- I =H=(l +YoYo)[2(1 +yo·YO)]-1I2. (2.23b) 

Since Ht = VHV = H for V = Yo or yb we say that such 
Lorentz transformations are Hermitian, but, again, this is 
not a generally covariant concept. The Lorentz transforma
tion (2.23a) can be expressed in 3-vector or exponential nota
tion,13,28 but not covariantly, for which reason it will be 
avoided. 

If(yl') is an inertial reference frame, with proper time 7, 

then 

, dy 
YI'==_f'_=O, 

d7 

and the triad (0';) = (y;Yo) is not rotating, 

a; =0, 

(2.24) 

(2.25) 

but ifthe triad (0';) = (y; yb) = (y;Yo) is rotating, then from 
(2.11) follows24 

. , - R' R -I, 'R' R -I 0'; - 0'; - 0'; 

= ro X 0';, (2.26) 

where the angular velocity ro is obtained from the definition 

RR -1= - Fro, (2.27) 

since RR -I is a bivector (in both & and g;). In covariant 4-
vector notation we have 

y; = RR -Iy; _ y;RR- 1 

= YsYo(11 1\ y;), (2.28) 

where 

RR -1= - !ysl1yo, (2.29) 

and 11 is the spacelike (l1·yo = 0) angular velocity 4-vector: 

ro = 11 1\ Yo = l1yo, (2,30) 

with 11 2 = - Iro1 2
• The reader should again note that the 

transition from covariant 4-vector notation (2.29) to 3-vector 
notation within a reference frame requires Ys ~ i, which can 
then be regarded as the unit imaginary. 

3. DIRAC SPINORS 

Dirac spinors are elements of a vector space Y, and 
transform among themselves, we assume, when multiplied 
on the left by multi vectors of the Dirac algebra fiJ. That is, if, 
¢ E Y, then M¢ E Y, for all ME fiJ. The dual spinor space 
is denoted Y: if ¢ E y, then multiplication is on the right 
and ¢M E Y. In the conventional terminology ¢ is called the 
adjoint to the spinor ¢. Products of the form ¢¢ will be de
fined to be (complex) scalars, and we will see that products of 
the form ¢¢ are elements of g;. All products displayed here 
are defined to be associative, provided the result is meaning
ful. For example, ¢¢x becomes (¢¢ lx, which is meaningful, 
but ¢(¢x) is not. 

The spinor equation ¢ = M¢ will be defined to have as 
its analog in Y, ¢ = ¢M, where M is defined in (2.17) and is 
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assumed here to have real components. However, if a is a 
complex scalar 

<P = aM¢ +-+ ~ = a*¢M. (3.1) 

(For this reason dual spinors should have been denoted if?9; 
however, the notation ¢ is virtually universal.) 

The Dirac algebra iiJ permits only two different sets of 
commuting projection operators. If V is a timelike 4-vector 
(V2 = 1), then an obvious first choice is the set 

A ± =!(1 ± V), (3.2) 

since A ± A ± = A ± ' A ± A 1= = 0, A + + A _ = 1 are satis
fied. If, temporarily, we use Yo as a specific V, a second 
choice could be the set !(1 ± iYIY2)' since (iYIY2)2 = 1 and 
(iYIYz) commutes with Yo' No other independent projection 
operators exist that commute with these two sets. Now, since 
iYIY2 = - iYSY3YO' the second set of projection operators 
will be taken to be 

~ ± = HI ± ( - i)YSY3YO], (3.3) 

where the signs will be justified later by the physical interpre
tation. 8 To generalize, the two sets of projection operators 
(3.2) and 

(3.4) 

where S 2 = - 1, S· V = 0, imply that the vector space of 
spinors is four-dimensional. Thus, in general, Dirac spinors 
are four-component objects. 

The projection operators ~ ± are the spin projection 
operators because in the transition to the Pauli algebra 
Y s --+ i and since SV = S 1\ V = s [in the frame of reference 
(Y!') with 4-velocity V = Yo], we have 

~ ± =!(1 ± s), (3.5) 

the usual and only projection operators in the Pauli alge
bra. 30 Note that although the Vin (3.4) is not conventional31 

(it appears here, I believe, for the first time) it is required for 
the proper physical interpretation as (3.4) cannot become 
(3.5) without it-note its necessary appearance in (2.14). 

What follows now is standard fare in the text-
books 1.2,8.24: If <P ± and X ± constitute a basis of Y, then 

A+ <P± == <P±' (3.6a) 

A _ X ± = X ± ' (3.6b) 

~± <P± =<P±, (3.6c) 

~ ± X 1= X 1= ' (3.6d) 

where, again, the choice of signs will be justified by the ph ys
ical interpretation. The dual, or adjoint, basis spinors are 
obtained from (2.17) and (3.1): 

~±A+=~±, 
X± A_= X±' 
¢±~±=¢±, 

X1= ~± = X1=' 
because, for example, 

(3.7a) 

(3.7b) 

(3.7c) 

(3.7d) 

(1+)* = HI + (- i)*( - YsSV)] =~+. (3.8) 

If we now define ~ + <P + = 1, we obtain 

~r <Ps = Drs' 

Xr Xs = - Drs' 
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(3.9a) 

(3.9b) 

~r Xs = ° = Xr <P .. (3.9c) 

where r,s = ±. It now follows that8 

<P± ¢± =A+~±, 
X ± X ± = - A -~ :r= ' 

(3.1Oa) 

(3. lOb) 

so that (summing over repeated subscripts) 

<Pr ¢r - Xr Xr = 1, 

<Pr ~r + Xr Xr = V, 

(3.lla) 

(3.11b) 

in the sense that operations on an arbitrarily selected spinor 
¢ = a r <Pr + flr Xr (an flr complex numbers) are indepen
dent of which side of(3.1O) or (3.11) is used. These of course, 
are the "completeness" or "closure" relations. The reader 
would have no trouble constructing a number of other iden
tities from (3.10), such as 

<P+¢+-X-X-=~+' (3.12) 

or 

<P + ~ + - <P - ~ - + X + X + - X-X - = - iy sSv. 
(3.13) 

Indeed, the whole of the Dirac algebra can be constructed 
from elements of the form <PX; in the next section I will show 
how this can be accomplished in general. 

Rotations and Lorentz transformations among spinors 
are accomplished using the multivectors R, L, and H of Sec. 
2. If the reference frame (Y!' ) is rotated or boosted or, in 
general, a combination of the two, into the reference frame 
(Y~), then Y~ = Ly!, L -I withL = L -I, to repeat (2.21). It 
follows that the basis spinors 8r ( = <Pr or Xr) associated with 
(Y!') transform into 

8 ;=L8r , (3. 14a) 

'0; = 'OrL = 'Or L -I, (3.14b) 

which therefore satisfy the same equations with respect to 
the reference frame (Y~) as the basis 8, does with respect to 
(y!'). Thus a general spinor 

¢ = a r <p, + fl, Xr 

(3.15) 

is manifestly a Lorentz covariant object provided its compo
nents transform as, for example, 

a; = ~ ;(as <Ps + fls Xs) 

(3.16) 

The next section will consider how such expressions are to be 
explicitly evaluated. 

A spatial rotation of <P+, for example, gives, using 
(2.14), 

(3.17) 

because if V =Yo, Y5 N commutes with Yo' Thus the basis sets 
<p" X, each remain in their own A ± subspaces under spatial 
rotations, and can, with this restriction, be considered to be 
two-component Pauli spinors.3o 

The Lorentz boost (2.23a), however, completely scram
bles the components: 

(3.18) 

with none of a" fl, vanishing in general. I postpone further 
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discussion of these transformations to Sec. SA, where their 
physical interpretation will be considered. 

It is now easy to see that if til = Lt/J, ¢' = ¢L -I, then 

¢'t/J'=¢t/J, (3.19) 

a Lorentz scalar, and 

t/J'¢' = Lt/J¢L -I, (3.20) 

as elements of g, such as vectors, must transform under a 
Lorentz transformation. Further, if L: ((Pr, X,) --+ (tP;, X;), 
we may write 

L = tP; ¢, - X; X,, 
with 

L - 1 = l = tP, ¢ ; - X, X;, 

4. THE "FUNDAMENTAL THEOREM" OF SPINOR 
ALGEBRA 

(3.21a) 

(3.21b) 

I would now like to introduce a fundamental relation 
that considerably simplifies practical calculations using the 
spinor algebra, one that eliminates whatever apparent need 
may remain to refer to specific matrix representations of the 
Dirac algebra. It is easy to state: Let t/J be any Dirac spinor, ¢ 
any adjoint spinor, and Many multi vector of the Dirac alge
bra; then32 

¢Mt/J = 4S [Mt/J¢ ), (4.1) 
where S [ ... ] refers to the scalar part, in the sense of (2.3), of 
the multi vector enclosed in the square brackets. In (4.1), 
4S [ ... ) repiaces32,33Tr [ ... ] in what I consider to be obsolete 
matrix representations of the Dirac algebra, the factor 4 be
ing required because the trace of the 4 X 4 unit matrix is 4. 

From (4.1) easily follows what some call the "Fierz de
composition,,34,3s: 

t/J¢ = l(¢t/J) + M ¢'1't/J)yp. - ~( ¢'1' /\ yVt/J)yp. /\ Yv 

(4.2) 

for any spinors t/J and tP. For example, the second term in (4.2) 
is obtained from (4.1) and 

¢Yp. t/J=4S [Yp.t/J¢] 

= !( ¢yvt/J)4S [Yp. Yv] 

= ( ¢yvt/J)TJp.v, (4.3) 

from (2.1) and (2.4). The important result (4.2) makes par
ticularly clear the interesting connection between the four
component Dirac spinors on the one hand and the elements 
(2.3) and (2.5) ofthe Dirac algebra on the other, and clearly 
shows the tensor properties of the components of the multi
vectors in the brackets in (4.2). 

I claim, without, I think, any exaggeration, that any 
"trace" calculation in relativistic quantum mechanics can be 
more easily and quickly accomplished by the use of(4.1) than 
by following the rules of trace evaluations and manipula
tions. Even the permutation rule is valid: If A, B, C, ... are 
multi vectors, then 

S[AB ... CD) = S[DAB ... C] 

=S[B ... CDA]. (4.4) 

For example, to evaluate ¢+ '1'!(1 - iys) tP+ one would use 
(3. lOa) and (4.1) to obtain 
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¢+yp.!(l- iys) tP+ 

= 4S [yp.~(1- iYsH(1 + VH(1 - iysSV)] 

= ~ Uyp. - iyP.ys)(1 + V - iysSV - iysS)] 

(a) (b) (e) (d) (e) if) 

=!(V +S).'1', (4.5) 

because one can see at a glance that only the products a·d and 
bi have a scalar part; the rest do not. However, to evaluate 
an expression such as ¢+yP.~(1 - iys)X _, which is 

¢+'1'!(1 - iys)X _ = 4S [! '1'(1 - iys)X _ ¢+], (4.6) 

one would need the vector and pseudovector parts of (4.2), 
and ¢+ '1'x _, ¢+ysyp.X _. Before these can be evaluated, 
one would have to tabulate the effects of the vectors (Yp.) on 
the basis spinors. If V =Yo, S =Y3 in (3.6), one sees that, for 
example, y 1 tP + <X X +, so with a few choices of phase this can 
readily be done. Thus all expressions of the form ¢Mt/J, such 
as those in the Lorentz transformation of(3.16), can beexpli
citly calculated. 

5. APPLICATIONS TO THE PHYSICAL 
INTERPRETATION 

The definitions and results of the previous sections, be
cause of their simplicity and clarity, facilitate the physical 
interpretation of the Dirac equation and its solutions, par
ticularly in regard to the components of the Dirac spinor t/J(x) 
and transformations among solutions to the Dirac equation. 
In this section I will consider a number of simple examples. 

A. Spin projection probabilities 

If one takes the basis spinors for an electron (or posi
tron) of mass m and 4-momentump = pi" yp. = m V to be u, 
(p), ur!p) (r = ±), defined, as usual, by (3.6), as 

!(l + V)H 1 ± (- i)ysSV]u ± ==='u ±' 

!(1- V)HI ± (- i)ysSV]u,+ =u,+, 

(S.la) 

(5.lb) 

where SV = S /\ V = s is the spin 3-vector in the electron's 
rest frame, then the usual expansion in plane waves that sat
isfies the free-particle Dirac equation 

(iJ - m)t/J(x) = 0, 

where J = '1'Jp., is36 

t/J(x) = (217')-3/2 f d3p (:Y12 

(5.2) 

(5.3) 

where a~,b ~,a"b, are the usual Fock-space creation and 
annihilation operators and E-(m2 + IpI2)1/2. The field 4-
momentum P and angular momentum J have the compo
nents 

p). = f d 3X TO), = f d 3X i¢'fa'-t/J, (5.4a) 

J).p. = J d 3X [(x"'T°P. - xP-T°).) 

(5.4b) 

where T is the canonical energy-momentum tensor and 
where the bivector (y'" /\ '1') appears in the "spin" part of the 
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angular momentum because of the form for the infinitesimal 
Lorentz transformation (2.22b). The expansion (5.3) leads to 
the following 4-momentum and angular momentum in the 
direction of the electrons' motion (J.P): 

P = f d 3p p(a~ar + b ~br)' (5.5a) 

J.P=+ f d3p(a~a+-a~a_+b~b+-b~b_), 
(5.5b) 

where normal ordering has been assumed, results thatjustify 
the choices of sign made in (5.1) and (3.6). Here I have used 

S = [ipl/m,(dm).DJ (5.6) 
with the 4-momentump = (E,lpIP); that is, the spin was re
solved into components in the direction of the electron's mo
tion. These results are quite familiar, 8 but the spin assign
ments of the signs on the spinors v ± apply only to the 
field-quantized theory. 

In relativistic quantum mechanics (as opposed to the 
field-quantized version) the solution to the Dirac equation 
for a free, spin-up electron (or positron-they cannot, of 
course, be distinguished in the absence of an electromagnetic 
field) at rest in the reference frame (Y~) is 

¢(x) = ¢(t') = e - imt 'tP '+ ' (5.7) 

where 

(5.S) 

with s' = S 1\ yb representing the spin direction in the elec
tron's rest frame. (An equally valid solution,37 to which I will 
return later, is 

¢(t') = e + imt'x'_ , (5.9) 

where 

!(l- YbH[I + (- i)Y5SYb] X'- X'-' (5.10) 

A linear combination of (5.7) and (5.9), each parity eigen
states in the rest frame, is not a parity eigenstate (Sec. 5 D) 
and is therefore not acceptable. Here X _ is associated with 
spin-up, the opposite of(5.1b), because the anticommutation 
relations, not present here, cause these roles to become re
versed, a manifestation of the notorious "negative energy" 
problem.37) Now, as seen from the reference frame (Y/L) relat
ed, we assume, to the electron's rest frame (Y~) by a pure 
boost, so that 

V plm = yb = V/LY/L = HyoH- I, (5.11) 

the solution (5.7) is 

¢(x) = e - ip.xtP '+ =e - ip.x¢( p), 

where 

H = (1 + VYo)[2(1 + V'YO)]-I/2 

arises from (2.23a) and where the spinor ¢( p) satisfies 

(5.12) 

(5.13) 

¢(p) =!(1 + V)H1 + ( - i)Y5SV]¢(P)' (5.14) 

Equations (5.12) and (5.14), of course, merely express (5.7) 
and (5.S) in manifestly covariant form. 

The problem now is that ¢(p) has four components in 
the reference frame (Y/L) with the spin or basis (tPr,Xr)' al
though it remains in the two-dimensional subspace of the 
projection operator ~(1 + V). What do these components 
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now represent? If we write 

¢(p)=ar(p)tPr + f3r(P)Xr' 

then 

¢¢=¢'+ tP'+ = I = la,1 2-1f3,12, 

(5.15) 

(5.16) 

so that lar 12 and I f3r 12 cannot be interpreted as probabilities. 
However, since YoXr = - X" we have 

¢Yo¢= V'Yo=dm y=(I_v2)-1/2 

= lar l2 + I f3rI 2, (5.17) 

where v is the electron's speed, which leads me to propose the 
following interpretation: (Ia+ 12 + I f3_12)1y and 
(Ia _12 + I f3 + 12)1y are the probabilities, respectively, of the 
electron having spin up or down in the reference frame (Y,,), 
where 

a r = ¢r ¢, 

f3r = - X, ¢. 

(5.ISa) 

(5.ISb) 

and where the up direction is defined by the spacelike vector 
in the "spin" projection operator for ( tPr' X r); for example, if 
(3.3) is used, the up direction is the 3-direction as Y3YO = a 3 • 

It is important to note that, in general, there is no spin-up 
amplitude, for example, as there is in nonrelativistic quan
tum mechanics. 

The spinor components a" f3r can be readily calculated 
using (4.1) and (3.10), with (3.3) used as the spin projection 
operators: 

la+ 12 = 1¢+¢12 = ¢+#tP+ = 4S[¢¢tP+¢+] 

= 4SWI + V)W - iY5SV j!(1 + Yo)~(l - iY5Y3YO)] 

= !( I + V·yo - S'Y3 - S'Y3 V'Yo + S·yo V'Y3) (5.19a) 

la_12= 1¢_¢12=!(l + V'YO+S'Y3 

+ S'Y3 V·yo - S·yo V'Y3) 

111+ 12 = Ix + ¢1 2 =!( - I + V·yo + S'Y3 

- S.y) V·yo + S·yo V'Y3) 

111_12 = Ix _¢1 2 =!( - I + V'Yo - S'Y3 

+ S'Y3 V'Yo - S·yo V'Y3)' 

(5.19b) 

(5.19c) 

(5.19d) 

with (5.16) and (5.17) clearly satisfied. The electron's spin 
vector in its rest frame (y~) is S =S ~ Y; (as S·yb = 0) and the 
Lorentz transformation in the form 38 

Y~ = HY/LH- I 

=Y/L +(1 +Yb'YO)-I[ -Yb'Y/L(Yo+Yb) 

+ 17/Lo(Yb - Yo + 2YbYb'Yo)] (5.20) 
results in the following spin-up (Pu) and spin-down (Pd ) pro
babilities: 

Pu =y- I(la+1 2+ 111_12) 

=!(l + S~/y) + Wy - l)/y]S~p·ai p·a3, (5.2Ia) 

Pd = y- I (la_12 + 111+12) 
= ~(I - S~)/y) - Wy - l)/y]S~p.ai p.a3, (5.2Ib) 

where p is a unit 3-vector in the direction of the electron's 
momentum. In the nonrelativistic limit (y --+ I, I1r --+ 0) 
(5.21) clearly reduces to the usual expressions,30 the first 
terms of(5.21). As a check on signs it follows from (5.21) that 
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a spin-up electron, boosted in the up direction, remains spin
up. 

The solution for the spin s electron in its rest frame 
could equally well be represented by (5.9) or, in covariant 
form, 

tP(x) = e + ip.XtP(p), (5.22) 

where rather than (5.14) we have 

tP(p) = ~(l - V)H 1 + ( - i)ysSV] tP(p). (5.23) 

This solution differs from the one given above only in the 
replacements ifJ + +--+ X _, ifJ _ +--+ X + in (5.l9a)-(5.l9d); there 
is no change in the physical interpretation. Indeed, the two 
solutions given here are spin-reversed, charge conjugates of 
each other as will be shown in Sec. 5D. 

B. Electron in a magnetic field 

The manifestly covariant formalism of Secs. 2 and 3 
provides for an especially simple solution for the electron 
spin components in a magnetic field. The Dirac equation in 
the presence of an electromagnetic field is 

(ia - m - eA (x))tP(x) = 0, (5.24) 
where the vector potential A is related to the electromagnetic 
field F = ~F" v Y!L /\ Y v by39 

F = a /\A = E + YsB, (5.25) 
where the electric and magnetic fields depend on a specific 
reference frame (Y!L ) having been singled out. If the electron 
is assumed to be spin-up, at rest, at time t = 0 in a uniform 
magnetic field, then a general solution to (5.24) is 

tP(x) = tP(t) = e - imtR (t)</J +, (5.26) 
where R (t) is a rotation operator or multivector, as in (2.14), 
with R (0)_1. This assumed solution gives 

i dif; _i¢ = (m + iRR -I)if; = (m - ~ iYsl1yo) if;, (5.27) 
dt 

where (2.29) has been employed, with 11 being a spacelike 
angular velocity 4-vector. 

From (5.24) follows 
(a 2 + m2 

- e2A 2 + 2ieA.a + ieF)if; = 0, (5.28) 

and when (5.26) is inserted here, one obtains 

2mRR -l tP + eYsyoI1·Aif; + id(R:r -I) tP = eFtP, (5.29) 

where a pure magnetic field has been assumed (A·yo = 0). 
The second and third terms are small relativistic corrections 
(in the weak field limit); if ignored, (5.27) and (5.29) lead to 

RR -I = - !Ysl1yo = - !Ysro 

(5.30) 

where ro = 11 /\ Yo' Thus, if a Hamiltonian H is defined as 

i¢ =iIif;, (5.31) 
we find 

(H - m)if; = - YYsIlYoif;~!i(e/m)YsBif;, (5.32) 

which in the transition to the Pauli algebra (Ys _i) becomes 

(iI - m)if; = - !(e/m)BtP, (5.33) 

which is the Pauli equation.30 If the magnetic field is con
stant as well as uniform the solutions given above are exact 
(the second and third terms of(5.29) vanish) and the solution 
from (2.14) is 
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R (t) = exp( - !YsIlYot) = exp( - !irot). (5.34) 

Since Ryo = yoR, the magnetic field only induces transitions 
between states ifJ + and ifJ _ (not X + or X_if these states are 
initially absent); thus the two-component Pauli spinors are 
sufficient to express the solution. The spin-up amplitude at 
time t would be e - imt~ +R (t )ifJ + and the spin-down ampli
tude is e - imt ~ _ R (t )ifJ + . 

C. Basis spinors for massless spin - I particles 

The projection operators (3.2) and (3.4) cannot be used 
for massless Dirac particles because no 4-vector of the form 
V = p/m, V2 = 1, exists for such particles. It makes no dif
ference if the normalization ~ + ifJ + = 1, for example, is 
changed to the commonly used ~+ ifJ+==-2m because 
(m ± p) are not ("unnormalized") projection operators if 
m = O. The vector space of spinors is still four-dimensional 
so that new projection operators are needed. 

The Dirac equation to be satisfied by free, massless par
ticles is now simply 

aif;(x) =0, 
which requires as basis spinors those (lU" r = 

plU,(p) = 0 

= tro(l - p)lU,(p), 

(5.35) 
± ) that satisfy 

(5.36a) 

(5.36b) 

where the particle's 4-momentump (p2 = 0) is written, as 
before, as p = E( 1, pl. The spin 4-vector of Sec. 3 will be such 
that 

S/\ V=SV=s=p, (5.37) 
so that (5.36b) suggests that the spin projection operators 
become4o 

~ ± =![1 ± ( - i)ys], (5.38) 

since plU,( p) = lU,( p) from (5.36b). Thus the spinors lU,( pI, 
A,(p) defined by 

!(l + p)1:±lU±(p)==-lU±(p), 

~(l - p)1: ± A ~ (p)=A ~ (p) 

(5.39a) 

(5.39b) 

span spinor space and make a suitable basis. They satisfy 

(5.40) 

because (5.39a), for example, has as an adjoint equation 

w± (pl!(l-pj1:~ =w± (p), (5.41a) 

as well as (5.36a) and 

p'A,(p) = 0 = pA,(p'), (5.4lb) 

wherep'=E(l, - p) ifp = E(l,p). 

An expansion of the massless spinor field in plane waves 
in the form 

tP(x) = (21T)-3/2 f d 3p (e - iP'xa,lU,( p) + eip,xb ~ A,( p')) 

(5.42) 

satisfies the Dirac equation (5.35). The choices of sign in 
(5.39) are again made because of the physical interpretation. 
Note, however, that lU,(p) and A -r(P/) satisfy the same de
fining equations, thus rendering the basis Ar(P) superfluous. 
The plane wave expansion expressed by 

tP(x) = (21T)-3/2 f d 3p (e-ip,xa, + eiP'Xb *-r)lUr(P) (5.43) 
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leads to the correct field 4-momentum 

(5.44) 

and spin in the direction of motion 

(5.45) 

Therefore, one needs only the spinors (U ± (p), (ij ± (p) in 
Feynman diagrams and in any other calculations concerning 
massless spin - ! particles. Practical calculations are aided 
by the definition 

W+YifV+ -1, 

which, along with (5.40), leads to 

(5.46a) 

(5.46b) 

(5.46c) 

Because of (5.46c) no factors such as II2E are put in the 
invariant amplitude when Feynman diagrams are being 
evaluated. Such factors, for unit reasons, are also absent 
from (5.43); they emerge naturally from (5.46c). 

D. Manifestly covariant formalism for CPT 

It seems to be a universal practice to exploit specific 
matrix representations of the Dirac algebra in order to con
struct C, P, and T transformations with the desired proper
ties. This, clearly, is not acceptable if, in the spirit of the 
covariant space-time approach, only manifestly covariant 
equations are to be considered. It is therefore important to 
show that manifestly covariant C, P, and T transformations 
can be constructed. These transformations seem more im
portant in the field-quantized version of the Dirac theory, so 
it will be within that context that they will be addressed here. 

I will first propose that the charge conjugation (C) 
transformation be changed from the usual41 matrix or repre
sentation dependent one to 

¢C(x) = 'if ¢(x) 'if -I =Y5 ¢*(x), (5.47) 

where 'if is the usual unitary Fock-space operator and where 
¢* represents the complex conjugate of complex numbers 
and the Hermitian conjugate of the Fock-space creation and 
annihilation operators, but which does not affect elements of 
the Dirac algebra (r! =Y I' ; vectors are real ), although it does 
imply transformations among the basis spinors because of 
the unit imaginary factor in the spin projection operators. 
Apart from a negative sign, the phase in (5.47) is unique. One 
sees from (5.1) that 

u~ ex:: U _ r' v~ ex:: V _ r (5.48a) 

and 
(5.48b) 

One could set the phases, for example, as Y5 u~ =v+, but 
there is no advantage to be gained here by doing so as the C
transformation defined here does not differ all that much 
from the usual except that no matrix transpose is used here. 

The solution to the free-particle Dirac equation for an 
electron of momentum p = m Vand spin S (S 1\ V = s = spin 

1830 J. Math. Phys., Vol. 25, No.6, June 1984 

direction in rest frame), considered earlier in Sec. SA, Eqs. 
(5.12) and (5.14), 

¢(x) = e-ip.x¢(p), 

¢(p) =!(1 + V)H 1 + ( - i)Y5SV] ¢(p), 

has as a charge conjugate 

¢«x) = eiP'X (Y5 ¢*(p)), 

with 

(5.49) 

(5.50a) 

Y5 ¢*( p) = W - V)H 1 - ( - i)Y5SV ] Y5 ¢*( p), (5.50b) 

which is spin-opposite to the alternate solution (5.22) and 
(5.23). When applied to (5.3) or (5.44), for example, (5.47) 
interchanges particles and anti-particles (but not spin). 

Since the Dirac equation and any conceivable interac
tion (that does not involve Y5: the weak interaction is an 
important exception that is discussed at the end of this sub
section) are to be written in manifestly covariant form, such 
expressions are automatically invariant under Lorentz 
transformations, including the improper transformations of 
space inversion (P) and time reversal (T), which therefore 
must be differently formulated if a nontrivial meaning is to 
be attached to such transformations. 

The space-time transformation to be adopted is the "ac
tive" transformation 

=LxL -I 

(5.51) 

where xl' and x'l' are the coordinates of the old and new 
events, respectively, in the basis (YI')' and where (y~) can be 
thought of as a new basis. The coordinates of the new event in 
the old basis are defined to be the same as those of the old 
event in the new basis. It is easy to show that for infinitesimal 
(proper) Lorentz transformations and, at least, the improper 
Lorentz transformation of space inversion in the reference 
frame (YI') (Lp = Yo), 

Y~ = Lp YI'L p-I = (Yo, - Yi)' 

and time reversal (L, = Y5YO) 

Y~ = L'YI'L ,-I = (- YO'Yi)' 

that 

J'=y"J~ =Ly"L -IJI' =LJL -I, 

so that the Dirac equation, for example, 

(iJ - eA (x) - m)¢(x) = 0 

becomes 

(iJ' - eA '(x') - m)¢'(x') = 0, 

(5.52) 

(5.53) 

(5.54) 

(5.55a) 

(5.55b) 

whereA '(x')=LA (x)L -I and ¢'(x') L¢(x) are new fields at 
the new event. Thus the space inversion (P) or parity trans
formation is, from (5.52), 

1/I'(t,r) = 9 ¢(t,r)9 -I 

=Yo ¢(t, - r), (5.56) 
which is identical in every way to the usual42 transformation. 

What one might now be tempted to define as the time
reversal (T) transformation is, however, complicated by the 
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physical interpretation. The mapping (5.51) with the time
reversal Lorentz transformation (5.53) maps a timelike 
world line, say, one going into the future along the positive x I 
axis, into one going into the past also along the positive Xl 

axis, but which must be physically interpreted as one going 
into the future along the negative Xl axis, an interpretation 
that requires YI' ~ - YI' to make physical sense. Thus, al
though (5.53) and (5.55b) appear to map vectors, such as the 
momentum 4-vector p, asp = (pO,pi) ~ (- pO,i), we re
quire YI' ~ - YI' andp ~ - ( - pO,pi) to make physical 
sense. This requires that the Ys factor in L, be dropped and 
requires that the Fock-space operator Y be antilinear: 

t/J' (t,r) = Y t/J(t,r)y- I 

=Yo t/J( - t,r), (5.57) 

which is to be contrasted with the usual43 representation
dependent transformation. One should note that a linear Y 
would have to accompany L, = YsYo if the physical interpre
tation is acceptable, which it is not. 

The current components 

j(x) = tj,(x)Y't/J(x) 

transform into 

/I'(t) = tj,' (t )Y't/J' (t ) 

= tj,( - t)yo Y'Yo t/J( - t) 

= (l( - t), - i( - t I), 

(5.58) 

(5.59) 

and as the electromagnetic field potential A transforms as 

A I'(t) ~ (A o( - t), - A i( - t)), (5.60) 

the electromagnetic interaction is seen to be T-invariant. 
The space-time inversion is expressed by 

t/J'P(x) = (Y.9')t/J(X)(Y.9')-1 

=t/J(-x), (5.61) 

a manifestly covariant result as it must be, and the (antilin
ear) CPT-transformation for spinor fields is thus (to within a 
sign) 

tfP'(x) = ('6'.9' 3lt/J(x)("G'.9' 3l- 1 

= Ys t/J*( - x) = tf( - x). (5.62) 

If the weak interaction can be illustrated by the Fermi 
four-point interaction Lagrangian 

.!t'l a: 1iy1' !(1 + iYs)eeyl' W + iY5)v, (5.63) 

where v and e, respectively, are the neutrino and electron 
spinor fields, then, although Ys, the unit pseudoscalar, re
verses sign under the improper Lorentz transformations 
(5.52) and (5.53), it is (as usual) not invariant under P but is 
invariant under Tbecause of the special nature of(5.57) (as Ys 
was dropped from L, and Y made antilinear in compensa
tion). Nor, as is usual, is .!t'I invariant under C, but is under 
CPandCPT. 

E. Majorana fields 

The subject of Majorana fields44-47 is of intense current 
interest because of the possibility that neutrinos may not be 
massless after all. Can there exist, one wonders, a two-com
ponent massive field within the context of quantized Dirac 
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fields? In a word, no. Massive fields necessarily have four 
components. But it is possible to construct a field in which 
two components (right-handed particles and left-handed an
tiparticles, say) are suppressed and vanish in the high energy 
limit. 

The charge conjugation transformation defined in the 
previous subsection, Eq. (5.47), does not permit self-conju
gate fields because 

(t/JC)C = YS(Y5 t/J*)* = - t/J . 

Nevertheless, the "chirality" projection operators 

n ± ==H 1 ± ( - iY5)] , 

(5.64) 

(5.65) 

identical to the spin projection operators (5.38) for massless 
fields, can be used to project any Dirac field t/J onto two 
subspaces: 

(5.66) 

(The reader should note that the notation R, L, rather than 
+, -, is frequently used; this is unfortunate because heli

city is not the same thing as chirality except in the zero-mass 
limit.) 

Let us begin with the massive field: 

f (m)1!2 t/J(x) = (217")-3/2 d 3p -; 

(5.3) 

where, to use a more correct notation, r = R, L, not ±, 
provided the spin vector S satisfies (5.37). If in (5.48) the 
phases are defined to be 

Ys UR=VL' 

we find 

(5.67a) 

(5.67b) 

(UR,LJ<=yS(UR.L)* = VR,L' (5.68a) 

(VR,LJ<=Y5(VR,L)* = - UR,L' (5.68b) 

These equations yield a number of results such as 

fLv, = fLu _" (5.69) 

so that 

(5.70) 

and 

(t/J-J<==n+ tf = (217")-3/2 f d3p (:),/2 
X (e + iP'Xa~ + r ip,xb _ ,)( - n+)u _" (5.71) 

fields that curiously resemble the massless field (5.44), so 
that a field X defined by 

X =H)lf2[ t/J- + (t/J-rJ, (5.72) 

with an assumed Lagrangian 

.!t' = - ilia - mIx, (5.73) 

leads to a field 4-momentum in the high energy limit 

P = f d 3p p(a*- a_ + b ~ b+), (5.74) 
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where R, L ~ +, - . Thus X represents a massive field, a 
Majorana field, but one with right-handed particles and left
handed antiparticles suppressed, and one that is identical, in 
the high energy limit, to the massless field tP in (5.44). 

6. DISCUSSION 

The Dirac equation can now be regarded as one that is 
constructed of objects of geometric significance that can be 
considered to be independent of specific frames of reference, 
a requirement that must be met before it can be said to be a 
manifestly covariant equation. The main conceptual change 
required for this is in regarding the (r Il) as the basis 4-vectors 
ofa reference frame, with ro the reference frame's 4-velocity, 
not as a set of four fixed matrices devoid of physical mean
ing. 

A further requirement was the construction of the vec
tor spaces (..9' and Y) ofspinors on which act the (r

ll
) and 

other multivectors of the Dirac algebra §J. In symbolic form 
the structure is 

§J x..9' =..9', 

Yx§J=Y, 
with the spinors and multi vectors connected via 

Yx..9' = 'If 
and 

(6.1a) 

(6.1b) 

(6.2a) 

(6.2b) 

where 'If here reresents the complex field, relations that are 
explicitly expressed in the important relations (4.1) and (4.2), 
respectively, which show that the spinor component trans
formations (3.16) exist and can be calculated. This is the nec
essary prerequisite to making the claim that Dirac spinors 
have the required Lorentz transformation properties and 
that no matrix representation of the Dirac algebra is needed. 

I hope to have shown that this formalism is an aid to the 
physical interpretation of the solutions of the Dirac equa
tion, particularly in the case of spin projections and probabi
lities such as those considered in Sec. 5A, where an old prob
lem in nonrelativistic quantum mechanics acquires new 
subtleties in its relativistic formulation, subtleties that are 
best considered using manifestly covariant concepts. 

There are two results of this paper that could be of use 
to those doing calculations in weak interaction physics and 
its incorporation in unified theories. The charge conjugation 
transformation defined in (5.47), as well as being representa
tion and matrix independent, is easier to use than the usual 
C-transformation, especially in conjunction with the chira
lity operators ~ ± -Ul ± ( - i)r5] (which are the same as 
the helicity projection operators for massless fields). This is a 
consequence of taking the basis vectors (r Il) to be real, some
thing that cannot be done with matrices. Secondly, the basis 
spinors of Sec. 5C for massless particles are particularly sim
ple to work with, whether for massless particles or massive 
particles in the extreme relativistic limit, because there is 
only one two-component basis spinor that needs to be con
sidered, and it obeys the simple rules (5.46a)-(5.46c). 

Perhaps the most useful application of the present re
sults is to the practical calculation of amplitudes, or 
"traces," where the results of Sec. 4 can be used to consider
ably simplify the frequent and lengthy calculations required 
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in the evaluation of cross sections in which Dirac particles 
are participating. This alone may be considered justification 
for acquiring a facility in the techniques of the geometric 
algebra. 
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Classical integrability and quantum integrability are compared for two degrees of freedom 
Hamiltonian systems. We use c-number representatives for quantum operators and the Moyal 
bracket for the commutator. Three different cases are found: (i) the c-number representative of the 
quantum mechanical second invariant is identical to the classical second invariant, (ii) 0 (If) 
corrections are needed in the classical second invariant to obtain the quantum invariant, and (iii) 
also the potential must be deformed by an 0 (If) term. Several examples from the Henon-Heiles 
and Holt families of integrable potentials are included. 

PACS numbers: 03.65.Fd, 03.20. + i, 02.30. + g 

J. INTRODUCTION 

In this paper we compare classical integrability (CI) and 
quantum integrability (QI). Such a comparison is perhaps 
most meaningful at the algebraic level, where classical me
chanics and quantum mechanics are closest to each other. 

A classical Hamiltonian system of n degrees of freedom 
is defined to be classically integrable if there are n - 1 inde
pendent, well-defined, global functions, whose Poisson 
brackets with each other and with the Hamiltonian vanish. 
We carry this definition to quantum mechanics: A quantum 
mechanical Hamiltonian of n degrees of freedom is defined 
to be quantum integrable if there are n - 1 independent, 
well-defined, global operators, which commute with each 
other and the Hamiltonian. 

The comparison of classical and quantum integrability 
is made easier in many respects if we also represent the quan
tum operators by c-number functions. Such a correspon
dence can be well defined, it is discussed in Sec. II. It is clear 
that since classical and quantum mechanics are not algebrai
cally isomorphic, differences must be present somewhere if 
we use c-number functions in both. Indeed, the commutator 
will become the Moyal bracket, which agrees with the Pois
son bracket only when fz _ O. 

Using these tools we will compare CI and QI for sys
tems of 2 degrees offreedom. In Sec. III, we discuss situa
tions where the same Hamiltonian is both CI and QI. How
ever, the classical second invariant may not qualify as the 
c-number representative of the quantum operator. If the 
classical invariant is at most second order in p it will also 
work for QI. For invariants of order p3 and p4 we derive the 
extra quantum conditions and compute the quantum correc
tions to the second invariant for several examples. We also 
discuss the possibility that the quantum corrections can be 
eliminated by adding aH 2 to 14 or by going to another order
ing rule. 

In Sec. IV, a more complex situation is discussed. We 
find that in some cases it is necessary to deform the classical 
potential with an 0 (If) term to be able to construct a quan
tum invariant. For the family of Holt potentials 
CX4/3 + y2x- 2/3 the deformation is - izfz2X-2 and for the 
Fokas-Lagerstrom potential (xy)-2/3 it is 
-1lIf(x-2 + y-2). It is interesting to note that the numeri

cal factors are always the same and associated with the frac
tional power - i, also they cannot be scaled away. 

II. C-NUMBER REPRESENTATION OF QUANTUM 
OPERATORS 

In this paper we compare classical and quantum me
chanical integrability and for that purpose it will be useful to 
also represent quantum mechanical operators by c-number 
functions. Of course, since classical mechanics is not quan
tum mechanics even at the algebraic level, there will be im
portant differences, but c-number representation will be nev
ertheless useful in practical computations, especially when 
computer algebra is used. 

The relationship between operators and c-number func
tions has been studied since the early days of quantum me
chanics. Attempts were then made to construct quantum 
mechanics out of classical mechanics: different correspon
dence rules would give different operators from the same 
function of classical mechanics. We take another approach, 
for us the operator is fixed and only for convenience do we 
want a c-number representation for it. Different correspon
dence rules will then give different c-number representa
tions. 

Let us assume that we have n canonical coordinates and 
moments. In classical mechanics we have 

{XOPj)PB =Dij, (2.1) 

where 

{A, D )PB = i (aA aD _ aA aD), (2.2) 
i ~ 1 ax; ap; ap; ax; 

and in quantum mechanics 

(2.3) 

[A,B] = AD - DA, (2.4) 

(2.5) 

Many correspondence rules have been discussed in the 
literature. I

-
3 (For an overview see Ref. 2.) The correspon

dence rules are usually characterized by a function of 2n 
variables Y(x,y) and given by the (formal) integral2

•3 

~(jJ,q) = f d np d nq d nx d ny(21rll) - 2n Y(x,y)Ay (p,q) 
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xexp [ ~ (x· (P - p) + y. (q - q))]. (2.6) 

The subscript Y is a reminder that for us the operator is 
fixed and in different ordering rules it will possibly have dif
ferent c-number representations. For all practical purposes 
it is enough to assume 

Y(x,y) = F( ~ X· y). (2.7) 

where 

F(O) = 1. 

In the following we will mostly use only two ordering 
rules: 

1) the Weyl rule, which is given by 

Y w(x,y) = 1, (2.8) 

and 2) the standard rule 

Ys(x,y) = exp( - ;Ii X· y). (2.9) 

The Weyl rule will be convenient in computing the 
commutator, while the standard rule is easiest when we want 
to construct the c-number representation for a given opera
tor. This construction goes as follows: For any given opera
tor A let us commute in each monomial the a I aXi operators 
to the right and x;s to the left (= the standard ordering). 
The representative As(P,x) can now be obtained from this 
ordered form of the operator by the substitution 

Xi -i"X,., 

a i 
---Pi 
aX i Ii 

(2.10) 

The Weyl representative can finally be obtained from the 
standard one by 

(
iii a2

) Aw(P,x) = exp - L -- As(P,x). 
2 i aXiapi 

(2.11) 

In general the transformation from one ordering rule to an
other goes by 

As" (p,q) = f dnx d ny d nk d"1 (21rll) - 2n[y1(x,y)] - 1 

i 
XY2(X,y)A.7,(k,d)exp~[x. (p - k) + y. (q -I)]. 

As an example consider the operator 

:;;; = xa ~ay + yaxa; + Baxay' 

This is in the standard ordering, therefore, 

As = (illi)3 [xp~Py + YPxP; + B (lili)pxpy], 

and from (2.11) 

(2.12) 

(2.13) 

(2.14) 

Aw = (illi)3 [xp~Py + YPxP; + (lili)(B - 2)Pxpy ]· 
(2.15) 

Once the correspondence (2.6) is given (from now on we 
assume the Weyl rule F = 1) the relevant algebraic question is 
the following: If the operators:;;;, f)j, and ~ are related 
according to [:;;;, f)j] = i Ii~ , how are the corresponding c
number representations A , B, and C related? The answer was 
given in 1947 by Moyal4

: 
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[ 
2 . { Ii (a a a a)} 
~sm '2 aqA' aPE - apA . aqB 

x A (PA,qA)B(PB,qB)]PA=PB=P = C(p,q). (2.16) 
qA = qB = q 

[For a straightforward derivation of (2.16) see also Sec. V.A 
of Ref. 5.] It is important to keep in mind that the derivatives 
in (2.16) must be computed before the indicated substitutions 
(cf. Ref. 6 footnote 1). 

First thing to note of (2.16) is that as Ii - 0 we recover 
the Poisson bracket. Since in the present paper we will only 
be concerned about integrability, we will have C = 0 and 
A = H, B = I (say). If the second invariant is at most second 
order in p, like H is, then the Moyal bracket (2.16) reduces to 
the Poisson bracket. This means that the classical and quan
tum invariants are identical in this representation, and the 
results can be applied to both cases. For example the exten
sive quantum mechanical results of Makarov et al. 7 can im
mediately be converted to classical mechanics. 

In quantum mechanics we will of course often get addi
tional, purely quantal effects. One important property of the 
Moyal bracket (2.16) is that it is odd under P _ - P like the 
Poisson bracket. (In many other ordering rules the bracket 
would not have this property.) Since our Hamiltonian al
ways is even inp we see that also the Weyl representation of 
the quantum mechanical second invariant must have a defin
itive parity under P _ - p. This will be very useful in the 
search for invariants, and motivates our use of the Weyl rule 
in obtaining the c-number representatives. 

To end this introduction to c-number representations of 
operators we will discuss a peculiarity all such rules have. 
The Poisson bracket has the property J!(H k g(H) I PB = 0 
and for operators we similarly have [f(H), g(H)] = 0 (at least 
ifJandg are polynomials with scalar coefficients). However, 
there is no ordering of type 12.6) that would give required 
correspondenceJ(H) +-+ J(H ).2 For classical invariants we 
have freely added powers of H to make the invariant simpler, 
but for quantum invariants one must be more careful. As can 
be inferred from (2.16), any such extra terms must be accom
panied with 0 (1i2)-contributions to preserve commutativity 
with respect to the Moyal bracket. This is the price we have 
to pay for using c-number representation of operators. 

III. CORRECTIONS TO THE SECOND INVARIANT 

In this section we will discuss classically integrable 
models which are also quantum integrable. We assume the 
Hamiltonian to be of the form 

H = Jul~ + YJ; + V(x,y), (3.1) 

so there are no ordering ambiquities in H. If the second in
variant is also second order in p, then the corresponding 
quantum operator can be obtained from it using Weyl rule 
on the classical invariant. We will now take a closer look on 
the possible modifications necessary if the second invariant 
is of order p3 or p4. 

A. I is of order p3 

Let us assume 
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where /; and gj are functions of x and y. Since the Poisson 
bracket of Hand 13 vanishes, the following set of equations is 
satisfied,8,9 at order p4 

aJo=o 

aJo+ aJI=o 

aJI+ aJ2=0 

aJz+ aJ; = 0 

aJ3=0, 

at order p2 

a"go = 3fciJx V + flay v 
aygo + a"gl = 2fla" v + 2f2ay v 

aygl = f2ax v + 3hay v, 
and finally at order pO 

gciJx V + glay V = 0, 

(3.3) 

(3.4) 

(3,5) 

For quantum integrability we must require that the 
Moyal bracket of Hand 13 vanishes. Now since p -+- - p 
parity is conserved by the Moyal bracket we know that the c
number representative of 1 in Weyl correspondence rule will 
also have the general form (3.2) without order p2 or po terms. 
When 1 is of order p3 (or p4), only the second term in the 
expansion of(2.16) might contribute. Due to the form of the 
Hamiltonian (3.1) a;, a;, ax , and apa; all annihilate it and 
therefore only the contribution 

- ! ;, (~y (+ a~ a~J3V(qff)1Vl,qI)1 /l=;/ 
l l q =q =q 

(3.6) 

might be nonzero. It is of order po, thus for the quantum case 
we find that the Moyal bracket vanishes provided that equa
tions (3.3) and (3.4) hold, and if instead of(3.5) also the equa
tion 

gciJ" v + glay V - fi [fciJ! V 
4 

+ /,.a;ay V + haxa; V + ha; V] = 0 

is satisfied. 

(3.5Q) 

The result can also be stated as follows: Assume that the 
Hamiltonian (3.1) is classically integrable and has the second 
invariant of type (3.2). If 

fciJ! V + fla;ay V + ha"a; V + f3a; V = 0, (3.7) 

then the corresponding quantum Hamiltonian is also inte-
A 

grable and has a second invariant operator 13, whose e-num-
ber representative in the Weyl rule is identical to the classical 
invariant. 

[The question of quantum integrability at order p3 has 
also been studied in Ref. 10. However, the corresponding 
theorem 2.2 in Ref. 10 appears to be wron~: In (2.20) of Ref. 
10 there sho~ld be BI2 = dll2x + d221y + b12, and further
more aj and bij should all be zero. With these corrections 
(2.21) of Ref. 10 is the standard ordering version of our (3.7).] 

Example 3. J: The Toda-type potential8 

V = eV3x + y + e - v1x + Y + e - 2y (3.8) 

has the following second invariant: 
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13 = p! - 3pxp; + 3(eV3x+y + e- V3x +y - 2e- 2y)p" 

_ 3vJ(eV3x+y _ e- V3x +y)py. (3.9) 

It is easy to see that (3,7) holds and quantum integrability 
through Weyl rule is obtained. However, we get an even 
stronger result. Writing the invariant in the form 

13 = p! - 3pxp; + 3eV3x +y(px - vJPy) 

+ 3e- V3x +y(p" + vJPy) - 6e- 2ypx (3.9') 

we see that in each monomial the factors commute as opera
tors. Thus there is no ordering ambiquity and in every order
ing rule the same representative is obtained. 

Example 3.2: Take V = !X2 + tsy2, then the following 
is a classical (third) invariant lO 

2 y3 xy2 
A3 = (xpy - yPx)Py + --:riPx - 3 Py . (3.10) 

Now (3.7) vanishes trivially since the potential is only second 
order inx andy, thus (3.10) is also the Weyl representative of 
the quantum operator. In other ordering rules the c-number 
representative would be different. Let us finally construct 
the actual quantum operator. Using the inverse of (2.11) we 
get the standard ordering version of A 3 , and then we substi
tute (2.5) to obtain (Ii = 1) 

( - i)A3 = xa; - yaxa; - a"ay 

- f., y3ax + jxy2ay + jxy. (3.IOQ) 
Note the extra terms - aXay and jxy. [The term - aXay 
was omitted in Ref. 10.] 

The equation (3.7) is sufficient, but not always neces
sary. For although (3.4) determines the classical part of gj 
there can also be a quantum part (a,b and e are constants) 

LiQgo = fi(ay + b), 

LiQgl = fi( - ax + c), 

then [due to (3.5Q)] (3.7) will be replaced by the necessary 
condition 

(ay + b lax V + ( - ax + e)ay V 

-! [fciJ! V + /,.a;ay V + f2a" a; V + f3a; V] = O. (3.7') 

Note however, that if/; 's are constant and V polynomial in x 
and y, then the generalization from (3.7) to (3.7') is useful 
only if the degrees of the various terms can be made to 
match. In particular, for homogeneous potentials (3.7') of
fers no help so that (3.7) is also necessary. 

Example 3.3: The Holt Hamiltonian8 

H = p; + p; + ~X4/3 + y 2x - 2/3 

is classically integrable, 

13 = p; + 3P;Py + '" 
but now Eq. (3.7) does not hold. Thus it is not quantum 
integrable6 at least at this order inp. We will return to this 
model in Sec. IV. 

The above examples illustrate three different types of 
relationships between classical and quantum integrability 
and the corresponding second invariants (e-number repre
sentatives in the quantum case): 1) CI ~ QI in any ordering 
rule, 2) CI ~QI in a specific rule, and 3) CI ~ QI at the same 
order. It is easy to imagine other types as well but we are not 
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aware of actual examples (at order p3) not falling in the cate
gories 1)-3) above. 

B. lis of order p4 

Let us next assume that the invariant is of the general 
form 

14 =frP! + flP!py + f2P;p; + f3Pxp~ + f"p; 
2 2 h + grPx + glPxPy + g2Py + . 

For CI the equations are now the following9
: 

At order p5 

aJo=o, 

aJI + aJ'o = 0, 

aJz + ay/I = 0, 

aJ3 + ay/z = 0, 

axh +aJ; =0, 

a;h =0, 

at order p3 

axgo = 4foJx V + flay v, 
axgl + aygo = 3flax v + 2fzay v, 
axgz + aygl = 2fzax v + 3f3ay v, 

aygz = f3ax v + 4f4ay v, 
and finally at order p 

axh = 2goJx V + glay V, 

ayh = glax V + 2gzay V. 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

For quantum integrability the Moyal bracket still con-
tributes only through the term (3.6). This extra term will now 
contribute at order p, therefore, in the quantum case (3.12) 
and (3.13) will be unchanged but (3.14) is replaced by 

axh = 2goJx V +glay V 

- fz2 [4foJ! V + 3fla;ay V + 2fzaxJ7, V + f3a~ V], 
4 

(3.14Q) 

ayh = glax V + 2gzay V 

- fz2 [fla! V + 2fza;ay V + 3f3axJ7, V + 4f4a~ V]. 
4 

The first result that can be obtained from (3.14Q) is the fol
lowing: Assume that the Hamiltonian (3.1) is classically inte
grable and has the second invariant of type (3.11). If 

4foJ! V + 3fla;ay V + 2fzaxa; V + f3a~ V = 0, 
(3.15) 

fla! V + 2fza;ay V + 3f3axJ7, V + 4ha~ V = 0, 

then the corresponding quantum Hamilto~ian is also inte
grable and has a second invariant operator 14 , whose c-num
ber representative in the Weyl rule is identical to the classical 
invariant. 

Example 3.4: The Henon-Heiles type potential 

V=¥y3+ XZy (3.16) 

is classically integrable, 

(3.17) 

1836 J. Math. Phys., Vol. 25, No.6, June 1984 

Since only fo#O (3.15) is clearly satisfied and (3.17) is the 
second invariant in the Weyl rule. 

Contrary to the previous p3 case in Sec. III.A we can 
now also have quantum integrability with fz2-corrections to 
the second invariant even in homogeneous cases. For even if 
Eqs. (3.15) do not hold it might be possible to solve for h from 
(3.14Q), if the fzZ-terms satisfy the integrability condition 

ay [4foJ! V + 3fla;ay V + 2fzaxa; V + fla~ V] 

= ax [fla! V + 2fza;ay V + 3f3axa; V + 4f4a~ V]. 
(3.18) 

Let us write 

hQuantum =hClassical +fzzI1Qh, (3.19) 

so that the quantum correction to 1 would be 11 Q1 = fz211 Q h. 
If (3.18) holds I1Qh can be solved from 

axl1Qh = - H 4foJ! V + 3fla;ay V + 2fzaxJ7, V + f3a~ V], 

(3.20) 

ayl1Qh = -! [fla! V + 2fza;ay V + 3f3axa; V + 4ha~ V]. 

Example 3.5: A generalization of (3.16) is12 [the most 
general oftype ¥y3 + yx2 + fIx) + g(y), where g(y) has no 
third-degree terms, and where translation iny is fixed by the 
absence of the term linear iny] 

V = ¥y3 + xy2 + (a/2)(x2 + 16yl) + f,1X- 2 + vx- o, (3.21) 

14 = p! + (2ax1 + 4xly + 4f,1x- 1 + 4vx- 6 )p; - ~X3pXpy 

- ~ax4y - jx4y 2 + Yty + 8vyx- 4 
_ ~o + a2x 4 

+ 4(av + f,12)x-4 + 8f,1vx- 8 + 4vx- 12
• (3.22) 

Now (3.15) does not hold anymore, but (3.18) does and the 
additional term can be computed from (3.20). We find 

I1Q14 = - fz2(2 . 3f,1x- 4 + 6 . 7vx- 8
). (3.23) 

In particular if f,1 = v = 0, we find that the c-number repre
sentative is identical to the classical invariant in the Weyl 
rule. 

If one finds extra fzz terms esthetically unpleasing there 
are two ways one can try to eliminate them from the c-num
ber representative of the quantum operator: (i) add aH 2 to 14 
(this trick often works only ifthe/;'s are constant), (ii) go to 
another ordering rule. 

In classical mechanics we know that if 14 is an invariant, 
so is 14 + aH 2. As discussed in Sec. II this does not hold for 
the c-number representatives of the quantum case due to the 
higher-order derivatives in the Moyal bracket. Instead, this 
change will necessitate the introduction of corrective 0 (fzz)_ 
terms. The addition aH 2 corresponds to the following 
change in the parameters/; and gi of 14: 

fo-fo + !a, 

fl-fl' 

f2-fz +!a, 

J; -f3' 
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gz ---+g2 + aVo 

In the classical case (3.14) clearly gives 

he ---+ he + a V Z
, (3.25) 

while in the quantum case we also get a change in the correc
tion termAQh of(3.19) 

AQh ---+ AQh - (a/4) [if;, V + ~ V]. (3.26) 

Let us next find the effects of changing the ordering 
rule. It should be reJParked again that this does not change 
the actual operator 14 , only its c-number representative 
might change. As discussed before in Sec. II, the ordering 
rule is defined by a function F((i//j)x . y). We must always 
have F(O) = 1, and now to preserve the p ---+ - p parity we 
must also require that all odd derivatives of Fvanish at O. Let 
us denote F" (0) = <P and discuss the effects of <P i= O. Using 
(2.12) we get 

A<t>(p,q) = f dnxdnydnkdn/(21Tfz)~2n 
X(I- ~( ~x,yr<p+ ... ) 

i 
XAw(k,l)exp -,; [x· (p - k) + y. (q -I)] 

= Aw(p,q) + +1j2<P (~aqiapJAw(p,q) + .... 
(3.27) 

For invariants of 0 (p4) the higher order terms in (3.27) do not 
contribute. Applying (3.27) to 14 we see that the extra opera
tor gives a nonzero contribution only when it operates on the 
p2 part of 14, This means that only AQh changes; we find 

AQh ---+ AQh + <P (a;go + axaygl + a~g2)' (3.28) 
Thus if we want to makeAQh vanish, we have at our 

disposal two parameters a and <P and the corresponding 
changes (3.26) and (3.28). 

Example 3.5 continued: Let us apply the full a, <P free
dom to (3.22). The general form of the invariant has 70 terms 
and its quantum part is 

AQI = /jl{ (6VX~4 + 42,ux~8)( - 1 -!a + 4<P) 

+ (a + 2y)( -lj a + 4<P ) I. (3.29) 

The quantum correction vanishes if a = ! and <P = £, but 
then the new invariant has 38 terms compared to the 16 in 
(3.22). So although it is possible to eliminate the /j2-depen
dence from the c-number representation, it is hardly worth 
the effort. 

Let us next take a look at the operator 14 corresponding 
to (3.22). We find 

1 = /j40! + 1j2( - 2ax - 4x2y - 4,uX~2 - 4vx~6)a; 
+ Ij2 ~X3aXay 
+ 1j2( - 4ax - 8xy + 8,uX~3 + 24vx~6)ax 
+ /j22xla y 

+ 1j2(84vx~8 - a - 12,ux~4 - 2y) 

_ ~ax4g _ ~x4yl + ~y + 8vx~4y 
- §X6 + a2x4 + 4(av + ,u2)x~4 + 8,uvx- 8 + 4vx- 12

• 

(3.30) 

This is in the standard ordering, and the terms linear in ax 
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and ay are quantum effects as are the nonderivative /j2_ 
terms. For general a the corresponding expression has 74 
terms. Using this remaining freedom one could try to elimi
nate, e.g., the linear terms by a proper choice of a. For ax we 
needa = - 4"tmtforay noawilldo(evenif,u = v = a = 0). 
For a = - 4,1 would have 6 more terms compared to (3.30). 
So there is not much help for ordering rules, and in choosing 
the amount of a it is best to try to get as short a formula as 
possible. 

Example 3.6: The potential V = 8y4 + 6x2y2 + X4 is in
tegrable, II and its second invariant is of type 14 = p;, + .... 
We have searched for all potentials of type 

V = 6x2yl + FI(x) + F2lY), 
whose second invariant is of the same type. We found the 
following two integrable generalizations: 

VI = X4 + 6x2y2 + 8y4 + K(X2 + 4y2) 

+ ,uX~2 + vx- 6 + A.y~2, (3.31) 

which was found (except for the A. term) by Grammaticos et 
al. 12 Its second invariant is 

I! = p;, + 4p; (X4 + 6x2y2 + KX2 + ,ux-2 + vx- 6
) 

_ 16x3ypxpy + 4X4p~ + 8A.X4y-2 + 4,u2X-4 

+ 8,uVX~8 + 8,ux2 + 16,uy2 + 4VX- 12 

+ 8VKX- 4 + 8vx- 2 + 48vx- 4y2 + 4~X4 + 8KX6 

+ 16Kx4y2 + 4x8 + 16x6yZ + 16x4y4 
_/j2(6,ux~4 + 42vx~8 + 12xl ). (3.32) 

The other case is 

V2 = X4 + 6xly2 + 8y4 + K(X2 + 4y2) + ,ux-2 + €y, 
(3.33) 

where the ,u-term generalizes the result of Ref. 13. Now the 
second invariant is 

n = p; + 4p;(X4 + 6x2y2 + KX2 + ,uX~2 + €y) 

- (16x3y + €4x)pxpy + 4X4p~ 
+ 4,u2X~4 + 8,u€X~2y + 8,ux2 + 16,uyZ + 4~X2 
- 8K€X2y + 8KX6 + 16Kx4y 2 _ 2cx2 _ 8x4y€ 

- 16€x2y3 + 4x8 + 16x6y2 + 16x4y2 

-/j2(6,ux-4 + 12x2). (3.34) 

As in Sec. III.A we can have Ij2 contributions from the 
g/s as well. From (3.13) we get 

AQgo = /j2(ay2 + by + c), 

AQql = 1j2( - 2axy - bx + dy + e), 

AQg2 = lj2(ax2 - dx), 

and then (3.18) will be replaced by 

ay {2(ay2 + by + c)ax V + ( - 2ax - by + dy + e)ay V 

- H 4foJ! V + 3f(a;ay V + 2fzax~ V + J;a; V] J 

= ax {( - 2ax - by + dy + e)ax V 

+ 2(ax2 - dx)ay V - Hfta! v + 2fza;ay V 

+ 3f3axif; V + 4f4a; V] ). 
(3.18') 

This is the necessary condition. Again the degrees do not 
match if Vis homogeneous and the/;'s are constant. 

Example 3. 7: The Holt-type potential 
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V =~X4f3 + y2x -Zf3 

is also classically integrablel2
,14 

14 =P; + 2p;p; + ... 
but as in Example 3.3 this potential is not quantum integra
ble. 

For those classically integrable potentials that have an 
invariant four-order in p we have in the examples shown 
three different types of behavior: 1) CI => QI in the Weyl rule 
(Example 3,5), 2) CI => QI with additional 0 (/iZ) terms in the 
invariant (Example 3,6, these corrections may vanish when 
one adds a suitable amount of H 2 and goes to a specific order
ing rule), and 3) CI => QI (Example 3.7). We also found that 
those extra terms in the potential that are allowed by classi
cal integrability are also possible for the quantum case. 

So far we have only considered particular examples of 
integrable potentials. One can also consider the problem of 
finding all integrable potentials having a second invariant of 
given order inp. For classical systems, Holt has derived from 
(3.3)-(3.5) a pair ofPDE's for the potential [Ref. 8, Eqs. (170) 
and (171 I]. For quantum integrability at the same order p3 
one should just add (3.7') to the system of equations that are 
to be solved. If the potential is homogeneous, then (3.7) is 
solvable and then also the Holt equations might be solved. 
Similar results apply to higher-order invariants. 

IV. DEFORMATIONS OF THE POTENTIAL 

Examples of classically integrable potentials which do 
not satisfy the extra quantum integrability conditions were 
provided by the Holt Hamiltonian in Examples 3.3 and 3.7. 
In this section we will discuss the possibility that a classically 
integrable potential can be made quantum integrable when 
the potential is deformed by a term of 0 (/i l

). 

Let us write 

H =~; +~; + V(x,y) + /izLl (x,y). (4.1) 

We will now try to construct the second invariant order-by
order in fl. If the classical invarian t is of order p3 , it turns out 
to be sufficient to write 

1 f = 1 f + /iz(PxA (x,y) + pyB (x,y)). (4.2) 

Now at order p4 we get the old equation (3.3), at order p2ff 
(3.4) and at pZ/i2 we get (3.4) for the extra terms, i.e., 

axA = 3frPx Ll + flayLl, 

ayA + axB = 2f1ax Ll + 2flayLl, 

ayB =flaxLl + 3j,ayLl. 

(4.3) 

Here/; 's are determined from classical integrability, and are 
not free. Finally at order pO, we have (3.5) and the following 
new equations: at 0 (/i2 ) 

Aax V + Bay V + goaxLl + glayLl 

- HfoJ~ V + fla;ay V + flax a; V + j,a; V] = 0, (4.4) 

and at OW) 

AaxLl + BayLl - HfoJ~Ll + f1a;ayLl 

+ flaxa;Ll + f3a;Ll ] = o. (4.5) 

Equations (4.3) and (4.5) together just mean that the 
additional potential Ll should itself be quantum integrable 

1838 J. Math. Phys., Vol. 25, No.6, June 1984 

for the given/; 'So Finally (4.4) is the critical equation that 
connects Ll and V. 

Let us assume that the potential is homogeneous, i.e., 
V (AX, AY) = A a V (x,y), and denote this scaling dimension by 
[V] = a. Then we know 13 that/;'s andg;'s have fixed dimen
sion; if [/;] = no then [gi] = nc + a. Assume further that 
also the extra term Ll is homogeneous, [Ll ] = fl, then 
[A] = [B] = nc + fl from (4.3). Now(3.5) introduces no con
straints to the dimension but (4.4) and (4.5) do, we find that 
both are satisfied if fl = - 2. Thus at least for homogeneous 
potentials it is reasonable to write 

Ll (x,y) = x- 2W(xly). (4.6) 

Example 4.1: The Holt Hamiltonian8 

H =~; +~; + ax4f3 + y lx- 2f3 + ox-2f3 (4.7) 

is classically integrable, 

13 = p; + ~yP; + ( - }x4f3 + 3x- 2fY 
+ 30x- 2f3 )py + 9x1f3ypx, (4.8) 

but not quantum integrable. 6 The square bracket in (4.4) 
gives rise to a term of type yx- S13 , and a moments reflection 
on (4.3) and (4.4) then suggests that it is reasonable to try 
Ll = const . x- 2

• Then for A = 0, B o:::Ll (4.5) is trivially satis
fied, and (4.3), (4.4) determine the constants. We find l4 

LlQH /izLl (x,y) = - i2 ~X-2, (4.9) 

"1- 5 ~2 -2 L.lQ - -2471X py • (4.10) 

The above potential (4.7) is also the most general of type 
y2x - 2f3 + Fl(X) + Fz(y) having the leading part in 13 as given 
in (4.8). The classically allowed extra terms have no effect on 
quantum integrability. 

In Example (4.1) above we have witnessed a new kind of 
relationship between classical and quantum integrability: It 
was necessary to deform the potential with an 0 (/i2 ) term. 
This feature seems to be generic to the Holt-type Hamilto
nians, and possibly others with rational powers in the poten
tial. 

Above we carried out the analysis when the second in
variant was of order p3. The computations can be generalized 
straightforwardly to situations where the Hamiltonian has a 
second invariant of order p4. It suffices to say that again the 
deformation (4.6) is suggested. 

Example 4.2: The Holt-type potential of Example 3.7 is 
not quantum integrable without deformations, but it turns 
out that precisely the same deformation (4.9) works. 14 The 
potential can be further generalized to 

V = }x4f3 + yZx- Zf3 + ox- Zf3 + J.lXZf3 + AY-Z 

+ a(9x2 + 4y2) - izffx - 2 (4.11) 

(classically this was obtained in Ref. 12 except for the a 
term). The second invariant is 

14 = p; + 2p;p; + p;(16ayZ + 4Ay-2) + 24x1f3yPXpy 
+ 4p;(x-Zf3y2 _ iz fz2x- 2 + OX- 2f3 

+ J.lX2f3 + a(9x2 + 4yZ) + AY-Z) 

+ 16J.lYz + 32oax- 2I3yZ + 8X- Zf3y- zVA 

+ 8AX-zf3 + 32J.laxZf3yZ + 8J.lAXZf3y-Z + 72x2l3y 2 

+ 72aAXzy-z + 4A Zy-4 + 32ax-Zf3y2(9x2 + y2) 
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+ 32a2y2(9x2 + 2y2) _1i2(2x-2/3 + ~ax-2y2 
+ ¥l-X- 2y-2 _ My-4). (4.12) 

So far in this paper we have not discussed systems 
where the second invariant is of order higher than 4 in p. In 
such cases it is possible that the third term in the expansion 
of the Moyal bracket (2.16) also contributes. However, some
times the first two terms are sufficient, as in the case below. 

Example 4.3: The Holt family of potentials has also the 
following member l4

.
12 

V = 12x4/3 + y2x-2/3, (4.13) 

and then the second invariant can be chosen to start 

16 = p~ + 3p;p; + 0 (P4). (4.14) 

The form (4.14) shows that in the third term of the Moyal 
bracket only the derivativesas

J aSH' ~J a J ~H a H,anda3
J 

Py y Py Px Y X Py 

~J a3
R ~H could be nonzero, but they all annihilate the po-

Px y x 

tential. As in the previous examples we have also searched 
for potentials of type V = y2x- 2/3 + FI(x) + F2(y)' This time 
we assume [in addition to (4.14)] that F2 is a polynomial of 
degree less than 5 iny so that it is annihilated by the deriva
tives above. The result is 

V = 12x4/3 + y2x- 2/3 + OX- 2/3 - i2 ~X-2 (4.15) 

and 

16 = p~ + 3p;p; + 72x1/3ypxp; 
+ 6p;(OX- 2/3 + 3X4 / 3 + X- 2/3y2 _ ;"1i2x-2) 

+ 18p;(32y2x2/3 - X-2/3~) + 648y4. (4.16) 

This potential also has the generalization 

V = 12x4/3 + y2x-2/3 + OX- 2/3 + lLy-2 _ ;,. ~X-2, 

(4.15') 

but now the next term in the Moyal bracket (2.16) contrib
utes. The invariant for (4.15') has 34 terms. 

In the previous examples the deformation const . x- 2 

was sufficient. A slightly more complicated deformation is 
needed in the example below. 

Example 4.4: The Hamiltonian 

H = ~; + ~; + (x2 _ y2)-2/3 

was found classically integrable by Fokas and Lagerstrom, 15 

1 = (p; -p;)(xPy - ypx) - 4(ypx +Xpy)(X2 _ y2).-2/3. 

It turns out that it is simplest to study this system in the 
rotated form 12 

H=JjJ; +JjJ; + (xy)-2/3, (4.17) 

1 = PXpy(xPy - ypx) + 2(xy)-2/3(PxX - pyy). (4.18) 

In this case the quantum deformations are l6 

.t1
Q

H = _;,. ~ (1/x2 + 1/y2), 

.t1 QI = - ft, 1i2(Pxx/y2 - pyY/X2). 

(4.19) 

(4.20) 

The corresponding quantum operator I is given by (Ii = 1) 

(-i)I=(xay -yax)axay +'H-~ +<fy) 

1839 

+ ( ft,xy-2 - 2y-2/3x 1l3)ax 

+ ( - ft, x- 2y + 2y l/3x -2/3)ay 

+ ;,. ( _ x-2 + y-2). 
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(4.18Q) 

(An incorrect operator was given in Ref. 10.) The potential 
cannot be further generalized in the form 
(xy)-2/3 + FI(x) + F2(y) with the leading part given in (4.18). 

In the previous section we had two ways to change the 
~ dependence of the second invariant. Of course neither of 
these works if we try to eliminate the 1i2-deformations in the 
Hamiltonian. The common constants and the appearance of 
these deformations with rational powers in the potential sug
gest that canonical transformations (CT) might be helpful. 
Now the discussion of CT in quantum mechanics is very 
tricky. On one hand, integrability itself suggests that a CT to 
action-angle variables should be possible, on the other hand 
the construction of even simple CT's mixingpx and x turns 
out to be very involved. 17 To be sure CT's can be dismissed 
by just noting that they are unitary transformations,18 but 
the construction of the needed unitary transformation is an
other matter. In this paper we will, therefore, just consider 
point transformations, for which the situation is under con
trol. 

It is well known that a canonical point transformation 

x=F(X), 
(4.21) 

Px = Px/F'(X), 

can give raise to 0 (1i2
) terms to the potential.5,19 For example 

the Hamiltonian! p; will transform t05 

H' = !PiF'(X)-2 + ~ 1i2F"(X)2F'(X)-4. (4.22) 

Let us now apply this to the Hamiltonian (4.7) with 
(4.9). If we make the canonical transformation (4.21), where 
now F (x) = xa, y,Py unchanged) the ~-term in (4.22) will 
combine with the original x- 2 term in (4.9). We find the 
transformed Hamiltonian to be 

ii = a- 2!PiX 2(1- a) + !P~ + iX (4/3)a 
+ Y2X -(2/3)a + oX - (2/3)a 

+ ~X - 2a( ~((a - l)1a)2 -;"J. (4.23) 

Now it would be natural to choose a so that only integer 
powers appear in ii, e.g., a = 3, or 3/2. However, such a 
choice does not fully eliminate the extra term. 

The new Hamiltonian (4.23) is ordering dependent, so 
let us see how it looks in other ordering rules. Applying (3.27) 
to (4.23) gives the following 0 (~) part: 

1i2X - 2a( 2a-2(1 - a)(1 - 2a)cP + H!a - l)1a)2 -;"J. 
(4.24) 

For example if a = ~, the extra term vanishes when cP = ft' 
which is not a common ordering. 

The use of point transformations and ordering rules 
does eliminate the extra ~-term from the Hamiltonian (or 
rather from its c-number representative), but this can hardly 
be taken as an explanation of the observed phenomenon. We 
leave the question open, and here just underline the fact that 
the deformations known so far are all associated with ration
al powers in the potential and are all of the same type (includ
ing numerical factors) - ;"~X-2. 

V. DISCUSSION 

In this paper we have studied the connection between 
quantum integrability and classical integrability. For quan-
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tum operators we used c-number representatives in the Weyl 
rule. For the two degree offreedom systems that were stud
ied in this paper, we found the following types of relation
ships between the classical invariant and the c-number rep
resentative of the quantum operator: (i) they are identical in 
all ordering rules, (ii) 0 (If) corrections are needed for the 
quantum case, and (iii) also the potential needs an 0 W) de
formation. 

Many n-dimensional systems studied before20 fall into 
the category (i) above. These systems are associated with a 
Lax pair, L, M of classical matrices, where iL = [L, M]. The 
classical invariants are obtained as coefficients of the charac
teristic polynomial det(L - ).1). If now L has a proper form it 
turns out that the invariant depends on Pi and x j in such a 
way that there is not ordering ambiquity. For quantum inte
grability one then needs to show only that for these systems 
the extra contributions from the Moyal bracket also vanish. 
Our example 3.1 is of this type. 

In this paper we also found examples for types (ii) and 
(iii) (see also Refs. 13, 14, 16). For the Henon-Heiles and 
Holt type potentials we found the most general additive 
terms ofform FJ(x) + F2(y)' Some results are new even for 
the classical case. The classically allowed terms were also 
possible for quantum integrability. 

Finally we studied various methods that could be used 
to eliminate the 0 (1J2)-corrections or -deformations. It was 
found that there is no unique ordering rule which would be 
better or easier than the Weyl rule. 

The 0 (~)-deformations needed for the Holt and Fo
kas-Lagerstrom potentials were always of type - i,.1J2x- 2

• 

The common numerical factors and association with frac-
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tional powers in the potential are intriguing and suggest to a 
common, perhaps geometric, origin. 
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A rigorous mathematical theory of approximations is developed for the time-independent 
transition operators of N-body multichannel nonrelativistic quantum scattering theory. New 
basic dynamical equations are derived and shown to specify uniquely the approximate time
independent transition operators. These operator equations represent coupled integral equations 
with compact kernels, but it is not assumed that the equations that determine the exact transition 
amplitudes have compact kernels. Convergence of sequences of these approximate time
independent transition operators to the exact transition operator is established in appropriate 
limits. Stability of the basic dynamical equations is proved. Resolvent-type equations and their 
relation to the limiting absorption principle are investigated. The relation of this theory to the 
Petryshyn theory of A -proper operators and to the Feshbach unified theory of nuclear reactions is 
discussed. 

PACS numbers: 03.65.Nk, 24.10. - i 

I. INTRODUCTION 

In Paper I ofthis series! we established a two-Hilbert
space formulation of nonrelativistic quantum mechanical 
scattering theory. The prior form T(z) of the time-indepen
dent transition operator was shown to be, for 1m z:;;i:O, the 
unique solution of a linear equation of the Lippmann
Schwinger type [cf. Eq. (2.10) below]. The practical solution 
of this equation is the primary theoretical goal. 

As we pointed out at the time, there were two difficul
ties with our basic dynamical equation. 

(1) The inverse of a certain operator JJ * appears in the 
kernel, considerably complicating calculations. 

(2) Neither the kernel of the equation nor any of its 
iterates was compact. There was, consequently, no hope of 
applying Fredholm theory to obtain the solution of the equa
tion. 
The main purpose of this paper is to overcome these difficul
ties. 

We circumvent the first difficulty by introducing equa
tions (cf. Theorems 3.5 and 5.4) that do not contain the in
verse of JJ * in the kernel. 

We could have circumvented the second difficulty by 
deriving another equation for T (z) that does have a connect
ed kernel. This has, in fact, been done. 2

•
3 

In our opinion, however, the practicality of connected 
kernel formulations of N-particle scattering theory (cf. the 
review papers4

,5 and references cited therein) is not yet firmly 
established for systems of more than four or five particles. 
The number of coupled integral equations represented by the 
operator equation for T (z) increases very rapidly with parti
cle number. 6,7 Accompanying this is a prodigious increase in 
mathematical complexity that requires truly heroic efforts to 
establish even partial control over the mathematics of the 
kerne1.8

-
12 In addition, the connection between the kernel 

and measurable quantities becomes much less transparent as 

the number of particles increases. Physical intuition is thus 
no longer an obviously reliable guide for choosing the good 
finite-rank approximations to the kernels that are the basis of 
all practical calculations. 

In view of these comments we have elected, in this pa
per, to deal with the second difficulty of our equation by 
developing an alternative solution strategy that does not re
quire compact kernels. The idea is to shift the emphasis from 
approximating the kernel to approximating the transition 
operator itself. The feasibility of such an approach is sup
ported by proofs13,!4 that for N-particle systems with short
range interactions the prior form of the on-shell transition 
operator is compact if the initial state has only two fragments 
and the energy is restricted to a finite interval. A similar 
result for the off-shell transition operator T (z) can be inferred 
from Lemma 3.4 of Ref. 15. In this case T(z) itself admits, in 
principle, an accurate finite-rank approximation, even 
though the kernel of the dynamical equation may not. In this 
way the original equation can be well approximated by fin
ite-dimensional equations without the necessity that the ker
nel be connected. Another important feature of our method 
is that a sequence of approximate transition operators T In)(z) 
converges to the exact transition operator T(z). These con
vergence results are of two types. First, a sequence of asymp
totically complete approximate wave operators !1 In) ± con
verges strongly to the exact wave operators!1 ± and the 
corresponding sequence of approximate scattering operators 
S In) converges weakly to the exact scattering operator S. 
These results, which are proved in Ref. 16, can be interpreted 
as convergence of T (n)(z) to T (z) on the energy shell. Second, 
for 1m z:;;i:O, the sequence of operators T1n)(z) converges 
strongly to T(z) (cf. Theorems 4.1 and 4.7). This is conver
gence off the energy shell. 

These convergence results, which we believe to be the 
most general currently available for general N-particle sys-
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tems, do not establish a rate of convergence. There is no 
practical estimate of the accuracy of any given approxima
tion. As with any other method, therefore, construction (via 
the method described in Sec. III) of good approximate spaces 
fir 11" and approximate Hamiltonians H 11" is a matter of skill. 
Accuracy is to be judged by comparison of the results with 
data. 

The theory presented in this paper is therefore to be 
construed as providing a rigorous general framework within 
which to construct approximations. 

In Sec. II we recall our previous definition (cf. Assump
tion A) of an exact scattering systeml6 and exact transition 
operators. I

•
l7

.
18 

In Sec. III we review the approximation method which 
was introduced in Ref. 16. The key idea is that the space fir 
of asymptotic states of the exact theory is approximated by a 
subspace ~=nfir, where n is an orthogonal projection 
operator. In addition, the exact asymptotic Hamiltonian H 
is replaced by an approximate Hamiltonian H 11". The neces
sary abstract properties of nand H 11" are given in Assump
tion n. Our approximate time-independent theory is then 
considered. A new basic dynamical equation is proposed 
(Theorems 3.5 and 3.7), the solutions M11"(z) of which can be 
used to construct the approximate transition operators 
T11"(z). The kernel of the equation for M1T(Z) is compact for all 
z with 1m z#O (Theorem 3.12), and the operator (JJ *)-1 is 
not present in the equation. Finally, stability of our basic 
dynamical equation under certain perturbations is proved 
(Theorems 3.14 and 3.16). 

In Sec. IV sequences of approximations are considered. 
The defining properties of the sequences are given in As
sumption nln). The previously mentioned convergence of a 
sequence of approximate transition operators Tln)(z) to the 
exact transition operator T (z) is then established. Another 
stability result (Theorem 4.9) is then given which establishes 
the uniform stability of the solutions of a sequence of our 
approximate equations. 

In Sec. V resolvent-type equations are taken up, and a 
formula of the type encountered in the limiting absorption 
principle8.12.19-22 is established (Theorem 5.2). These equa
tions are not directly relevant to our main goal of laying a 
theoretical foundation for the approximation of the transi
tion operator T (z), and hence the scattering operator S. They 
are included here because they provide a theoretical starting 
point for certain analytical investigations of asymptotic 
completeness and spectral properties of the total Hamilton
ian. In particular, some results of this type have already been 
obtained by Trucan022 for certain approximation models. 
An exact analog of the equation for M1T(Z) and a differential 
equation form for the equations are also introduced. Some 
additional convergence results are also presented. 

In Sec. VI we present a discussion of the most important 
features of our approximation method. We also comment on 
the relation between our method and the unified nuclear re
action theory of Feshbach. 23-25 

There are two appendices. Appendix A shows how our 
approximation strategy is related to the Petryshyn the
ory26.27 of strong approximation solvability and A-proper 
operators. Appendix B gives an index of the major operators 
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and Hilbert spaces used in the paper. 

II. EXACT SCATTERING SYSTEM 

A. Abstract assumption A 
In the two-Hilbert-space formulation ofnonrelativistic 

N-body quantum scattering theory (cf. Refs. 1,2, 12, 16-18, 
28-31) an exact scattering system is characterized by the sex
tuple 

@) 1firN,HN,fir,H,J,Ia). (2.1) 

Here H N is the total Hamiltonian (a self-adjoint operator) 
acting on the Hilbert space fir N' H is the asymptotic Hamil
tonian (a self-adjoint operator) acting on the Hilbert space 
fir. J is a bounded identification operator from fir to fir N' 
fir has a decomposition fir = ? 61 firb that reduces H, and 
fG is the orthogonal projection of fir onto? The time
dependent wave operators {} ±: fir-fir N are defined by 

{} ±={} ±(HN,H, Jfa)=s-lim eiHN'Jfae-iH" (2.2) 
t-_ ± 00 

and their adjoints are denoted by {} ± *. The scattering opera
tor S: fir -fir is 

(2.3) 

We refer to the system characterized by the sextuple @) as the 
exact scattering system. 

Our fundamental assumptions about the exact scatter
ing system @) are contained in the following Assumption A. 

Assumption A: The exact scattering system 
@) = 1 fir N,H N ,fir,H, J,I a) is said to satisfy Assumption A 
if the following five statements are true. 16 

(A 1) fir N is a separable Hilbert space, and H N : 
!iJ (H N) C fir N-fir N is a self-adjoint operator that is bound
ed from below. 

(A2) fir is a separable Hilbert space, and H: 
!iJ (H ) C fir -fir is a self-adjoint operator that is bounded 
from below. Its spectral family is denoted by E (A ). There is a 
decomposition fir = fira 61 firb that reduces H. fa is the or
thogonal projection of fir onto? The restriction H a of H 
to? has only absolutely continuous spectrum consisting of 
a half-line. 

(A3) J: fir-fir N is a bounded linear operator. J maps 
!iJ (H) into !iJ (H N)' and J *, the adjoint of J, maps !iJ (H N) 
into !iJ (H). The operator JJ *: fir N-fir N has a bounded 
inverse. 

(A4) The operators V: !iJ(V)Cfir-firN and V*: 
!iJ(V*)cfir N-fir, 

V=HNJ-JH and V*==J*HN-HJ*, (2.4) 

satisfy V <H and V * <H N' respectively, where K <L means 
that K is infinitesimally small with respect to £.16.31 

(AS) The wave operators {} ±: fir_fir N defined by Eq. 
(2.2) exist and are partially isometric, i.e., 

(2.5) 

B. Exact transition operators 

Resolvent operators defined on fir N and fir, respective
ly, are defined by 
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RN =RN(z)=(z-HN)-t and R =R(z)=(z-H)-t. 

(2.6) 

The time-independent transition operator T (z): g; (H )~J¥' is 
defined by 

T(z)=(z - H)J *RN(z) J(z - H) - (z - H)J *J 

(2.7) 

where zEp(H N) (the resolvent set of H N)' The relation 
between T(z) and the scattering operator S defined in Eq. 
(2.3) is given by the following theorem. 

Theorem 2.1: Let €i satisfy Assumptions (AI)-(A3) and 
(AS), and let 0e(x), x real, denote the function 

oe(x)=(€hr)(x2 + ~)-l . (2.8) 

Then, S - I a has on JY' the representation 

S - r = w-lim ( - 21Ti) { { dE (A )0.(,1 - fi) 
e---O+ JA Jil 

XlaT([A + fi + i€]l2)r dE(fi) , (2.9) 

where the integral is a repeated spectral integral that may be 
evaluated in either order of integration. 

Proof Since I a commutes with E (.) the result follows 
immediately from Theorem 4 of Ref. 17 and Theorem 3 of 
Ref. 18. The operator I aT(z)I a in Eq. (2.9) is to be identified 
with the prior transition operator T(-l of Ref. 18. 0 

Numerical calculations of scattering probabilities are 
often based on dynamical equations for the operator T(z). 
One such equation is given in the following theorem. 

Theorem 2.2: Let €i satisfy Assumptions (AI)-(A4). 
Then the operator T (z) is the unique solution defined on 
g; (H) of the equation 

T(z)=J*V+ V*(JJ*)-tJR(z)T(z) , (2.10) 

where zEp(H N )rp(H). 
Proof See Ref. 1, Theorems 4 and 6. 

Ill. APPROXIMATE SCATTERING SYSTEMS 

A. Assumption II 

o 

In this paper we develop a time-independent approxi
mation theory for nonrelativistic N-body quantum scatter
ing in which an approximation to the exact scattering system 
€i is characterized by a sextuple16 

€i(ll,HI=€i!JY'",H71",JY"',H1T, J 1T,llal . (3.1) 

JY'" is a Hilbert space defined by JY"'=llJY', where 

II = lla (f) llb: JY' = ~ (f) JY'b~JY'" = JY"'a (f) JY"'b (3.2) 

is an orthogonal projection operator that commutes with la. 
The symbol II a (ll b) will be used to denote the orthogonal 
projection of either JY', JY"', or ~ (JY'b) onto JY"'a (JY"'b). 
H 1T is an approximate asymptotic Hamiltonian (a self-adjoint 
operator) acting on JY'" that is constrained to be equal to H 
on JY"'a. J" is the bounded approximate identification opera
tor defined by 

J "==.Ill, (3.3) 
and its adjoint is denoted by J 1T*. JY'1T is the closure of the 
range of J1T, 
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JY'7T=@(J1T). (3.4) 

H" is the approximate total Hamiltonian defined by 

Hrr==-P"HNPrr , (3.5) 

where PIT is the orthogonal projection of J¥' N onto 7~". We 
call the system represented by €i(O,H") an approximate scat
tering system. 

Our fundamental assumptions about the approximate 
scattering systems €i(ll,H 71") are contained in the following 
Assumption n. 

Assumption ll: The approximate scattering system 
€i(ll,H ") is said to satisfy Assumption II if the following 
statements are true. 16 

(ll 0) The exact scattering system €i satisfies Assump
tions (Al)-(A4). 

(ll 1) The orthogonal projection II = oa (f)Ob: 
JY' = JY'a (f) JY'b ~JY'" maps g; (H) into g; (H )nJr"'". 

(02) The approximate asymptotic Hamiltonian H 1T is 
self-adjoint and has a domain that satisfies 
o g; (H) C g; (H 1 c g; (H )nJr"'". The operator II commutes 
with H" on g; (H 1. H 1T is reduced by the decomposition 
JY'" = JY"'a (f) JY"'b and thus may be written as 
H 71" = H 1Ta (f) H 1Tb. On g; (H 71"a) = g; (H a)nJY"'"a the operator 

H "a is given by H 1Ta = Ha, where H a is the restriction of H 
to the reducing subspace~. The operator H1Tb is self-ad
joint and bounded from below on JY"'b. 

(03) The operator J 1T J 1T* has a bounded inverse, de
noted by (J"J1T*)-I, on J¥'1T' 

(04) The operators U": g;(HI~J¥'N and U"*: 
g; (H N )~JY"', 

satisfy U"<.H" and U"*<.HN' respectively. 
Remark 3.1: (a) The operator (J"J1T*)-lp,,: 

(3.6) 

JY'" (f) JY';' ~JY'" is an extension of the inverse defined in 
Assumption (ll 3). It is the unique maximal generalized in
verse32 of J" J ""*. The requirement in (ll 3) that J Tr J "* has a 
bounded inverse on J¥'" is equivalent to the requirement 
that it has closed range. Alternatively, there must exist a 
constant C1T > 0 such that IIJ"J1T*¢/I>c7TIJ¢1I for all ~7T' 
A useful criterion that guarantees the existence and boun
dedness of this inverse was established in Theorem 3.4 and 
Remark 3.5 of Ref. 16. 

(b) Assumptions (02) and (04) are largely statements 
about 0 band H 7Tb. If, for example, JY"'b C g; (H) and is fin
ite dimensional, then Assumptions (02) and (ll 4) are satis
fied. 16 

Condition C: Condition C is said to be satisfied if there is 
a set waC g;(H)f"IJr densein~ such thatOaWaC Wa and 

( dt II Ve - iHlrp all < 00 (3.7) 
JIII>lo 

for some finite to>O and for all rp aEw a
• 

Condition TC: Condition TC is said to be satisfied if the 
operator VE (..1 )oa: JY' ~JY' N is trace class for all finite in
tervals ..1 C ( - 00,(0). 

The following theorem which was proved in Ref. 16 
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establishes conditions under which an approximate scatter
ing system 6(ll,H ") has the same abstract structure as the 
exact scattering system 6. 

Theorem 3.2: Let 6 satisfy Assumption A, and let 
6(ll,H ") satisfy Assumption ll. Suppose, in addition, that 
either Condition C or Condition TC is satisfied. Then 
6(ll,H 1T) also satisfies Assumption A. In particular, there 
exist approximate wave operators 

t_±= 

and an approximate scattering operator 

STC=flTC+*fl TC - , 

where fl1T + * denotes the adjoint of fl1T + . 

(3.8) 

(3.9) 

For later use we define the approximate potentials 

V 1T=P"U" = H"JTC -J"HTC 

and 

VTC*_UTC*PTC =JTC*HTC _HTCJTC* 

and the approximate resolvent operators 

(3.10) 

RTC(z)=(z-HTC)-1 and RTC(Z)_(z-HTC)-I. (3.11) 

B. Approximate transition operators 

If 6(ll,H TC) satisfies Assumption A, then the time-inde
pendent scattering theory for that approximate system has 
the following form (cf. Theorems 2.1 and 2.2). 

An approximate transition operator TTC(Z): 
!iJ (H TC)---+JY'" is defined by 

TTC(Z)_(Z -HTC)JTC*[R TC (z)J1T(Z-HTC) _JTC) 

= (z - H1T) JTC*RTC(z)VTC, (3.12) 

where zEp(H TC)' The scattering operator S TC is then related to 
TTC(Z) by the following theorem. 

Theorem 3.3: Suppose that 6(ll,H ") satisfies Assump
tions (Al)-(A3) and (AS). Then, STC - lla has on JY the re
presentation 

STC-lla=w-lim(-21Ti) f f dE(A)(\(A-Ji) 
• --.0+ J J,.. 
XllaTTC([A + Ji + i€]l2)lla dE (Ji)' (3.13) 

whereE (.), D.(·), and the spectral integrals are as in Theorem 
2.1. 

Proof The theorem is a transcription of Theorem 2.1 
into the notation of the system 6(ll,H TC). D 

Theorem 3.4: Let 6(ll,HTC) satisfy Assumptions (Al)
(A4). Then, for zEp(H,,)rp(HTC) the operator TTC(Z) is the 
unique solution defined on !iJ (H 1T) of the equation 

TTC(Z)=JTC*VTC+ VTC*(J"JTC*)-IJTCRTC(z)TTC(Z). (3.14) 

Proof The theorem is a transcription of Theorem 2.2 
into the notation of the system 6(ll,H ''). D 

We previously29 approached Eq. (3.14) by introducing a 
subsidiary equation for the operator 
K1T_V"*( J"J,,*)-IJ": 

KTCJ"*JTC = VTC*JTC. (3.1S) 

A similar two-step approach has also been advocated in Ref. 
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33. The solution to Eq. (3.1S) may possibly not be unique on 
JY"', but the desired solution K 1T is given by 
KTC = VTC*JTCyrrt, where yrrt is the Moore-Penrose opera
tor inverse of Y TC ==.J TC* J TC. The difficulty with this approach 
is, then, not a matter of principle but a matter of practicality 
(although a simple calculation has been made using this 
scheme34

). In a multichannel quantum mechanical calcula
tion, for example, the operator equation (3.1S) would be real
ized as a large number of coupled integral equations. To need 
to solve this large number of equations in addition to the 
large number of equations that realize Eq. (3.14) seems unde
sirable. We have, therefore, abandoned this approach for the 
present. 

In order to eliminate the operator (J "J 1T*) - I in our 
basic dynamical equation, we define the operator M TC(Z): 
!iJ (H 1T)-+JY'" by 

MTC(Z)_(Z - H1T)J1T*( JTCJ1T*)-IR TC (z)VTC, (3.16) 

wherezEp(HTC)' From Eqs. (3.12) and (3.16) follows 

T1T(Z) = Q TC(z)M 1T(Z) , (3.17) 

where 

Q TC(Z)=(Z _ H TC) J TC* J TCR "(z) . (3.18) 

The following theorems establish dynamical equations for 
the approximate M-operator M 1T(z) [cf. Ref. 30, Theorem 3 
and Eqs. (30) and (31)]. 

Theorem 3.5: Let 6(ll,HTC) satisfy Assumptions (Al)
(A4). Then, for zEp(H TC )rp(H TC), the operator M "(z) is a solu
tion defined on !iJ (H ") of each of the equations 

JTC*(z-HTC)JTCR TC(z)MTC(Z) =JTC*V1T, 

JTC*[ JTC _ VTCR TC(z)]MTC(Z) = J"*V TC , 

(3.19) 

(3.20) 

M"(z) = JTC*V TC + [JTC*VTCR TC(Z) _ (JTC*JTC - ll)]M1T(Z). 

(3.21) 
Proof Substitution of MTC(z) defined by Eq. (3.16) into 

the left side of Eq. (3.19) gives J"* VTC, proving that M TC(Z) 
satisfies Eq. (3.19). Equation (3.20) follows from Eq. (3.19) 
upon substitution of the identity H"JTC = V TC + JTCHTC into 
the left side of Eq. (3.19). Equation (3.21) follows from Eq . 
(3.20) and the identity llMTC(Z) = MTC(Z). D 

Remark 3.6: Equations (3.19)-(3.21) are all completely 
equivalent provided the range of any solution is required to 
lie in JY"'. Equation (3.21) automatically enforces this re
quirement and, hence, might be preferable as the basis of 
practical calculations. 

Theorem 3.7: Let 6(ll,HTC) satisfy Assumptions (Al)
(A4). If N TC(Z), zEp(H 1T )rp(H 1T), is a solution on !iJ (H 1T) of any 
ofEqs. (3.19)-(3.21), then TTC(Z) = Q1T(z)N1T(Z). 

Proof Suppose that N1T(Z) is a solution ofEq. (3.19) and 
consider L11T(z)-MTC(Z) - N 1T(z). Then, since M1T(Z) is also a 
solution ofEq. (3.19), 

J1T*(Z - H,,)J1TR 1T(z)L11T(Z) = o. (3.22) 

Multiplying Eq. (3.22) from the left by 
(z - H1T)J"*R1T(Z)( J1TJTC*)-IJTC yields QTC(z)L11T(Z) = O. The 
theorem now follows from Eq. (3.17). The proof if N TC(Z) is a 
solution ofEq. (3.20) or (3.21) is similar. D 

Remark 3.8: Efficient algorithms for constructing the 
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Moore-Penrose operator inverse are known. 32 By Theorem 
3.7, if L rrt(z) is the Moore-Penrose operator inverse of 
L l7(Z)==J l7*(Z - H 17)J 17* R l7(Z), then L rrt(z)J 17* V l7 is a solu
tion ofEqs. (3.19)-(3.21) and Tl7(Z) = Ql7(z)L rrt(Z)J1T*Vl7. 

Under certain circumstances the multiplication by 
Q l7(Z) of the solution of Eqs. (3.19)-(3.21) is unnecessary. 

Theorem 3.9: Let @) satisfy Assumption A and let 
@)(ll,H'1 satisfy Assumption JI. Suppose, in addition, that 
either Condition C or Condition TC is satisfied, and assume 
that J 17* J 17 - JI is compact. Then on dY"", 

Sl7 - JIQ = w-lim ( - 21Ti) ( ( dE (A) O£(A - p) 
e-o+ JA Jil 

(3.23) 

whereE (.),0£(.) and the spectral integrals are as in Theorem 
2.l. 

Proof Let W l7(E) denote the quantity to the right ofw
lim in Eq. (3.23). Then, by working backwards through the 
proofs of Theorem 4 of Ref. 17 and Theorem 3 of Ref. 18, we 
obtain 

Wl7(E) = E 1'" dt e-€lJIQeiHrr'Jl7*( Jl7Jl7*)-1 

X [e-2iHrrlJl7 _P'e-2iHrr']eiH"lJIQ. (3.24) 

From Theorem 3.12 of Ref. 16 and the existence of n 17 ± 

follows 

w-lim W l7(E) = [n + *(Hl7 ,Hl7,( Jl7Jl7*)-IJl7JIQ) 
£--0 

_ n -*(Hl7 ,Hl7,( Jl7Jl7*)-IJl7JIQ)]n 17- , 

= [n H *_n l7 -*]n l7 -. (3.25) 

The theorem now follows from the definition of S 17 and the 
partial isometry of n 17 _. . 0 

Proposition 3.10: If J 17* J 17 - JI is compact, then the 
null space f( J'1 C dY"" is finite dimensional. 

Proof Let P 17 denote the orthogonal projection of cW' 
onto ~(Jl7*). Then the operator 

JI - p 1T = (Jl7*Jl7 _ Pl7) _ (Jl7*J1T - JI) (3.26) 

is the orthogonal projection of dY"" onto f( J 17). As both 
terms on the right side ofEq. (3.26) are compact, JI - P 17 is a 
compact, hence finite-dimensional, orthogonal projection. 0 

Now, in Theorem 3.9 the operator Jl7*Jl7 - JI is as
sumed to be compact. It follows from Proposition 3.10 that 
..if/( J 17) is finite dimensional. It is reasonable35 that in the 
practical case JI can be chosen so that f( J 17) = (0), i.e., 
~(Jl7*) = dY"". In that case the following theorem holds. 

Theorem 3.11: Let @)(JI,Hl7) satisfy Assumptions (A 1)
(A4) and suppose thatf( Jl7) = (0). Then, for 
zEp(H 17 )rp(H 17), the operator M l7(Z) is the unique solution on 
9(Hl7) of each of Eqs. (3.19)-(3.21). 

Proof It remains only to prove the uniqueness. Let 
N l7(Z) be any solution of one of Eqs. (3.19)-(3.21), and define 
..1 "(Z)_Ml7(Z) - Nl7(Z). Then..1 "(z) satisfies Eq. (3.22). Mul
tiplication ofEq. (3.22) from the left by R l7 (z)( Jl7Jl7*)-IJl7 
yields J" R ff(Z)..1 l7(Z) = O. Since Jf/( J ") = 1 0), this implies 
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that R "(z).1 "(z) = 0 and, hence, that ..1l7(Z) = O. 0 
The following theorem and corollary establish suffi

cient conditions for the kernel ofEq. (3.21) to be a compact 
operator on dY"". 

Theorem 3.12: Let@)(JI,H l7) satisfy Assumptions (Al)
(A4). Suppose, in addition, thatJ l7*J17 - JI is a compact 
operator on cW' and that the operator Vl7R l7(iy)E l7(Ll ): 
dY"" -cW' 17 is compact for some nonzero y and all finite inter
vals..1 C( - 00,00). Then the kernel of Eq. (3.21) is compact 
for all z with 1m zioO. 

Proof Let..1" ==( - n,n J and..1 ~ =( - 00,00 )\Ll". By 
Assumption (A4), for every E > 0 there is a b > 0 such that for 
all~, 

II V"R "(iy)E 1T(Ll ~)<I> II 
';;;EIIH"R "(iy)E"(Ll ~)<I> II + b IIR 1T(iy)El7(..1 ~)<I> II· 

(3.27) 

It follows [cf. Eq. (5.52) of Ref. 28] that 

IIV1TR l7(iy)El7(Ll ~ )II';;;E + b (n2 + y2)-1/2 . (3.28) 

Since the right side of inequality (3.28) can be made as small 
as desired by choosing n sufficiently large, the operator 
Vl7R "(iy) is a norm limit of the sequence V l7R "(iy)E1T(..1") of 
compact operators and is, therefore, compact. Using the first 
resolvent equation, the operator 

J"*V"R "(z) = J"*V"R 1T(iy) + (iy - Z)J1T*Vl7R "(iy)R "(z) 

(3.29) 

is then seen to be compact for all z with 1m zioO. The com
pactness of the kernel ofEq. (3.21) follows. 0 

Corollary 3.13: Let @)(JI,H l7) satisfy Assumption JI. Let 
Condition TC hold, and letJIb andJ"* Jl7 - JI be compact. 
Then the kernel ofEq. (3.21) is a compact operator on dY"" 
for all z with 1m zioO. 

Proof Theorem 3.12 applies since for all..1 C ( - 00,00) 
andy> 0, 

V"R ff(iy)E"(Ll ) = P" VE(Ll )JIQR l7((y) 

+ V"R l7(iy)E 17(..1 )JI b (3.30) 

is compact (the sum of a trace-class operator and a compact 
operator). 0 

C. Stability 

The equivalent Eqs.(3.19)-(3.21) are stable under cer
tain perturbations, as the next two theorems establish . 

Theorem 3.14: Let @)(ll,H") satisfy Assumption JI. Let 
IJ1l7E9 (H 17), and let <p 17 be a solution in dY"" of the unper
turbed equation 

Jl7*(Z - Hl7)Jl7R "(z)<I> 1T = J"* Vl7lJIl7, (3.31) 

where zEp(Hl7 )rp(H 17). LetFl7 = F l7 (z); 9 (H")-cW',, satisfy 
IIF1T (z)R 1T (z)11 < 1, and let yl7E~( Jl7*). Then the perturbed 
equation 

J1T*[Z -Hl7 +Fl7 (z)] Jl7R 1T(z)e" =J1T*Vl7lJI1T + y1T 
(3.32) 

has the solution 
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e~ = (R 'T IJ7T*( J7TJ7T*)-IR 7T [IN + F7T R 7T ]-1 

X( JrrJrr*)-IJrr( Jrr*V 7TtJl rr + y,. (3.33) 

Moreover, if e rr is any solution in cW"'" of Eq. (3.32), then 
Qrre" = Qrre~. 

Proof Under the assumptions of the theorem 
[ IN + FrrRrr ] -I exists and e ~ is well defined. Direct sub
stitution of e ~ into the left side of Eq. (3.32) demonstrates 
that e ~ is a solution. If err is any other solution ofEq. (3.32), 
then err - e ~ is a solution of the homogeneous equation. 
Multiplying the homogeneous equation from the left by 
(R ,-IJrr*R

1T 
[IN + FrrRrr] -I( J"J,,*)-IJ rr yields the de-

sired result, Q rre rr = Q rre~. 0 
Remark 3.15: (a) The perturbation J1T*F,,(Z).!7TR 1T(Z) is 

of the most general form with range contained in 89( pr*) 
and null space containing that of the unperturbed operator 
J"*(z - Hrr).!rrR "(z). The range condition is imposed to 
avoid complicated consistency requirements on Y ". The 
null space requirement is imposed so that the perturbation 
can always be compared to the unperturbed operator. 

(b) If ff( Jrr) = 0, then the solution to Eq. (3.32) is 
unique (cf. proof of Theorem 3.11). 

Theorem 3.16: Let the assumptions of Theorem 3.14 
hold, and let errand <p "be solutions in cW"'" ofEq. (3.32) and 
Eq. (3.31), respectively. Let P denote the orthogonal projec
tion of JY onto ~( J *), and let..:1 C ( - 00,00) be any bound
ed interval. Then, 

liE (..:1 )rQ"(e 1T - <P")II 

<IIE(..:1 )(z - H)II Iclll<P "II + c2I1Y"IIJ , (3.34) 

IIPR (z)rQ "(e rr - <P "lIl <clll<P rrll + c211 Y"II , (3.35) 

where 

ci IIm z l- IIIJ*II(1-IIF"R rr lll- 1 

X IIF"R" 11(11 J II + II V"R "Ill ' (3.36) 

c2==IImzl-111 J*IIII(J"J"*)-IJ"II(I-IIF"R"II)-I. 
(3.37) 

Proof The vector e rr - <P " must satisfy the equation 

J"* [z - H" + F,,(Z)]J1TR rr(z)(e" _ <P ") 
= -pr*Frr(z).!rrR rr(z)<prr + yrr. 

Multiplying Eq. (3.38) by 
(R ,,)-IJ"* Rrr [IN + FrrR" ] -I( J"J,,*)-IJ rr yields 

Q "(e rr _ <p rr) 

(3.38) 

= (R ,,)-IJ"*Rrr [IN + FrrRrr] -I I - FrrJ"R rrlP rr 

+ (JrrJrr*)-lpryrrJ . (3.39) 

Consequences of Assumption (II 2) are E (..:1 )1 aIR rr) - I(Z).! ,,* 
= E(..:1 )(z - H)IIaJ*, and PR (z)r(R ,-I(z).!rr* 
= PIIaJ *. Also, 

FrrJ"R rr = FrrR,,(R ,,)-IJrrR rr = FrrRrr [J" + V1TR "] . 

(3.40) 

Equations (3.34)-(3.37) now follow in a straightforward 
way. 0 
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IV. SEQUENCES OF APPROXIMATE SCATTERING 
SYSTEMS 

A. Assumption rrn
) 

Consider a sequence {II Inl 1 of orthogonal projection 
operators II In) = IIlnla El3 IIlnlb: JY -+JY'In), where 
JY'Inl==IIln)JY==JY'In)a El3 JY'In)b. For each value of n there is 
an approximate asymptotic Hamiltonian Hlnl, defined on 
fi) (H Inl) C JY'In), and a bounded identification operator 
J(n}==JII(n): JY -+JY N' In addition, there are the space 

JYlnl ==~( Jln}) = PlnlJY N' where Pin) is the orthogonal pro
jection of JY N onto JY(n) , and the approximate total Hamil
tonian H(n} =P(n}H NP(n)' These entities together define a se
quence {(S(n) 1 of approximate scattering systems 

(S(n)=(~ H JY'In) Hln} Jln) IIln}a} 
(n)' (n)' , " • (4.1) 

For notational convenience in what follows, subscripts 
and superscripts (n) will be used in place of the more cumber
some IIln l that would be demanded by the notation of the 
previous section. Also, the symbol II Inla (II Inlb) will be used 
to denote the orthogonal projection of either JY, JY'Inl, or 
JYa (JYb) onto JY'In}a (JY'In)b). 

Our fundamental assumptions about the sequence 
{(S(n) 1 of approximate scattering systems are contained in 
the following Assumption II Inl. 

Assumption Illn!: The sequence {(S(n)} of approximate 
scattering systems is said to satisfy Assumption II Inl if the 
following statements are true. 16 

(IIln}l) For each n, (S(n) satisfies Assumption II. 
(IIln}2) If n">m, IIln}IIlm} = II 1m). 
(IIln}3) The strong limit II (00

), which exists by Assump
tion (II lnI2), satisfies 

(4.2) 
n~OO 

In addition, 89( JIIloo}J *) = JY N' IIloolfi)(H)Cfi)(H), and 
[IIloo),H] «H. 

(II In14) for every <Pefi) (H), the sequence {H Il In}blP } 
converges. 

B. Convergence results 

The convergence of certain sequences of approximate 
wave and scattering operators to the exact ones was proved 
in Ref. 16. In this subsection we obtain some results concern
ing the convergence of a sequence of approximate transition 
operators 

Tlnl(z)=(z - Hlnl)Jlnl*Rln)(z)Vln) 

to the exact transition operator T(z). Here 
vln)=H Jlnl _ JlnlHln) R (z)=(z - H )-1 and - In) , Inl - Inl 
J (n)*==II InlJ *. 

(4.3) 

Theorem 4.1: Let (S satisfy Assumptions (AI )-(A4), and 
let I (S(n) J satisfy Assumption II (nl. Then for all (/>Efi)(H), all 
z such that 1m z =I 0, and all finite intervals ..:1 C ( - 00, 00 ), 

lim E(..:1 )Ja{ T(n)(z) - T(z)JIa<p = ° (4.4) 
n~oo 

and 

lim PR (z)Ial T(n}(z) - T(z)}IalP = 0. (4.5) 
n~oo 
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Proof Let If/ln) = If/ln)(z)=r[ Tln)(z) - nln)aT(z) }I a<1> 

and let <PE!iJ (H). Then it is elementary that 

.T,ln)=nln)aR-1J*rR P -R }VI a<1> r l In) In) N 

- nln)aR -IJ*Rln)Pln) VR [r - nln)a}R -1<1> .(4.6) 

The operator E (.<:1 )n In)aR - 1 J * = n In)a E (.<:1 )R - 1 J .. is 
bounded for finite.<:1. The operator Rln)P(n) is uniformly 
bounded in n by 11m zl-I, and II VR (ZHI<:e + b 11m Zl-I [cf. 
Eq. (2.32) of Ref. 1]. Further, the difference 
[RN - R(n)P(n)}-o strongly (Theorem 4.5 of Ref. 16) and 
{r - nln)a}-o strongly [Eq. (4.2)]. It follows that 
E(.<:1 )If/ln)-o, and consequently Eq. (4.4) will be true pro
vided that E (..::1 ) { I a - n (n)a) T (z)I a<1>-O as n-.- 00 • But this 
follows immediately from liE (.<:1 )/1 <: 1 and Eq. (4.2). In addi
tion, the operator PRIaR -lnln)aJ * = pnln)aJ * is bounded 
uniformly in n. It thus follows that PR If/ In)-o and that Eq. 
(4.5) is true if PR (z) [I a - n (n)a) T (z)I a<1>-O. Again, this fol
lows from IIPR (z)II<:IImzl- 1 and Eq. (4.2). 0 

Equation (4.5) is equivalent to convergence in the Ji
norm defined in Appendix A (cf. Ref. 30). Equation (4.4) 
shows that this norm can be avoided if one restricts the ener
gies to a finite interval. If the projection operators n (n) are 
further restricted, the factors E (..::1 ) and PR in Theorem 4.1 
can be discarded and a stronger result (Theorem 4.7) proved. 

Condition r: A sequence {n (n)} is said to satisfy Condi
tion r if there exist co> 0 and no> 1 such that IIJn In)J *¢II 
;;.coIlPln) ¢II for all ~ N and aU n;;'no· 

Remark 4.2: Condition r is analogous to Condition A 
of the Petrov-Galerkin method (cf. Ref. 26). 

In preparation for the proof of Theorem 4.7 we intro
duce the notion of uniform infinitesimal smallness and prove 
some auxiliary results that involve it. 

Definition 4.3: Let [Ln }, Ln: fl!" -.-fl!", be a sequence of 
linear operators, each densely defined on a Hilbert space fl!". 
Let {K n }, K n: fl!" -.- '?!I, be a sequence oflinear operators 
from fl!" to a Hilbert space '?!I. If the domains satisfy 
!iJ(KnP!iJ(Ln) for each n, and iff or all e> 0 there exists a 
finite b = b (E), independent of n, such that 

(4.7) 

for all ¢n E!iJ (Ln) and al1 n, then Kn is said to be uniformly 
infinitesimally small with respect to Ln. This will be written 
Kn <Ln uniformly. 

Lemma 4.4: Let Ln be self-adjoint for each n. Then 
Kn <.Ln uniformly if and only if IIKn (iy - Ln )-1 11-0 as 
I yl-.-oo uniformly in n. 

Proof We omit the elementary proof. 0 
Lemma 4.5: Let €l satisfy Assumptions (Al)-(A4), let 

{€l(n)) satisfy Assumption nln) and let {n(n)} satisfy Condi
tion r. Further, let 

Uln)=HNJln)- J(n)H(n) 

and 

u(n)*==J(n)*HN - H(nV(n)*, (4.8) 

and assume that Uln)<Hln) uniformly and u(n)*<.HN uni
formly. Then, for any fixed z with 1m z;60 the operator 
(z - H N )R(n) (z)Pln) is bounded uniformly in n. 

Proof Foranyrealy, I yl >0, defineA(n)(Y):JY N-.-JYN 
by 
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A(n)(y)=(iy - HN)Jln)Jln)*RN(iy) - jln)jln)* (4.9) 

[cf. Eq. (3.7) of Ref. 16]. Equation (3.11) of Ref. 16 and 
Lemma 4.4 imply that IIA,n)(y)11 can be made as small as 
desired, uniformly in n, by choosing I yllarge enough. Con
dition r implies that II( J(n)Jln)*)-IPln) II ';;;co- 1 for n;;.no. It 
follows that the bound on (z - HN)Pln)R(n)(z) obtained in 
Theorem 3.9 of Ref. 16 is uniform in n. 0 

Lemma 4. 6: Let the assumptions of Lemma 4.5 be satis
fied. Then, for any fixed z with 1m z;60, 

s-lim (z - HN)R ln) (z)Pln) = IN' (4.10) 

p-:O~f Assumption (n ln )3) implies that Z ==In 100 IJ * 
has a bounded inverse on JY N and Proposition 4.4 of Ref. 16 
implies that Z - 1 maps !iJ (H N) onto fiJ (H N)' For z with 
1m z;6 0 define 

Din) = Din) (z)=(z - H N )R ln) (z)Pln) - IN' (4.11) 

Since Din) (z)(z - HN)Jln) = 0, we have the identity 

Dn = Dn [R N IJR ] [R -I(n loo ) - n(n))R ] 

XR -IJ*Z-IRN . (4.12) 

By Lemma 4. 5 D n (z) is bounded uniformly in n. The operator 
R N IJR is also bounded (Ref. 17, Lemma 1). The remaining 
terms on the right side ofEq. (4.12) converge strongly to zero 
because of Assumption (n(n)4) and Eq. (4.4) of Proposition 
4.1 of Ref. 16. 0 

Theorem 4.7: Let the assumptions of Lemma 4.5 be sat
isfied. Then, for all <1>EfiJ (H) and all z such that 1m z;6 0, 

(4.13) 

Proof Let IJI (n) be defined as in the proof of Theorem 4.1 
and let Eq. (4.6) be rewritten as 

IJIln) = nln)aR -IJ *RN {R N IRln)P(n) - IN 1 VIa<1> 

_nln)aR -IJ*R R -IR P VR 
N N In) In) 

(4.14) 

The operators nln)a, R -IJ *RN and VR are bounded uni
formly in n. By Lemma 4.5 the operator R N IRln)Pln) is 
bounded uniformly in n. The first term on the right side of 
Eq. (4.14) thus converges to zero by Lemma 4.6, and the 
second term converges to zero because ofEq. (4.2). Equation 
(4.13) is therefore true if{ r - n In)a} T (z)r<1>-o, which fol
lows from Eq. (4.2). 0 

Remark 4.8: The hypotheses U In) <.H In) and U In)* <H N 
uniformly are satisfied if (Hn In) - n In)H (n))<.H In) and 
(nln)H - Hln)nln))<.H uniformly. This in turn is satisfied 
(cf. Lemma 4.4) if there is a functionj(z) such that 

II(Hn ,n) - nln'Hln))R In)(z)11 <j(z) (4.15) 

and 

(4.16) 

where j(z)-o as 1m z-.- 00. Here R (n)(z)=(z _ H In)) - I. 

C. Stability 

Consider now a sequence [€l(n) 1 of approximate scat
tering systems. Then, for each fixed n, Theorems 3.14 and 
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3.16 hold, but the constants C 1 and C2 in Theorem 3.16 may 
depend on n. A result that is uniform in n is the following. 

Theorem 4.9: Let ~ satisfy Assumptions (A1)-(A4), let 
I ~(n.l) satisfy Assumption II In), and let Illln)) satisfy Condi
tion r. Let U In) <.H In) uniformly. Let 1/1 In)Eg (H In)), and let 
cp In) be solutions of the unperturbed equations 

Jln)*(z - Hln))JlnJR In)(z)cp In) = Jln)* V ln) 1/1 In) , (4.17) 

where 1m z#O. Let Fin) = Fin) (z): g (Hln) )-dYln ) satisfy 
IIFin) (z)R ln ) (z)ll < c3, where C3 < 1 is independent of n, and let 
y ln)E3P( J In)*). Let e In) be solutions of the perturbed equa
tions 

J(n)*(z - H ln) + Fin))J(n)R (n)(z)e ln ) = JlnJ*vln)l/Iln) + y(n). 

(4.18) 

Then, there exist positive constants C4 and c5 , independent of 
n, such that 

IIE(.J )rQln)(e(n) _ cpln))11 

< liE (.J )(z - H)l11 c4 11CP (n)11 + c51I y (n)II) (4.19) 

for all bounded intervals .J c ( - 00,00), and 

IIPR (z)IQQ In)(e ln) - cp(n))lI<c4 1ICP (n)11 + c51I y (n)11 . 

(4.20) 
The constants C4 and C5 are given by 

c4-c3(1 - c3)-lllm zl-IIIJ *II( IIJ II + Sup IIU(n)R (n)(z)II), 
n 

c5=co-I(I-c3)-lllmzl-IIIJIIIIJ*II· 

Proof These results are almost immediate from 
Theorem 3.16. By Condition r, 
SUPn II( J(n)J(n)*)-IJ(n)ll<co- III J II. Also, 

(4.21) 

(4.22) 

II Vln)R (n)(z)ll = IIP(n) u(n)R (n)(z) II <Sup II u(n)R In)(z)ll < 00 
n 

(4.23) 

by Lemma 4.4 and the assumption that U (n) <.H (n) uniformly. 
The values of C4 and C5 then follow from Eqs. (3.36) and 
(3.37). 0 

Remark 4.10: If H(n) = Hand IIF(n) (z)11 <c311m zl for 
all n, then IIFln) (z)R ln) (z)ll < C3 and II Uln)R (n)(z)ll < II VR (z)ll· 
The uniform boundedness assumptions of Theorem 4.9 
would therefore be satisfied under those conditions. 

Remark 4.11: Suppose, in addition to the assumptions 
of Theorem 4.9 it is assumed that Uln)*<.HN uniformly. 
Then, by Lemma 4.5, the constant 
c6-Supll(z - HN)R ln) (z)Pln) 11< 00. Thus, if 
IIFln) (Z)RN(Z)l1 <C3C6-1, then IIFin) (z)Rln) (z)ll < c3• If, for exam
ple, the perturbation Fin) (z) consists of potentials that are 
uniformly small with respect toHN' then uniform bounded
ness of IIFin) (z)Rln) (z)ll follows. 

Remark 4.12: We announced stability results similar to 
those of Theorem 4.9 in a previous paper (Ref. 30, Theorem 
8). In Ref. 30 Jln)*(z - H ln) )J(n)R (n)(z) was perturbed by the 
operator llln)Fln)Q (z)ll(n), where Q (z) could be either 
Q T (z)-(z - H)J * JR (z) or Q M (z)=(z - H )PR (z). It was 
assumed that H In) = H and that F In): ~(Q )_3P( J *). It can 
be verified by direct substitution that this previous form of 
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the perturbation is obtained from our present form by setting 
Fin) (Z) = PlnJ ( JJ *) -IJF In)Q (Z)(Z - H)J *( JJ *) -I. The 
norm of Fin) appearing in Ref. 30 is, in the present notation, 
IIF(n)(z - H)P II [cf. Lemma A5(b) of Appendix A]. Let 
Q(z) = (z - H)J*JR (z). Then 

IIFin) (z)R ln) (z)ll = IIPln) ( JJ *)-IJFln)(z - H )PJ * Rln) (z)1I 

<c21Imzl-111 J*IIII(JJ*)-IJII < 1 (4.24) 

if IlFln)(z - H)P II <c2 , where C2 is a sufficiently small posi
tive constant. If Q (z) = (z - H )PR (z), a similar result holds. 
Theorem 8 of Ref. 30 is therefore contained in Theorem 4.9. 

V. OTHER TIME-INDEPENDENT RESULTS 

A. Resolvent-type equations 

Associated with the scattering system ~(ll,H 1T) are 
some approximate resolvent equations. 

Theorem 5.1: Let fi5(ll,H1T) satisfy Assumptions (Al)
(A4). Then, for ZEp(H1T)np(H1T), the operator R 1T (z) is the 
unique solution on dY 1T of each of the equations 

R1T(Z)J1T = J 1TR 1T(Z) + R1T(Z)V1TR 1T(Z) , (5.1) 

J1T*R 1T (z) = R 1T(Z)J1T* + R 1T(Z)V1T*R 1T (z) , (5.2) 

and the operator G 1T(Z)==J 1T* R1T (z) is the unique solution on 
dY1T of 

G 1T(Z) = R 1T(Z)J 1T* + R 1T(Z) V1T*( J 1T J 1T*) - IJ 1TG 1T(Z) . 

(5.3) 

Proof Equations (5.1) and (5.2) are the usual two-Hil
bert-space resolvent equations written in the notation of the 
system fi5(ll,H 1T), and the proof of the existence of a unique 
solution is elementary. The existence of a unique solution of 
Eq. (5.3) follows from a transcription of Theorems 5 and 6 of 
Ref. 1 into the notation of the system ~(ll,H 1T). 0 

Theorem 5.2: Let fi5(ll,H1T) satisfy Assumptions (Al)
(A4). If N1T(Z), ZEp(H1T)rp(H1T), is any solution on g(H1T) of 
Eqs. (3.19)-(3.21), then 

R1T(Z)J1T = J1TR 1T(Z) + J1TR 1T(z)N1T(Z)R 1T(Z). (5.4) 

Proof The validity ofEq. (5.4) with N1T(Z) replaced by 
M1T(Z) is immediate from Eqs. (3.16) and (5.1). For any other 
solution N1T(Z) of Eqs. (3.19)-(3.21) let.J 1T(z)=M1T(Z) 
- N 1T(Z). Then.J 1T(Z) is a solution ofEq. (3.22). A multiplica

tion ofEq. (3.22) on the left by R 1T (z)( J1TJ1T*)-IJ1T gives 
J1TR 1T(Z).J 1T(Z) = O. It follows that Eq. (5.4) is satisfied. 0 

Remark 5.3: Formula (5.4) is ofthe type encountered in 
the limiting-absorption principle. 8•12,19-22 For a particular 
choice of pair potentials Vij Eq. (5.4) has been used by Tru
cano22 (see also Sec. 15 of Ref. 30) to prove asymptotic com
pleteness for a two-fragment approximation of the N-body 
scattering problem. 

Equations (5.1)-(5.4) for the approximate system 
fi5(ll,H 1T) have analogs for the exact system fi5. The equations 
corresponding to Eqs. (5.1 )-( 5.3) appear in Ref. 1. For an 
analog of Eq, (5.4) we need an exact M-operator equation 
corresponding to Eqs. (3.19)-(3.21). The exact M-operator 
analogous to Eq. (3,16) is the operator M (z): g (H )-dY de
fined by 

M(z)=(z - H)J *( JJ *)-IRN(z)V. (5.5) 
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Then the following theorem holds (cf. Ref. 30, Theorem 3 
and Corollary 4.1). 

Theorem 5.4: Let 6 satisfy Assumptions (A1)-(A4). 
Then, for zEp(H N)' the operator M (z) is a solution of each of 
the equivalent equations 

J*(Z-HN)JR (z)M(z) =J*V, (5.6) 

J*[J- VR(z)]M(z)=J*V, (5.7) 

M(z)=J*V+ [J*VR(z)-(J*J-l)]M(z). (5.8) 

Furthermore, if N (z), zEp(H N)' is any solution of one of the 
Eqs. (5.6H5.8), then 

RN(z)J = JR (z) + JR (z)N (z)R (z) (5.9) 

and 

T (z) = (z - H)J * JR (z)N (z) . (5.10) 

Proof The theorem is a transcription of Theorems 3.5 
and 5.2 into the notation of the system 6, and those proofs 
apply if one sets II = /. D 

Equations (5.6H5.8) do not, in general, have a unique 
solution on the entire space Jf"'. In order to obtain a unique 
solution we must restrict the solution space. Define 

fiJ = fiJ(z)=(z - H)PR (z)Jf"'. (5.11) 

Then the following theorem holds (cf. Ref. 30, Theorem 4). 
Theorem 5.5: Let 6 satisfy Assumptions (A 1 )-(A4), and 

let zEp(H N)' Then M (z) is the unique solution of Eqs. (5.6)
(5.8) with range lying in fiJ. 

Proof SinceM(z) defined by Eq. (5.5) is a solution with 
range in fiJ, it remains only to prove the uniqueness. Suppose 
that M (z) and N (z) are two solutions of one of the Eqs. (5.6)
(5.8) with range in fiJ. For a given I/IEfiJ(H), let <p =[M (z) 
- N (z)] 1/1. Since <PEfiJ, <p = (z - H N )pe for some eEJf"'. 

Thus 

J *(z - HN)Je = J *(z - HN)JR (z)<P = O. (5.12) 

A multiplication on the left by J *( JJ *) -I R N(Z)( JJ *) -I J 
gives pe = 0, which implies that <p = O. Since I/IEfiJ (H) is 
arbitrary, it follows that M (z) = N (z). D 

As a final note in this subsection, we remark that Eqs. 
(5.6)-(5.8) may be written in a differential equation form by 
using M (z)==R (z)M (z) as the unknown in the equations. For 
example, Eq. (5.6) becomes 

J*(Z-HN)JM(z)=J*V. (5.13) 

Similarly, letting M"(z)-R "(z)M"(z), the approximate Eq. 
(3.19) may be rewritten in the form 

llJ *(z - H N )JllM "(z) = llJ * Vll . (5.14) 

All of our results in Secs. III B and V A pertaining to M (z) 
and M"(z) have obvious analogs in terms of the operators 
M (z) and M "(z). 

B. Convergence results 

The convergence results of Sec. IV B have analogs for 
the convergence of a sequence of approximate M-operators 
to the exact M-operator. Define the sequence Mlnl(z): 
fiJ (H Inl)~JYlnl by 

Mlnl(z)=(z - Hlnl)Jlnl*(JlnIJlnl*)-IRlnl(z)Vlnl. (5.15) 
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Also define 

QMlnl(z)=(z - H)PR Inl(z)lllni (5.16) 

and 

A Inl(z)= { Q Mlnl(z)M Inl(z) - M (z) j / a • (5.17) 

Theorem 5.6: (a) Let the assumptions of Theorem 4.1 
hold. Then, for all <PEfiJ (H ), all z such that 1m z =1= 0, and all 
finite intervals .J C ( - 00,00), 

lim E (.J )A Inl(z)<p = 0 (5.18) 

and 

lim PR (z)A Inl(z)<p = 0 . (5.19) 

(b) Let the assumptions of Lemma 4.5 hold. Then, for all 
<PEfiJ (H) and all z such that 1m z =1= 0, 

lim A Inl(z)<p = 0 . (5.20) 

Proof The vector A Inl<p = A Inl(z)<p may be written as 

Alnl<p =R-1J*(JJ*)-I{R P -R jv/a<p Inl Inl N 

-R -IJ*(JJ*)-IR P VR Inl Inl 

X {fa - lllnlajR -I<p. (5.21) 

Consequently, Eqs. (5.18) and (5.19) follow by essentially the 
same arguments as those in the proof of Theorem 4.1. Equa
tion (5.20) follows by an argument similar to the proof of 
Theorem 4.7. D 

Finally, there is a corresponding convergence result for 
the M (z) operator. Define the sequence 
Mlnl(z)-R Inl(z)M Inl(z). 

Theorem 5.7: Let {6(n) j satisfy Assumptions 
(lllnI1HlllnI3), and let 6 satisfy Assumptions (A1)-(A4). 
Then, for all <PEfiJ (H) and all z such that 1m z =1= 0, 

lim P {Mlnl(z) - M(z)j/a<p = O. (5.22) 
n~oo 

If, in addition, {ll Inl j satisfies Condition F and II Inl~/ 
strongly as n~ 00, then 

(5.23) 

Proof Since 

P {Mini - M j/a<p = RA Inl<p, (5.24) 

Eq. (5.21) and the arguments of Theorem 4.1 imply Eq. 
(5.22). In order to prove Eq. (5.23), note the identity 

{M(nl _ M jr<p 

= J(n l*( JlnIJlnl*)-IPlnl [R(nl - RN ] vr<p 

- Jlnl*( J(nIJlnl*)-IRlnIP(nl VR [fa - lllnla]R -I<p 

+ [J(nl*(JlnIJlnl*)-lp(nl -J*(JJ*)-I]RNVIa<P. 

(5.25) 

By Condition (F) the operator (JlnIJlnl*)-IPlnl is bounded 
uniformly in n. Therefore, the first term on the right side of 
Eq. (5.25) converges to zero by Theorem 4.5 of Ref. 16. Since 
Jlnl*( JlnIJlnl*)-IR(nIPlnl VR is bounded uniformly in nand 
lllnla~/a strongly, the second term also converges to zero. 
The third term converges to zero provided that 
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s-lim Jln)*( Jln'Jlnl*)-IPln) = J *( JJ *)-1 . (5.26) 
11-00 

But Eq. (5.26) follows from Condition r, llln'---+I strongly, 
and the identity 

Jln)*( Jln)Jlnl*)-IPln) _ J *( JJ *)-1 

= Jln)*( Jln)Jln)*)-lpln)J(I _ llln)).! *( JJ *)-1 

+ (llln)-I).!*(JJ*)-I. (5.27) 

o 
Remark 5.8: In Secs. III and IV we presented our ap

proximation scheme as a means for constructing approxima
tions T 1T(Z) = Q 1T(z)M 1T(Z) to the exact transition operator 
T (z). The development of this section shows that M 1T(Z) can 
also be considered as an approximation to M (z). It has been 
established in the context of nonrelativistic multichannel 
quantum scattering theory that the singularity structure of 
M (z) can be markedly different from that of T(z). 36 Thus a II 
that gives an accurate approximation to T (z) can be expected 
to be very different from a II that gives an accurate approxi
mation to M (z). 

VI. DISCUSSION 

In this paper we have established a mathematically rig
orous framework within which to calculate approximate so
lutions to our basic dynamical equation for the transition 
operator T(z). The assumptions which we make about the 
exact scattering system <€S are contained in the abstract As
sumption A of Sec. II A. In that assumption the asymptotic 
Hilbert space J¥' is decomposed into the two parts 
J¥' = J¥'a Ell J¥'b. The assumptions of Ref. 30 are contained 
in Assumption A as the particular case J¥'a = J¥' and 
I a = l. The additional generality in the present case allows, 
for example, the following three possibilities. 

(I) J¥'a could now be the absolutely continuous sub
space of H and I a the orthogonal projection of J¥' onto this 
subspace (cf. Refs. 28 and 31). 

(2) For computational purposes it might be useful to 
incorporate a pseudochannel space J¥'p cJ¥' N into our pre
vious formalism. The states of J¥'p could represent com
pound nuclear states or any other states not easily expressed 
in terms of the true asymptotic states. A Hamiltonian H p ' 

self-adjoint and bounded from below, must be defined on 
J¥'p. This Hamiltonian must have the three properties 
I §(HN)C!!IJ(H )ClZJ(HN), (HNIp - IpHp)<..Hp, and 

p p . . 

(I HN - H I )<..H", where I is the orthogonal projection p p p" p 

of J¥' N onto J¥'p. 
For example, if J¥'p is finite dimensional, then Hp is a 

(bounded, symmetric) finite-rank operator and 
§(Hp) = J¥'p. If J¥'p ClZJ(HN), then (HNIp - IpHp) and 
(I H - HI) are bounded operators and all of the assump-p N P p 

tions of the previous paragraph are satisfied. 
The pseudochannel is incorporated into the abstract 

formalism in the following way. Define the bounded linear 
operator J': J¥' Ell J¥'p---J¥' N by J '(1[/ Ell ¢p) JI[/ + ¢P' and 
let I' denote the orthogonal projection of J¥' Ell J¥'p onto J¥'. 
Then if [ J¥' N ,H N ,J¥',H, J,l} satisfies Assumption A, the 
assumed properties of Hp and J¥'p imply that 
I J¥' N,HN,J¥' Ell J¥'p,H Ell Hp,J',I 'I also satisfies Assump-
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tion A. Our abstract theory therefore applies in the case by 
identifying ~ with J¥' and J¥'b with J¥'p. 

(3) The systems that we have previously studied can also 
be modified to accommodate resonances?7.38 Let J¥' R be a 
finite-dimensional Hilbert space. Let HR be a self-adjoint 
operator on J¥' R' and let WR: J¥' R ---J¥' N be a linear opera
tor with adjoint W~. Define the Hamiltonian HN: 
§ (H N) Ell J¥' r~J¥' N Ell J¥' R by 

HN(¢N EIl¢R)-(HN¢N + WR¢R)EIl(HR¢R + W~¢N) .(6.1) 

Further, define J ": J¥' Ell J¥' R ---J¥' N Ell J¥' R by 

(6.2) 

and define I" to be the orthogonal projection of J¥' Ell J¥' R 

onto J¥'. Then, if [ J¥' N ,H N ,J¥',H, J,l J satisfies Assumption 
A, so does [J¥' N Ell J¥' R ,H N ,J¥' Ell J¥' R ,H Ell H R' J " ,I " J . 
Thus resonances can be included in the abstract theory by 
identifying J¥'G with J¥' and J¥'b with J¥' R . 

Our method for calculating approximate solutions does 
not require that the kernel of the exact equation be compact 
and hence provides an alternative to the widely used Fred
holm theory. The relation of our method to others that also 
do not require compact kernels is illuminating. 

The formal structure of our method has much in com
mon with the Petryshyn theory26.27 of strong approximation 
solvability and A-proper operators, as can be seen in Appen
dix A. Our theory is less general since we have focused on a 
specific linear equation in a Hilbert space context, as op
posed to nonlinear equations in a Banach space context. On 
the other hand, we allow our approximating subs paces to be 
infinite dimensional, a feature that is essential to be able to 
interpret the approximate solutions as transition amplitudes 
for approximate scattering systems. 

Consider next the unified nuclear reaction theory of 
Feshbach.23-25 Suppose that <€S satisfies Assumption A and 
that [<€S(n) J satisfies Assumption II In). LetP (nl be the orthog
onal projection of J¥'N onto 9?(Jll ln)a), and define 
Q ~'In) -IN - Pin)' Suppose the inverse of the operator 
[Z - Q ';;In)H NQ ';;In) ] exists. Then, 

llln1uTllln)a 

= llln)aR -I [J *P'{nIRrvP'{n)JR -I - J *J }I1lnla , (6.3) 

where23
•
37 

P'{n)RN(z)P'(n) = [z-P'{n)HNP('n) - W';;\n)(z)]-I (6.4) 

and 

W';;ln)(z)=P'(n)HNQ';;\n) [z - Q';;\n)HNQ';;lnl]-1 

(6.5) 

In the Feshbach theory the interesting resonant structure is 
generated by "eigenstates" of Q ';;lnlH NQ ';;Inl' The funda
mental problem is, then, how to approximate Q';;lnl in a 
practical way. 

The effect of our scheme is to approximate Q ';; In) by the 
operator Q'{nl=Pln ) - Pin)' Equations (6.3) and (6.4) remain 
true if Tis replaced by Tln l, RN by R ln!, and W';;ln) by Win!' 
where W('nl is defined by Eq. (6.5) with Q~ln) replaced by 
Q Inl' The resonant structure mu~ be generated, therefore, 
by states in J¥'lnl that are not in &t(Jllln)a). Consequently, 
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they are in ~(JIllnlb) and hence are themselves generated by 
states in cW1 n1b.1t is clear that any finite number of resonant 
states can always be generated in this manner by suitable 
choice of cW1n1b

• 

The important difference between our scheme and 
Feshbach theory is that we aim to calculate Tlnl(z) directly 
using the equations of Sec. III B (or V A). Calculation of 
P lnl , Q Inl' or Wlnl is never necessary. One advantage of our 
strategy is that we have no difficulty incorporating identical 
particle symmetries,30,39 while this has been very trouble
some in the past for multichannel Feshbach theories. 24 In 
addition, the nonorthogonality of asymptotic channel spaces 
is, in our scheme, incorporated in a simple and natural way. 

Another method that does not require compact kernels 
is the coupled reaction channel (CRC) method. For an appli
cation of some of the present approximation ideas to the 
CRC method see Refs. 33 and 40. 

We now turn to the question of the practical implemen
tation of the abstract ideas of this series of papers. We as
sume that JY has the form 1,30 JY = El1 A JY A , that 
II = El1 AlIA' and that J"r El1 A tPA = ~AIlA tPA' The spaces 
JYA are the usual cluster (partition or arrangement channel) 
spaces. The asymptotic Hamiltonian H has the form 
H = El1 AHA' where theHA are the usual cluster (partition or 
arrangement channel) Hamiltonians. The approximate 
asymptotic Hamiltonian H rT has the form H rT = El1 A H ~ . 
Then the approximate transition operator [cf. Eqs. (3.6) and 
(3.12) and Ref. 1, Lemma 2 and Theorem 8] 

has cluster matrix elements 

(6.6) 

(6.7) 

T;A (z) = lIB (U~ + U;PrTR1T(Z)U~ JIlA , (6.8) 

where U ~ =H N - H ~. The cluster matrix elements of 
MrT(z) are 

M;A(Z) = IlB(z - H;{~ Ilc ) -lPrTRrT(z)U~IlA . 

(6.9) 

Equation (3.21) then reads [cf. Ref. 30, Eqs. (30) and (36)] 

M;A (z) = lIB U~IlA 

+ I lIB [U~R ~(z) - 8BC ]IlcM~A(z), (6.10) 
C 

where R ~(z)=(z - H~)-l and 8Bc=1 - DBC with DBC the 
Kronecker delta. 

In a previous paper30 we sketched how to construct pro
jection operators IlA such that Assumption II is satisfied if 
JY" = JY. Denoting these projection operators by II ~ and 
letting II ~ be arbitrary compact projection operators, then 
IlA =Il~ El1 Il~ also satisfy Assumption II. This construc
tion also yields that IlAIlB' A =/=B, are compact and that 
VAEA(..1 )n~ = (HN - HA )EA (..1 )n~, where..1 is any finite 
subinterval of ( - 00, 00 ), are trace class. Within this more 
concrete framework we can make the following comments 
about Eq. (6.10) and its solution. 

(a) The number of coupled integral equations, and the 
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dimensionality of the integrals, compares favorably with 
other schemes (Ref. 30, Tables 2-4). 

(b) The kernel ofEq. (6.10) does not contain the trouble
some operator (JrTJrT*)-IPrT = (~cIlcl-IPrT' Moreover, the 
kernel ofEq. (6.10) is compact for 1m z=/=O (Corollary 3.13), 
thus permitting standard numerical methods to be used for 
the solution. 

(c) The projection operators IlA are incorporated into 
the unknown operatorsM;A (z) in Eq. (6.10). As a result, the 
locations of the thresholds are left undisturbed. Only the 
discontinuities across the cuts are changed. 

(d) The operators lIB U~Ilc and IlB8BcIlc in the ker
nel ofEq. (6.10) are independent ofz. Moreover they have the 
form of Born approximations and overlap integrals, respec
tively. Such objects are well known in nuclear theory, at least 
for two-fragment clusterings.35 

(e) Any solution M;A (z) ofEq. (6.10) generates T;A (z) 
via 

T;A(Z) = IlB(z - H;) I (z - H~)-lM~A(Z) (6.11) 
C 

[cf. Eq. (3.17) and Theorem 3.7]. In particular, the solution 
generated by the Moore-Penrose inverse technique32 can be 
used for this purpose. 

(t) If the IlA are so chosen that the null space in JY1r of 
JrT consists only of the zero vector, then Eq. (6.11) is unneces
sary. The solution M;A (z) ofEq. (6.10) is unique and has the 
same on-shell limit as T;A (z) (Theorems 3.9 and 3.11). 

(g) Equation (6.10) is stable under certain forms of per
turbations (cf. Secs. III C and IV C). 

(h) The on-shell values of the T;A (z) are the on-shell 
transition operators of an approximate scattering system 
®(Il,H rT) = {JY rT,H 1T ,JY1r,H 1T, J 1T,Il a J. The approximate 
total Hamiltonian H rT is self-adjoint and bounded from be
low by the lower bound k of H N' Certain spectral properties 
of H rT have been obtained by Trucan022 by proving an analog 
of the HVZ theorem (Ref. 31, Theorem XII!. 17). In particu
lar, let a(IlaH) denote the spectrum of the asymptotic Ha
miltonian H restricted to the subspace JY1ra. Then, the spec
trum of H rT consists of a(Il a H) and a discrete set of 
eigenvalues of finite multiplicity in [k,inf O'(IlaH)), which 
can possibly cluster only at inf O'(IlaH). A consequence of 
Theorem 3.13 of Ref. 16 is that O'(IlQH) is equal to the spec
trum of the absolutely continuous part of H rT' It also follows 
from Theorem 4.5 of Ref. 16and Theorem VIII.24 of Ref. 31 
that if A. belongs to the spectrum of H N' then there exists a 
sequence {A. n J, with A. n belonging to the spectrum of H lnl , 
such that A. n -A.. 

(i) The approximate wave operators n ~ ± exist for clus
teringsA with JYA included in the direct sum JY" (Theorems 
3.11 and 3.13 of Ref. 16). Moreover, they are asymptotically 
complete so that the scattering operator S rT is unitary on 
JY1ra (Theorem 3.13 of Ref. 16 and also the related two-frag
ment result ofTrucan022 which was announced in Theorem 
16 of Ref. 30). 

OJ As n- 00, the approximate Hamiltonians H lnl con
verge (in the strong resolvent sense) to H N , and the wave 
operators n ~I ± converge strongly to n 1 (Theorems 4.5 
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and 4.6 of Ref. 16). As a consequence the approximate scat
tering operators converge weakly to the exact scattering op
erator. In this sense the on-shell approximate transition op
erators converge to the exact on-shell transition operator. 
There is also convergence off-shell (Theorems 4.1 and 4.7). 

(k) The method can accommodate long-range Coulomb 
interactions, distorted asymptotic waves, and identical par
ticle symmetries. 30 

Details of this more concrete scheme will be provided in 
a subsequent publication. 
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APPENDIX A: PETRYSHYN A-PROPER OPERATORS 

In this Appendix our T- and M-operator equations are 
placed within the context ofthe theory of A -proper (approxi
mation-proper) operators and strong approximation solv
ability. This theory has been reviewed by Petryshyn. 26 The 
theory is very general (cf. Ref. 26 and the 163 references cited 
therein) and subsumes Fredholm operator theory, ball con
densing theory, monotone and accretive operator theory, 
Petrov-Galerkin methods, and others. 

1. The abstract theory 

Let JI and JV be Banach spaces, let g) be a given sub
set of JI, and letL: g) CJI-+ffbe a (possibly unbounded) 
linear mapping. 

Definition A 1: r=[JI(n),.A!(n),S(n),Q (n),11 (n)J is 
called a suitable approximation scheme for the operator L if 

(i) [JI(n)J and [.Y(n)J are two sequences of Banach 
spaces; 

(ii) S(n): JI-+JI(n), Q(n): JI(n)-+JI, and 11(n): 
./V -+JY'(n) are three sequences of linear mappings; 

(iii) Q (n) and 11 (n) are uniformly bounded; and 
(iv) Q (n)S (n)<P-+<P for each <PEJI. 
Let [L (n)J be the sequence of mappings of 

g)(n)-[ <PEJI(n)IQ(n)<PEg) J into ff(n) defined by 

L (n)=11 (n)LQ (n). (AI) 
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Then, an approximation to the exact equation 

L<P = 1/1' 

(<PEg), I/I'EJV) is 

L (n)<P (n) = 11 (n)1/I' 

(A2) 

(A3) 

[11 (n)I/I'Eff(n), <P (n)Eg) (n)). Graphically the approximation 
scheme is the following: 

JI-::Jg) L ... ff 

S(n)! t Q(n) !11(n). 

vU'(npg)(n)~ff(n) 

Remark A 2: Our definition of a suitable approximation 
scheme is similar to Petryshyn's definition27 of an admissible 
approximation scheme but differs in the following respects. 
First, Petryshyn's definition is more general in the sense that 
it allows L, S (n ), Q (n ), and 11 (n ) to be nonlinear mappings in a 
Banach space. Since our applications are to linear operators 
on a Hilbert space, we state only the simpler case. Second, 
our definition is more general in the sense that we do not 
always assume that JI(n) and ff(n) are finite dimensional. 
For theoretical purposes we want to allow some intermedi
ate stage approximations which, so that approximate wave 
operators will exist, may not be finite dimensional. 

Definition A 3: (cf. Ref. 27). L is said to beAproper with 
respect to the suitable approximation scheme r if for any 
bounded sequence [<P (n)l<P (n)Eg)(n)J with Q(n)<P (n) in 9 
such that IlL (n)<P (n) - 11 (n) 1/1' 11-+0 for some I/I'Eff, then 
there exists an infinite subsequence [ <P (n k ) J and a <PEg) 
such that IIQ (nk)<P (n k) - <P 11-+0 as k-+oo and L<P = 1/1'. 

The main reason that one wants to show that L is an A
proper operator is because it is a sufficient condition for Eq. 
(A2) to be strongly approximation solvable. 26 

Definition A 4: (cf. Ref. 27). For a given I/I'E./V, Eq. (A2) 
is said to be strongly approximation solvable with respect to a 
suitable approximation scheme r if there is an integer no> 1 
such that the approximate Eq. (A3) has a solution <P (n )Eg) (n) 
for each n>no which are such that IIQ (n)<P (n) - <P 11-+0 as 
n-+oo for some <PEg) satisfying Eq. (A2). 

An operator L is known to be A proper in several inter
esting cases. 26 In particular, if L = I - C, where C: JI-+JI 
is a compact operator, then L is A proper with respect to the 
scheme r,_[JI(n),../V·(n),S(n),!,11(n) J, where S(n): 
JI -+JI(n) and 11 (n): JI -+JY'(n) are sequences of projection 
operators satisfying S(n)<P-+<P and 11 (n)<P-+<P for each 
<PEJI. In this case Eq. (A2) is a Fredholm operator equation 
and its approximation solvability with respect to r, is the 
well-known Petrov-Galerkin method for obtaining a con
verging sequence of approximate solutions. It is not so well 
known that these methods generalize to certain other non
compact kernel equations. For example, if L = I - K with 
11K II < 1, or if L is a positive-definite operator on a Hilbert 
space, then Eq. (A2) is strongly approximation solvable with 
respect to ro- [JI(n),JI(n),11 (n),!,11 (n) J, where JI = JV 
and 11 (n): JI -+ •. /l(n) is a sequence of projection operators 
satisfying 11 (n)<P-+<P for each <P<=../I. 

2. Application to scattering theory 

In order to put our T- and M-operator equations within 
the context of the abstract theory, we choose the spaces and 
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operators of Sec. A 1 in the following way. Let ff - P:Jr, 
where :Jr is the Hilbert space given in the exact scattering 
system 6, and P is the orthogonal projection onto ~ (J *). 
For a fixed zEp(H N)' let iiJ = iiJ (z)=(z - H )PR (z):Jr, and 
for <1>, V'EiiJ, define (<I>,V' Lit -(PR (z)<I>,PR (z)V'). It is easy 
to verify that iiJ is a linear vector space and (<I>, V' ).A' is an 
inner product on iiJ. Define the Hilbert space J/ to be the 
completion of iiJ under the inner product h·)...II' Let 
iiJ(n) = J/(n)=~nl, where~nl=lllnl:Jrand [lllnl} is the 
sequence of orthogonal projection operators in (6(n)}. Let 
ff(n )~nl, where jy1nl=~(ll InIJVj. 

Define two L operators mapping iiJ C J/ into ff by 

LT=LT(z)=I- V*(JJ*)-IJR(z) (A4) 

and 

LM =LM(Z)==J*[J - VR (z)] . (A5) 

Define the sequence II (n): ff -.JY1nl by 

II (n )=ll Inl . (A6) 

Define two sequences of Q (n i-operators mapping ~nl into 
iiJ CJ/ by 

Q Tlnl = Q Tlnl(z)=(z _ H)J * JlnlR Inl(z) (A 7) 

and 

QMlnl = QMlnl(z)=(z -H)J*(JJ*)-IJlnIR Inl(z). (AS) 

Finally, define two sequences of E(n)-operators mapping 
iiJ CJ/ into ~nl by 

and 

E Tlnl = E Tlnl(z)=(z - Hlnl)Jlnl*Z -I(JJ *)-IJR (z) 

(A9) 

EMlnl = EMlnl(z)=(z - Hlnl)Jlnl*Z -IJR (z), (AW) 

where Z ==Jll 100 IJ *. 
The following lemma establishes some formulas for the 

norms of operators which map from and/or to the Hilbert 
space J/. The norm of an operator which maps from:Jr into 
:Jr will be denoted by 11·11 and other operator norms will be 
distinguished by appropriate SUbscripts. 

Lemma A 5: Let zEp(H N) be fixed, and let F = F (z). 
(a) If F: :Jr -.J/, then IIF 1I.w . ...II = IIPRF II. 
(b) If F: J/ -.:Jr, then IIF ILk.J¥' = IIFR -Ip II. 
(c) IfF:J/-.J/, then IIFII...II,...II = IIPRFR -IPII. 
Proof If <I> belongs to the dense subset iiJ CJ/, then 

R -lpR<I> = <1>. Thus 

IIF II =Su IIF<I> II.A' 
.It,.k-<l>E.~ 11<1> 11...11 

=Su IIPRFR-IPR<I>II"'IIPRFR-IPII. (All) 
<l>E.~ I/PR<I> 1/ "-

On the other hand, <I> = R - I PV'EiiJ for all V'E:;r'. There
fore, 

II
FII ;;;.Su IIPRFR -lpV' II 

.k,.k opel! IIPIJIII 

;;;'Sup IIPRFR -IPIJIII = I/PRFR -IPI/. 
OPE?' II V' II 

(AI2) 

Theorem A6: Let 6 satisfy Assumptions (AI)-(A4), and 
let [6(n)} satisfy Assumptions (ll Inl 1 i-Ill InI3). Let zEp(H N) 
be fixed. Then 

(i) r T ={~nl,J0nl,ETlnl,Q Tlnl,lllnlJ is a suitable ap-

proximation scheme for the operator L T, and 
(ii) r M = {jy1nl,J0nl,E Mlnl,Q Mln),lllni J is a suitable ap-

proximation scheme for the operator L M. 

Proof [ll Inl} is uniformly bounded by 1. By Lemma 
A5(a) and Eq. (A 7), 

IIQTlnIILJf,ojn} .. § = IIPJ*Jllln'R,n'Il<llmzl-IIIJ*JII· 

(A13) 

This proves that {Q Tin)} is uniformly bounded. Similarly, 
[OMlnl} is uniformly bounded in norm by 11m Zl-I. Now, by 
Assumption (ll lnI3), 

IIQ TlnlE Tlnl<l> - <I> /1...11 

= IIJ *J [lllni _lliool] J *Z -iI JJ *)-IJR<I> /I (AI4) 

converges to zero for all <l>EJ/, Similarly, 

IIQMlnlEMlnl<l> - <I> 11...11 = /lP [lllnl_lliool] J *Z -IJR<I> II 

(A15) 

converges to zero for all <l>EJ/. 0 
Let zEp(H N) and V'EiiJ (H) C:Jr. Then J * VV'EJV. The 

exact transition-operator equation (2.10) may be written in 
the form 

(AI6) 

with solution <I> = <I> (z) = T(z)V'iniiJ. TheexactM-operator 
equation (5.7) may be written in the form 

L M<I> = J*VV' (AI7) 

with solution <I> = <I> (z) = M (z) V' in iiJ . 
Define the sequence of operators L Inl: ~nl-.~nl by 

Lin) = L Inl(z)==Jlnl*(z - Hlnl )JlnlR Inl . (AIS) 

It is easy to verify that 

L Inl = lllnlL TQ Tin) = lllnlL MQMlnl. (AI9) 

Therefore, the approximate equation [cf. Eq. (A3)] associat
ed with either Eq. (AI6) or Eq. (AI7) is 

L Inl<l> Inl = II InlJ * vV' . (A20) 
Theorem A 7: Let 6 satisfy Assumptions (AI )-(A4), and 

let {6(n) J satisfy Assumption II Inl. Then, for all V'EiiJ (H) 
and all z such that 1m z#O: 

(i) Eq. (A16) is strongly approximation solvable with 
respect to r T; and 

(ii) Eq. (AI7) is strongly approximation solvable with 
respect to r M. 

Proof Substitution of 

<I> Inl=(z - H Inl)J Inl*(J InlJ Inl*) - I R (z)P VV' o Inl Inl (A2I) 

into Eq. (A20) verifies that <I> bnl is a solution in jy1nl of Eq. 
(A20). Similarly, 

tP T =(z - H)J *RN(Z)VIJI (A22) 

is a solution in iiJ of Eq. (A 16), and 

<l>M =(z - H)J *( JJ *)-IRN(z)VV' (A23) 

This proves (c). The proofs of (a) and (b) are similar. o is a solution in iiJ of Eq' (A 17). Furthermore, 
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r {J [IlA] }--....... 
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FIG. 2. Approximate scattering system @l(",H ~). 
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FIG. 3. Sequence l@l(n)l ofapproximate scattering systems. [The notation is the same as that of Fig. 2 with subscripts and superscripts (n) used in place of the 
more cumbersome "Inl that would be demanded by the previous notation.] 
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IIQT(n)<Pbn) - <pTIL-R = II J*[R(n)P(n) -RNl VI/III, (A24) 

and the right side ofEq. (A24) converges to zero as n-- 00 by 
Theorem 4.5 and Eq. (4.S) of Ref. 16. Similarly 

IIQM(n)<Pbn) - <pMII.-R 

= II J *( JJ *)-1 [R(n)P(n) - RN 1 VI/III (A25) 

converges to zero as n-- 00 • 0 
Remark A 8: (a) Theorem A 7 contains as a special case 

(take JY" = Yr and H (n) = H) the result announced in 
Theorem 7 of Ref. 30. 

(b) Suppose that I/IE~(H)nJf'1n)a. Then 
PIN) VI/I= v(n)1/I and <P~)(z) = M(n)(z) 1/1 [cf. Eqs. (A21) and 
(5.15)]. In this case, Theorem A7(ii) and Eq. (5.19) of 
Theorem 5.6 are the same result. In addition, 
n(n)aQ T(n)(z)M(n)(z)1/1 = rr(n)(z)1/I [cf. Eqs. (A7), (5.15), and 
(4.3)]. It follows that Theorem A 7(i) and Eq. (4.5) ofTheorem 
4.1 correspond when the input and output states are restrict
ed to dY1n)a. The restriction to JV1n)a is necessary for the ap
proximate wave operators n In) ± , and hence for the approxi
mate scattering operators SIN), to be nonzero [cf. Eqs. (4.9)
(4.11) of Ref. 16]. 

In this paper we have proved approximation solvability 
directly rather than prove that the operators L T and L Mare 
Petryshyn A proper. Consequently, the characterizations of 
A-proper operators in Refs. 26 and 27 have not been directly 
useful to us. We end this Appendix, however, by showing 
that, under the additional Condition r, the operators L T 

and L Mare Petryshyn A proper and one-to-one. 
Theorem A9: Let the assumptions of Theorem A 7 hold. 

In addition, suppose that [II In) 1 satisfies Condition r. Then 
the operators L T and L Mare Petryshyn A proper and one
to-one. 

Proof Let I/IE~(H) and 1m z#O. Let f <p (n)l be a 
bounded sequence in dY1n) with 118 (n)II-O as n-oo, where 

8 In) L (n)<p (n) - II (n)J * VI/I (A26) 

with L (n) given by Eqs. (AlS) and (AI9). Let <P~), <p T, and 
<p M be defined as in Eqs. (A21)-(A23). Then 

II Q T(n)<p In) - <p T IL-R < II Q Tin) [ <p (n) - <p bn)] IL-R 

+ IIQ T(n)<p~) - <p T/I.-R . 

The first term on the right side of Eq. (A27) satisfies 

IIQ T(n) [<P (n) - <p bn)] IL-R 

= II J*R(n)(J(n)J(n)*)-IPln )J8(n)11 

<co-
1IImzl- 111J1I1IJ*111I8(n)1I 

(A27) 

(A2S) 

and converges to zero as n- 00 • The second term on the right 
side of Eq. (A27) converges to zero by Theorem A 7. It fol
lows that L T is A proper. Similarly, L M is A proper since 
IIQM(n)<p(n) - <pMII.-R 

<II J *( JJ *)-IR(n)( J(n) J(n)*)-IP(n)J8(n)/i 

+ IIQM(n)<Pbn) - <pMII.-R (A29) 

converges to zero as n_ 00 • 

The operator L T: ~ CJI_./Y is one-to-one by the 
uniqueness of the solution ofEq. (2.10) in Theorem 2.2. The 
operator L M: ~ CJI_./Y is one-to-one by the uniqueness 
of the solution ofEq. (5.7) in Theorem 5.5. 0 
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APPENDIX B: INDEX OF MAJOR OPERATORS AND 
HILBERT SPACES 

The major operators and Hilbert spaces used in this 
paper are shown in the Figs. 1-3. Here [#] indicates the 
section number where the description of the symbol is found. 
The arrows indicate the domain and range spaces (with un· 
bounded operators defined on only a subspace). 
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An inverse acoustic scattering theory and algorithm is presented for the reconstruction of a two
dimensional inhomogeneous acoustic medium from surface measurements. The measurements of 
the surface pressure due to a harmonically oscillating surface point source at two arbitrary 
frequencies allows the separate reconstruction of the density and velocity of the subsurface. This is 
a first step towards solving the inverse problem of exploration geophyiscs. 

PACS numbers: 03.65.Nk, 91.30.Rz, 43.20. + g 

I. INTRODUCTION 

The problem we consider is that of reconstructing the 
subsurface velocity and density from surface measurements 
of pressure waves emanating from an oscillating point 
source on the surface. A natural approach to this problem is 
to transform the acoustic equation into the Schrodinger 
equation in order to take advantage of the great body of 
knowledge on inverse scattering. Ware and Akil trans
formed the one-dimensional elastodynamics equation into 
the Schrodinger equation. Coenz transformed various in
verse problems for a one-dimensional acoustic or elastic me
dium with plane waves, line or point sources into the one
dimensional Schrooinger equation whose potential is real 
and energy independent. 

There are, in addition, a number of multidimensional 
inverse scattering methods. These have suggested the possi
bility of applying inverse scattering techniques to the multi
dimensional acoustic equation; however, for a number of 
years attempts to transform the higher-dimensional acoustic 
equation into the Schrodinger equation have been unsuc
cessful. This paper overcomes this difficulty and goes on to 
apply state-of-the-art inverse scattering techniques to the 
three-dimensional acoustic equation with a two-dimensional 
medium. 

We transform the three-dimensional acoustic inverse 
scattering problem for a two-dimensional acoustic medium 
into an equivalent inverse quantum scattering problem in 
two dimensions with a potential which is real and has com
pact support. The solution procedure contains four parts: (1) 
Transformation of the acoustic equation to the two-dimen
sional Schrodinger equation. (2) Transformation of the 
acoustic data into equivalent quantum scattering data-the 
scattering amplitude. (3) Reconstruction of the potential 
from the scattering amplitude. (4) Reconstruction of the ve
locity and density of the acoustic medium from the potential. 

II. TRANSFORMATION OF THE ACOUSTIC EQUATION 
INTO THE SCHRODINGER EQUATION 

The pressure p(r,rs ,w) in a fluid with density p(r) and 
local wave velocity c(r), due to a harmonically oscillating 

point source at rs with frequency w, is governed by the inho
mogeneous acoustic equation 

(VZ - p-IVp.V + wZc-z)p(r,rs'w) = 8(r - rs). (1) 

Let (x, y,z) denote the Cartesian coordinates ofr. We assume 
that: 

(I) The density and local wave velocity are uniform in 
the y direction, so that p = p(x,z) and c = c(x,z). 

(II) The density and velocity are uniform exterior to the 
circle X Z + zZ = aZ so that p = Po and c = Co for X Z + r>az, 
a being a finite constant. 

(III) The exterior velocity Co satisfies co<c(x,z) for all x 
and z. (This condition excludes bound states. See Appendix 
A.) 

We also assume either of the two following geometries: 
(IV) The point sources are placed on a circle at positions 

rs = (xs,O,zs) with x; + z; = aZ
• 

(IV') The point sources are placed on two lines at posi
tions rs = (xs,O,a) and rs = (xs'O, - a). 

Ifwe define r, = (x,O,z) andg(r,) = [po/p(r,)] I/Z then 

cP (r"rs,k,w) = g(r,) f: 00 p(r,rs,w)e - ikYdy (2) 

transforms Eq. (1) into 

(V; + t z)t/'(r"rs,t) = V(r,;w)t/'(r"rs,t) + 8(r, - rs), (3) 

where t Z = wZ/c6 - k 2, t/'(r"rs,t) = tP (r"rs,k,w), 

V(r,;w) = w2co-
Z[1- c6c-Z(r,)] +g-l(r,)V;g(r,), (4) 

and V; = if / ax2 + a2 
/ ar is the transverse Laplacian. 

Equation (3) for r, ;6rs is a two-dimensional Schrodinger 
equation where t plays the role of energy and V plays the role 
of potential which in this case is energy independent with w 
being a fixed parameter. We assume that the velocity and 
density are such that V is square integrable. 

To obtain data for the inverse problem under Assump
tion IV, we measure the pressure at the boundary of the 
cylinder of radius a, thus obtainingp(r,r.,w) for all r ofthe 
form r = (x, y,z) with x 2 + r = a2 and for all r. satisfying 
Assumption IV above. To obtain data under Assumption 
IV', we measure the pressure at r = (x, y,a) for sources at 
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(x"O,aj and (x"O, - aj and at r = (x,y, - aj for sources at 
(x"O, - a). In either case the transformation (2) transforms 
this data into t/J(r"r"s) for Eq. (3), which is known for all r, 
and r, as above and for S of the form S 2 = w 2 /c~ - k 2 for all 
real k. In the S variable, we therefore have data on the posi
tive imaginary axis and on the interval (O,w/co). Since the 
problem is now wholly two dimensional, we shall drop the 
subscripts "/" and write r = (x,z). We will use carets to de
note the two-dimensional unit vectors. 

III. TRANSFORMATION TO PLANE-WAVE INCIDENCE 

Equation (3) may be cast into the Lippmann-Schwinger 
integral equation 

¢,(r,r"s) = G (r,rs,s) 

+ r V(r';w)¢,(r',rs,s)G (r,r',s)d 2r', (5) 
JIr'1 <a 

whereG (r,r',S) = -liH~I(slr - r'l)isthetwo-dimensional 
Green's function. We write Eq. (1) as ¢' = Vinc + t/fc

, where 
Vinc and t/fc denote the incident and scattered wave func
tions, respectively. 

If the incident field were the plane wave ei~'r with S = st 
rather than the two-dimensional Green's function G (r,rs,s ), 
then Eq. (3) would be 

(V2 + S 2)¢ (rl,s) = V(r;w)¢ (r,s,s), (6) 

with a corresponding Lippmann-Schwinger integral equa
tion 

¢ (rl,s) = exp(is·r) 

+ r V(r';w)¢(r'l,s)G(r,r',s)d 2r', (7) 
Jlr'l <a 

which may be rewritten as ¢ = ¢inc + ¢SC, where inc and sc 
denote the incident and scattered wave functions, respective
ly. 

For Geometry IV, an argument modeled on that of Ber
ezanskii3 (see Appendix B) allows us to relate ¢sc to t/fc by 
means of the formula 

"', 4'n + I 127T 
¢sc (rl,s) = L 1 t/fc (r,r"s )cos(nO,s )dOs (8a) 

n=O 1TH~I(sa) 0 

for Irl = a = Irsl. The prime on the summation sign in (8a) 
indicates that the n = ° term is halved. For Geometry IV', 
for reflection from above, we use 

¢SC (rl,s ) = is 2 -ICOS Os r'" '" t/fc (r,r"s ) 

Xexp(ixsssin °s)dx" (8b) 

where Os is the angle between r, and s; for the reflection from 
below and for transmission there are similar formulas. 

The transformation (8) allows us to transform our point 
source data into plane-wave-incident data; however, we still 
have the problem that our data is known on the imaginary 
axis and not on the whole real axis. Following Stickler and 
Deift,4 we deal with this problem as follows. 

We know from the Lippmann-Schwinger equation [Eq. 
(8)] that in the absence of bound and half-bound states 
cP = exp( - is·rWe is analytic in the upper half S plane. 
Moreover, a generalization of a proof in Cheney5 shows that 
cP is in the Hardy space H 2+ , which is the space off unctions 
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analytic in the upper half-plane that are uniformly square 
integrable on each horizontal line. In order to obtain cP on 
the real axis, we now apply a theorem of Van Winter's.6 Her 
theorem allows us to determine cP for reals by means of two 
successive transforms. We first form the Mellin transform 

<P (r,t,t ) = exp (-21Tt + I:) i'" cP (r,tis)sit - 1I2ds; 

(9a) 

then we perform the inverse Mellin transform 

exp( - s·r)¢SC(r,t,s) = (21T)-1 J: '" <P(r,t,l)s -i,- I12dl. 

(9b) 

Alternatively, if we wish to avoid analytic continuation 
altogether, we can use only the data we have on the real axis, 
namely ¢sc (r,t,s) for O'S ,w/co' Use of this data alone 
should lead to an answer with limited resolution. For the 
one-dimensional inverse scattering case, a theory of inver
sion using limited data has been worked out by Mel'nikov7

; 

the higher-dimensional version has yet to be investigated. 

IV. THE SCATTERING AMPLITUDE 

The scattering amplitude A (s,t'l), corresponding to 
plane-wave incidence in the t direction and scattered cylin
drical wave in direction t', must next be determined from 
¢se (r,t,s) for Irl = a (for Assumption IV) or r = (x,a) and 
r = (x, - a) (for Assumption IV'). First we consider the case 
of Assumption IV. Because ¢sc for Irl >a satisfies the Schro
dinger equation with zero potential and also satisfies the ra
diation condition at Irl--oo, we can write the solution for 
Irl>aas¢sc = I.: = _ ",am H\!,I(5,r)e- im8

; atr= a the coef
ficients am H!,;,I(5a) must be the Fourier coefficients of 
¢sc I r = a' This gives us 

¢SC (r ,t,S ) = 
'" H!,;,'(5lri)e - im 8 

mX '" 21TH\!,I(sa) 

X r27T 

¢sc (r'l,s ) I eim8
' dO " 

Jo Ir'[ =a 

(lOa) 

from which, by using the asymptotic expansion of the Han
kel functions for large argument, we conclude that 

'" 4e - im(8' + 7T/21 

A (s,t'l) = m=~ '" 21TH!,;,I(sa) 

X r27T 

¢SC(r,t,s)I eim8dO, (lOb) 
Jo Ir[ = a 

where t' = (sin 0 ',cos 0 '). 
Now, under Assumption IV', and for the case ofreflec

tion from above, 

A (s,t',t) = - 2iS sin 0' exp(isa sin 0') 

X J: '" ,psc ((x,a),t,s jexp( - isx cos 0 ')dx. 

(tOe) 

The results for reflection from below and transmission are 
similar. Weglein, Boyse, and Anderson,3 Weglein and Sil
via,9 and Stolt and JacobslO provided various equivalent 
methods for extracting A (s,a, /J ) from t/fc for situations such 
as IV and IV'. 
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V. RECONSTRUCTION OF THE POTENTIAL FROM THE 
SCATTERING AMPLITUDE 

We now use A (S,1I, P) as input into any of the existing 
two-dimensional inverse scattering theories, each of which 
requires different assumptions on the potential. Knowledge 
of the large S behavior of A gives us an inversion via the Born 
method: the Fourier transform Vis computed via 

V(1";liJ) = lim A (s,a, P), (11) 
5-'" 

5(li ~ PI ~ T 

and then the Fourier transform is inverted. 
A method with less dependence on large S data is the 

Newton-Cheney machinery. 11.5 We compute the kernel G of 
the Marchenko equation, 

Gr (s,lI, P) = 2(21T)3/2j f: '" exp[is (s (a +.B ).rlJ 

x(sgns)A *(s,P,a)ds, (12) 

where the asterisk denotes complex conjugate. We insert Gr 

into the Marchenko equation, 

7](s,a,r) = ('" ( Gr (s + q,a, P )7](q, - p,r)dP dq Jo JSI 
+ ( Gr(s,a,P)dP, (13) 

Js' 
where S I denotes the unit circle and s > O. For each r, we 
must then solve (13) for 7](s,a,r), from which the potential 
V(r;liJ) can be computed via 

A A I V(r;liJ) = - 2(i·Vr 7](s,a,r) s=o+' (14) 

We remark that this solution must be miraculous, i.e., the 
right side of (14) must be independent ofa. This method 
therefore applies only to the reconstruction problem. 

Another method, which applies only to weak poten
tials, is an iterative scheme introduced by Moses 12 and 
Prosser. 13 

VI. RECONSTRUCTION OF THE VELOCITY AND 
DENSITY FROM THE POTENTIAL 

If, as in Coen,2 we perform the acoustic experiment 
with two arbitrary frequencies liJ l and liJ2 the procedure de
scribed will reproduce the two potentials V (r;liJ/ ), 1= 1,2. 
Thus, the velocity is given by 

2( ) -2 (2 2), 2 2 C r Co = liJ l - liJ2 (liJ l - liJ2 

- C~ [V(r;liJd - V(r;liJ2)] J -I, (15) 

!V2 - E(r;liJ 1) Jg(r) = 0, girl = 1 for Irl = a, (16) 

where E(r;liJd = V(r;liJd -liJico~ 2 [1 - c~c-2(r)] and 
p(rloo- I = g-2(r). 

The solution of g oft 16) is unique if it is positive, because 
if v were another solution then (g - v)lg satisfies an equation 
to which the maximum principle applies. Moreover, g is 
guaranteed to be positive if we are doing a reconstructive 
problem. 
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APPENDIX A 

Here we briefly outline the proof that there are no 
bound or half-bound states when Co < c(x,z). 

We multiply both sides ofEq. (7) by </J *, change </J to <P 
via </J = g<P, and then use the expansion of (V.gZ<p *)V<P. 
Upon integration and use of the divergence theorem, this 
results in 

( gZ<P * alP ds = _ S2 ( gZl<P 1
2dx dz 

Js an JD 

+ ( gZ liJ
2

2 (1 - 2C~ ) I<P 1
2dx dz 

JD CO C (x,z) 

+ L gZ IV<P 1

2dx dz, (AI) 

where S is the circle that bounds the area of the region D. If 
we let the radius of this circle go to infinity, then the left side 
of (A 1) will vanish which implies that S 2 must be strictly 
positive provided that liJ is real and co<c(x,z). If </J is a bound 
or half-bound state, however, we must have S 2<0. We thus 
conclude that the condition co<c(x,z) guarantees the absence 
of bound and half-bound states. 

Even without the condition co<c(x,z), however, the 
presence or absence of bound states can be ascertained from 
the data, because bound states give rise to poles of </J (r t ,~,S ) 
that are located precisely on the imaginary axis. 

APPENDIX B 

In this Appendix we derive (8a). From (3) and (5) we 
deduce that t/lc satisfies the equation 

[V2 + 52 - V(r;liJ)]t/lC(r,rs,liJ) = V(r;liJ)G(r,r"S)' (BI) 

Similarly, from (6) and (7) we see that rp 'c satisfies 

[V2 + S 2 - V(r;liJ)]</J 'C(r,t,s) = V(r;liJ)exp(j~.r). (B2) 

We recall l4 that V2 
- V is a self-adjoint operator with 

domain W 2
,2 (the space of L 2 functions having two deriva

tives also in L 2) and range L 2. Moreover, if V has no bound 
states, then for 5 on the positive imaginary axis,s 2 is in the 
resolvent set. The inverse [V2 + S 2 - V] ~ I is therefore a 
bounded operator mapping L 2 onto W 2,2, and we can write 
(BI) and (B2) as 

t/lC(r,rs,5 ) 
= [V2 + 52 - V] ~I( - j/4)V(r;liJ)H~)(slr - rs I) (B3) 

and 

rp SC(r,t,5) = [V2 + S 2 - V] ~ 1 V(r;liJ)exp(i~·r), (B4) 

respectively. Wenotethattheresolvent[V2 + S2 - V]~IOp

erates only in the r variable; the variables ~, r s , and S are 
merely parameters. 

Next we use the well-known 15 Bessel function identities 
to express the exponential in (B4) in terms of Hankel func
tions. Roughly, we are adding up point sources to simulate a 
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plane wave. In particular, we use the following identities: 

exp(is Irlcos (}r,s) 
00 

=Jo(slri)+2 L ;nJn(slrl)cosn(}r,s' (B5) 
n~1 

Ho(s Ir - rs I) 
00 

= L Hds Irs l)Jk(S Irl)cos(k(}r,r,l, (B6) 
k= - 00 

1
2

" 
o cos n(}""cos k(},,,sd(}r, 

= 1T(t5n, _ k + I5n,dcos (}"t' (B7) 

where (}"t = (}r - (}s is the angle between the vectors rand 
s. We multiply (B6) by cos n(},,,s and integrate with respect 
to (}r, to pick out a single term on the right side of (B6). We 
plug the resulting expression for I n (S Irl )cos n(},.t into (B5) to 
obtain 

exp(is·r) = n~o';n f" Ho(s Ir - rs i) 

x cos n(}r,.td(}" [1THn(S Irs I)] -I, (BS) 

where the prime on the sum indicates that the n = 0 term is 
to be multiplied by!. 

We now use (BS) in (B4); since [V2 + S 2 - V]-I is con
tinuous, it can be brought inside the summation and integra
tion signs. We then use (B3) to obtain (Sa). 

APPENDIXC 

In this Appendix we derive (Sb). We first compute the 
Fourier transform ofthe Hankel function Hgi. We use the 
representation 

- ~ HgI(sr) = (21T)-2 f exp(ik.r)(s2-k 2)-ldk. 

(CI) 
The Fourier transform can then be computed easily from 
(CI), 

- .!... foo exp( - i1]x)HgI(sr)dx 
4 -00 

= (21T)-1 f exp(ikzZ)(s2 _1]2 + q)-ldk2 

= (i/2)exp[i(S2 _1]2)1/2Izl](S2 _1]2)-1/2. (C2) 

For r = Ir - rs I, (C2) becomes 

- .!... fco exp( - i1]xs)HgI(s Ir - rs Ijdxs 
4 -co 
= (i/2)exp[i(s2 _1]2)1/2 Iz -zsl + i1]X](s2 _1]2)-1/2. 

(C3) 

In (C3) we then make the substitution 1] = s sin (), 0 < () < 1T, 
and write 0 = (cos (},sin () ), 

- .!... fao exp( - is sin (}xs)HgI(S Ir - rs j)dxs 
4 -00 

= (i/2)exp [ i(x,z - Zs ).0 ] (S cos () ) -I. (C4) 

We use (C4) in (B4), obtaining (8b). 

APPENDIX 0 

In this Appendix we derive (lOc). As in the case ofGe
ometry IV, we know that ¢ sc for r = (x,z) with JzJ > a satis-
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fies the Schrodinger equation with zero potential. Moreover, 
the values of ¢ sc for r = (x, ± a) are known, and at infinity 
¢ sc satisfies the radiation condition. 

Because ¢ sc is a generalized eigenfunction of ~ corre
sponding to - S 2, it can be written 

f
"12 

¢ SC(r,t,s) = b (s,O )exp(isO.rjdO, 
- ",12 

(DI) 

where b is to be determined as follows. [The range of integra
tion in (D I) is restricted in order to satisfy the radiation con
dition,] On the line z = a we write O.r = x cos () + a sin (), 
where () is measured from the x axis. We then multiply (D 1) 
by S exp( - ixS cos () ) and integrate over x: 

f: 00 ¢ SC((x,a),t,s )exp( - ixS cos ¢)S dx 

= 21T f"12 b (S,O )exp(iSa sin () )15 (cos () - cos ¢ )d() 
- ",12 

= - 21Tb (s,O )exp(ita sin () )lsin (). (D2) 

This gives us b in terms of the known values of ¢ SC: 

b (s,O) = - S (21T)-lsin () foo ¢ SC((x,a),t,s) 
-~ 

Xexp( - is (x, - a).¢ )dx. (D3) 

Use of (D3) in (Dl) gives us 

¢ SC(r,t,s) = - S (21T)-1 f'" sin () Loo co ¢ SC((x,a),t,s) 

Xexp[isO.(r - (x, - a))]dx d(). (D4) 

Our next task is to compute the r - 1/2 term of the large-r 
asymptotic expansion for ¢ SC, because this term will give us 
the scattering amplitude. 

An application of the stationary phase approximation 
to (D 1) results in 

¢ SC(r,t,s) = 1T1/2(2sr)- 1/2b (S",) 

xexp(iSr + i1T/4) + o ((Sr)-I). (D5) 

The (sr)-1/2 term of ¢ sc can also be computed another way, 
namely by means of the Lippman-Schwinger equation. The 
(Sr) - 1/2 term is 

(81T)- 1/2exp( - 31Ti/4)(Sr)-1/2A (S,r,t)exp(iSr). (D6) 

Comparison of (DS) and (D6) tells us that 

A (s,r,t ) = - 2b (S".) 

= - S1T- 1 sin (), f: 00 ¢ SC((x,a),t,s) 

X exp( - is (x, - a).r)dx, 

where (), is the angle between r and the x axis. 
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The quantum scattering amplitude in Rn for potentials decreasing 
faster than Ixl- (n + 1)/2 
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~i~~in the fram~wor~ of.the two-body problem in quantum mechanics, we prove an "analytic 
hmltmg absorptIon pnnclple" for the Schrodinger operator H = Ho + V, on L 2(Rn), where 
Ho = .- ~ ~nd Vis a real short-range potential, that is, decreasing like Ixl- I- E, € > 0, as Ixl~oo. 
Applymglt m the case where V decreases like Ixl- In + 1)/2(loglxll- I - E, € > 0, as Ixl~oo, we obtain 
t~o classes ofresult~ for the non-Born part of the scattering amplitude: finiteness, continuity and 
hIgh energy propertIes on the positive real axis, including correction to the Born approximation of 
the cross section; analyticity and high energy properties in the upper half-plane for the forward 
amplitude. 

PACS numbers: 03.65.Nk 

I. INTRODUCTION 

Some great progress in stationary scattering theory has 
been achieved by the beautiful works of Agmon I and Agmon 
and Hormander. 2 For an optimal class of two-body short
range potentials, they prove the existence of boundary values 
of Green's operators and some very general results on the 
asymptotic behavior of the stationary scattering wave func
tions. 

It turns out that such methods can also provide enough 
information on the non-Born part of the forward scattering 
amplitude to prove its finiteness and meromorphy in the case 
of potentials V decaying faster than Ixl-- In + 1)/2 in Rn. For 
n = 3, analyticity properties have been investigated in Refs. 
3-6 under the condition V (x) = 0 (Ix I - 3 - E), € > 0, as 
Ixl~oo. There is a gap between this type of condition and 
those imposed in the very recent works of Amrein and Pear
son,7 Martin,8 Enss and Simon,9 and Saito 10 on the finiteness 
of the total cross section and ofJensen lion its Born approxi
mation at high energies. All these authors assume essentially 
that the potential decreases faster than Ixl-2 as Ixl~oo. 

This paper fills this gap. Indeed, for a (non-necessarily 
spherically symmetric) real potential V such that 
V(x) = O(lxl- 1n + 1)/2(loglxl)-I-E), €>O, as Ixl~oo, we 
prove the finiteness of the total cross section O"(k; Ul _) and of 
its Born approximation O"B(k; Ul_) for any fixed energy k 2 

and incident direction Ul _, their continuity in k, their high 
energy behavior as k -2, and the high energy behavior as k -3 
ofthe correction oi.k; Ul_) - O"B(k; Ul_). Up to now, finite
ness, continuity and Born approximation of the total cross 
section under conditions similar to ours have been obtained 
only for spherically symmetric potentials,8 the average over 
all incident directions 7.8,11 or the averages over small energy 
intervals9

,1O. Moreover, our hypotheses are almost optimal, 
concerning the decay at infinity [see the remark (i) following 
Lemma 3.2]. Our results on the cross section are derived 
from the corresponding ones for the non-Born part 
t(k; Ul_, Ul+) of the amplitude by means of the optical 

-) Phymat, Departement de Mathematiques, Universite de Toulon et du 
Var and Centre de Physique Theorique, CNRS, Marseille, France. 

theorem (for related results, see the works of Agmon 12 and 
Saito lO

). We establish the existence of a meromorphic con
tinuation of the forward scattering amplitude t (k; Ul_) to the 
upper half-plane having a Ik I-I high energy behavior. In 
order to get dispersion relations, we would still need some 
information about the low energy behavior; however, the 
discussion of this problem seems to require stronger assump
tions than ours on the potential (see e.g., Ref. 13) and will not 
be developed here. 

To avoid unessential technicalities, we derive first our 
results under the assumption that the potential is pointwise 
bounded. We will show that local singularities of type 
1I1x - xol a

, a < 2, do not modify essentially our conclu
sions. They influence mostly the high energy behavior of 
oi. k; Ul _) - 0" B (k; Ul _), which is essen tiall y of order 
k - inf13,4 - a); this improves partially the results of Jensen. II 

Our main tools are Agmon's method of elliptic a priori 
estimates and the theory of complex canonical transforma
tions.14 Indeed, the key role is played by a limiting absorp
tion principle for the Hamiltonians transformed under the 
action of complex boost transformations. 

In Sec. II, we will collect the definitions on the various 
spaces and classes of potentials to be used later; we also recall 
the properties of the complex boosts. In Sec. III, we study the 
Born approximation to the scattering amplitude and cross 
section. In Sec. IV, we prove an "analytic limiting absorp
tion principle" and use it to analyze the non-Born part of the 
amplitude, first on the positive real axis in Sec. V and then in 
the upper half-plane in Sec. VI. We study in Sec. VII the high 
energy behaviors in case V has local singularities. Finally, in 
Sec. VIII, we present some remarks concerning dilation ana
lytic potentials. 

II. MATHEMATICAL PRELIMINARIES 

A. Weighted Sobolev spaces and Besov spaces 

Let H = - L1 + V denote the quantum Hamiltonian 
with potential V. The definition of the scattering amplitude 
involves the resolvent R (z) = (H - Z)-I and its boundary 
value as z reaches the continuous spectrum of H, which is 
lR+ in the situations investigated here. It is well known that 
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this limit does not exist as a bounded operator on L 2(Rn). 
The limiting absorption principle is the property that, for a 
suitable auxiliary Banach space X, the limits 

R ±(k 2) = lim R (k 2 + iE) 
E"!O± 

exist in a suitable topology of .2"(x, x*), the space of bound
ed linear operators from x to x*. In case V = 0, 
H = Ho = -..::1, Agmon! showed that such limits exist in 
the norm operator topology of .2" (L ;, L 2_ s ), S > ~, where 

L ;(Rn) = {uEL ~oe(Rn), (1 + IxI2)S/2uEL 2(Rn)] 

is a Banach space for the norm 

lIullo.s = 11(1 + IxI2)'/2uIIL2IRn). 

This can be improved! to show existence in .2"(L;, ~-s), 
where 

J¥';'(Rn) = {uEL ~oe (R n),D auEL ;(Rn), la I <,m ], me.l,sER, 

is a Banach space for the norm 

The restriction S > ~ is easily understood from the trace pro
perties of functions in L ;(Rn). 15 If one looks for an optimal 
auxiliary space for which the limiting principle would hold, 
one can also use, following Agmon and Hormander,2 the 
Besov space 

~(Rn) = {UEL foe (Rn
), lIull~IRn) = jtl R )12lluIIL2Ifl) < 00 }, 

where Ro = 0, Rj = ,}!-I whenj> 0 and 
nj = {xERn, Rj _ 1 < Ixl <Rj }. Notice thatL ;(Rn)C~(R") 
CL ~(R") for all s >!; in terms of decay at infinity, the ele
ments of ~(R") essentially decrease faster than 
C Ixl- I"+ 1)l2(loglxl)-I-E for some C, E>O. The dual space 
~*(Rn) can be shown2 to be identified by the rather sugges
tive property (from a scattering point of view) 

~*(R") = {UEL foe (R"), sup ~ f lu(x)1 2dx < oo}. 
R>I RJ1xl<R 

Further properties of ~*(R") will be described in Appendix 
A. 

B. Short-range potentials 

By perturbative arguments, the limiting absorption 
principle can be proved when the potential Vbelongs to the 
so-called "short-range class"; a real function VEL foe (R") is 
called a short-range potential if, for some E > 0, the mapping 
u(xHI + IxI 2)1!2 + EV(X)U(x) defines a compact operator 
from ~(Rn) to L 2(R"). In view of our discussion of strong 
singularities in Sec. VII, it is worth noticing that one could 
weaken the assumption and require compactness from 
JYI(Hn) to JY-I(R"), 15 allowing in this way to form bounded 
perturbations. 

For what follows, it is important to make the following 
remarks: 

(i) The short-range class includes obviously bounded 
potentials such that 

iV(x) I <C(1 + Ixl) - I" + 1)I210g(2 + Ixll- I -E, E> O. 
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(ii) A short-range potential V is compact from ~(Rn) 
to L 2(Rn) and also from ~_ s (Rn) to L ;(Rn) for s < so, where 
so> ! depends on the rate of decay of V. Then, in particular, 
V is compact from ~_ s (R") to ~(Rn) for all s < So. 

(iii) For a short range potential V, the Hamiltonian 
H = Ho + V is a self-adjoint operator on L 2(Rn), with do
main ~(Rn). Its essential spectrum is R+ and nonzero 
eigenvalues are of finite multiplicity; they form a discrete set 
with 0 and + 00 as only possible limit points. I We will dis
cuss some situations where it can be asserted that + 00 is not 
a limit point (or equivalently the positive point spectrum is 
finite). Actually, one can exclude positive point spectrum 
under rather general conditions (see, e.g., Refs. 16 and 17). 

(iv) If V is short range, H has no continuous singular 
spectrum, and wave operators exist and are complete. 

c. The boost group14 

The boost group is the linear representation in L 2(R") of 
the group of translations in momentum space. Its action on 
uEL 2(Rn) is given by 

B (r)u(x) = eiT-Xu(x), 'TER". 

Define Ho(r) =B -1(r)HoB(r) = (p + r)2 and (if Vis local) 
H(r) = B -1(r)HB (r) = Ho(r) + V; then, if Vis Ho-compact, 
the family H (r) can be extended in C" to an analytic family of 

(a) 

FIG. 1. 
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type A. 18 The spectrum of H (1") depends only on 1m 1"; it is 
represented on Fig. 1. We refer to Ref. 14 for further details. 

III. THE SCATTERING AMPLITUDE AND THE CROSS 
SECTION FOR POTENTIALS IN THE BESOV CLASS 

The scattering amplitude is defined as 

F(k; OJ_, OJ +) = Cn e - iln - 3)
Tr/4k (n - 3)12T(k; OJ _, OJ +), 

where Cn = - 1T - (n - 1)/22 - In + 1)l2(21Tr and 

T(k'OJ_ OJ )=_I_[(veikw+·x,eikw_.X) 
, ,+ (21Tt 

-lim (Veikw+'x , R (k 2 + iE)VeikW_'X )]. 

£!o+ 

Here OJ ± ES n - 1, the unit sphere in lRn
, and kElR + \ ! 0 J. 

Some general results on continuity properties of T can 
be found in Refs. 10 and 12. Here we will concentrate mostly 
on its L 2 properties. Consider first the Born term: 

t B (k; OJ _, OJ +) = [1I(21Tn ( Veikw
+ ,x, eikw 'X). 

For potentials in ~(lRn), one has 

t B(k; OJ_, OJ +) = (21T) - n12V(k (OJ + - OJ _)), 

where V denotes the Fourier transform of V; we will see later 
that this function exists for kElR + \ [ 0 J as a square-integra
ble function of OJ + for each fixed OJ _; it is worth mentioning 
that this is an aspect of a trace property for Fourier trans
forms of elements of Besov space (see Ref. 2, Theorem 2.3). 
From this point of view, it appears that such a property 
would not hold for a strictly larger class of potentials than 
~(lRn) [see remark (i) below]. In general, tB is not defined 
pointwise; in particular, the forward Born amplitude 

tB(k; OJ_, OJ_) = (21T) - nI2V(O) 

is not finite in general unless VEL l(lRn). 
Concerning the non-Born term 

we will see that it is finite for all k in lR + \ [ 0 J and all 
OJ _ ,OJ + ES n - I as a consequence of a limiting absorption 
principle for H. A generalization of this principle will further 
lead to an analytic continuation of t (k; OJ_, OJ_) for k com
plex. 

The cross section at energy k 2 and incident momentum 
OJ _ is defined as 

a(k; OJ_) = Ln- 1 iF(k; OJ_, OJ+W dOJ+. (3.2) 

By the properties stated above, it is finite for all kElR + \ ( 0 J 
when VE~(lRn). To motivate the choice of this class, let us 
consider the Born approximation to a(k; OJ _): 

uB(k; OJ_) = Ln-, iFB(k; OJ_, OJ+W dOJ+, 

where 

FB(k; OJ_, OJ+) = Cne - i(n - 3)Tr/4k (n - 3)/2tB (k; OJ_, OJ+) 

so that 
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One has: 

Theorem 3.1: Let VE~(Rn). Then 

(i) uB(k; OJ_) is finite for all kER+ \ (O j, OJ_ES n - I. 

(ii) Let 8> O. For k>8, one has 

uB(k; OJ_)<Ck -2IWII~IRn)' 

where C is a constant depending only on 8. This immediately 
follows from 

Lemma 3.2: Let VE~(Rn) and 
tB{k; e, OJ) = (21T)-n12V(k(OJ - e)) with kER+\ [OJ, eERn, 
OJES n - 1. Then 

(i) tB(k; e, .)EL 2(sn -I). 

(ii) Let 8> O. For k>8, one has 

lit B(k; e, ·)IIL'{sn __ 1) <Cok - (n - 1)/2 1W II'B(Rn)' 

where Co is a constant depending only on 8. 

Proof Consider Ho(ke) as defined in (2.3); by Theorem 
A.I, one has, for k>8, 

I(V, (Ho(ke) - k 2 - iE)-IV)I<C Ik I-III VII~IRn). 

On the other hand, 

1T- 1 lim 1m (Veike.x , (Ho - k 2 - iE) -I Veike.x ) 
<10+ 

= 1T- 1 lim Im( V, (Ho(ke) - k 2 - iEj-1 V) 
E!O+ 

=1T- llim l E IV(pWdp 
<10+ R n [(p + kef - k 2 f + ~ 

=~kn-2r IV(k(OJ-e)WdOJ 
2 Jsn-I 

= (21Tt k n - 2 ( ItB(k; e, OJW dOJ, 
2 Jsn-I 

which gives the required estimate. 
Remarks: (i) Our claim that Besov class is optimal for 

finiteness of U B (k; OJ _) does not seem to be true if one im
poses the condition of spherical symmetry on the potential. 
In fact, it is shown by Martin,8 for n = 3, that uB(k; OJ - ) is 
proportional in this case to 

1= 41Tk -2J sin
2
[k Ix - x'l] W(x)1 W(x')1 d 3x d 3x', 
Ix-x'1 2 

which is finite if Vbelongs to the Rollnick class. 6 This allows 
a decay of Vat infinity like Ixl- 2(loglxl)-1/2-<, E>O. If Vis 
not spherically symmetric, the cross section averaged over 
all incident directions OJ _ ES 2 is also finite if V is a Rollnick 
potential with II Vila> < 1, i.e., in the case ofsmall coupling 
constant. Furthermore, Martin is able to get explicit bounds 
on the cross section in terms of the Rollnick norm. In Ref. 9, 
Enss and Simon noticed that, in the spherically symmetric 
case, the correct borderline for finiteness of the cross section 
is ~ for the logarithmic part of the decay. 

(ii) The proof of Lemma 3.2 yields the "optical 
theorem" for uB(k; OJ_), namely 
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(3.3) 

where to(k; w_) is obtained from (3.1) by replacing R by Ro: 

to(k; w_) = to(k; w_, w_) 

= _1_ lim (Veikw--X, Ro(k 2 + iE)Veikw--X). 
(21T)" £10+ 

In order to investigate the properties of the other com
ponent of T, let us rewrite (3.1) in a slightly different form 
which will be very convenient for analytic continuation. As
suming that w _ES" - I is fixed, we introduce the definitions: 

B(k) =B(kw_), H(k) =H(kw_), 

and 

R(k,z)=(H(k)-z)-I, kER,Imz#O 

and notice that 

(Veikw_,x, R (k 2 + iE)Veikw--X) = < V, R (k, k 2 + iE)V) 

so that 

t (k; w_) = tiki w_, w_) = _I_lim (V, R (k, k 2 + iE)V). 
(21T)" £10+ 

We will prove that the limit in the rhs of (3.4) exists for 
kEC++ue+-, where 

C++(resp.C+-) 

= [ZEC, Imz>O, + Rez>O(resp. - Rez>O)} 

(3.4) 

by using an analytic limiting absorption principle for H. Fur
thermore, this limit provides with an analytic continuation 
of t (k; w _) in the upper half-plane, with the exception of 
poles corresponding to k 2E[ up(H }rlR-l\ {OJ [where up(H) 
denotes the point spectrum of H]. Other properties of t, in 
particular its asymptotic behavior for large k, will also fol
low from the mathematical background of the next chapter. 

IV. THE ANALYTIC LIMITING ABSORPTION PRINCIPLE 
FORH 

The main problem to be solved is, according to (3.4), to 
give a meaning to the limit of R (k, k 2 + iE) as E~O+. Recall 
that, for kER + , k 2 + iE falls on the essential spectrum of H, 
hence of H (k ), as E W+, so that this limit does not exist in any 
ofthe usual topologies of 2'(L 2, L 2). For kEC+ +, the same 
difficulty occurs as Fig. 1 shows. However, by (3.4) and the 
fact that V is in 18(R"), it is enough that the limits of these 
resolvents exist in the weak topology of 2'(18,18*). 

For the convenience ofthe reader and further purposes, 
in particular the generalization to complex k, we will give 
here a self-contained version of Agmon's a priori estimate 
method. The perturbation theoretic arguments used here are 
also direct adaptations of those of Ref. I to which we will 
often refer. 

Define uo(k) = u(Ho(k)) andpo(k) = C\uo(k). The 
main result of this chapter is the following: 

Theorem 4.1: Let Va short-range potential and 
H= -.d + V. Then 

(i) The limits 

R (k, k 2) = lim R (k, k 2 + iE) 
£.1.0+ 
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exist in the weak operator topology of 2'(18,18*) for all 
kEC+\.I,whereC+ = {zEC,Imz>OI and 
.I = {kEC+, k2EUp (H)U{O}}. 

(ii) R (k, k 2) is meromorphic in C+ \R with simple poles 
on (.IrvR+)\ {OJ and has weakly continuous boundary val
ueson R\.I. 

(iii) If koE(R + nI ) \ { O} , P { k ~} is the corresponding 
spectral projection operator and 

P(k, k~) =B -1(k)P(q)B(k), kER, 

then there exists a real neighborhood v(ko) of ko such that 

R (k, k 2) = (1 - P (k, k ~))R (k, k 2) 

is continuous in the weak operator topology of 2'(18, 18*). 
(iv) Any pole ko of R (k, k 2) on 1"R+ is simple with resi

due - P (ko' k ~), where, in the weak operator topology of 
2'(18, 18*), 

P(ko, k~) = lim P(k, k~) 
k-ko 

IImkl<lkol 

and P (k, k ~) is the analytic continuation to 
{kECjIm k I < Ikoll of B -I(k )P{k~ jB(k). 

(v) R (k, k 2) = R (- k, p)* 't/kEC++. 
(vi) If in addition Vis bounded, then up(H) is a 

bounded set and 

IIR (k, k2)1ly('8.'8o, = O(lk I-I) as Ik 1-00. 
Remarks: (i) We will see in Sec. V that positive eigenval

ues decouple from the scattering amplitude and do not give 
singularities of the cross section. This is a well-known result 
(see, e.g., Ref. 4); it is worth noticing that, in the time-depen
dent approach of Enss and Simon,9 possible positive energy 
eigenvalues do not enter at any place. 

(ii) Property (iii) is not as trivial as it looks; the main 
reason is that, although I - P (k, k ~) projects out of the 
eigenvalue k ~ of H (k ), it is not an orthogonal projection in 
the intermediate space 18(R"), so that it does not necessarily 
have the same decoupling effect as in L 2(R"). 

The proof of Theorem 4.1 is perturbative and involves 
the following sequence of intermediate lemmas. 

Lemma 4.2: (i) The limits 

Ro(k, k 2) = lim Ro(k, k 2 + iE) 
EJ.O'" 

exist in the weak operator topology of 2'(18,18*) for all 
kEC+ \ {O j and are analytic in kEC+ \R with weakly con
tinuous boundary values on R \ {O J. 

(ii) Ro(k, k 2) = Ro( - k, k 2)* 't/ kEC+ +. 
(iii) Let ~ > O. For kEC+, Ik I >~, 

IIRo(k, k 2)IIY('8.'llo,<Clk I-I, 
where C is a constant depending only on ~. 

Proof Existence of Ro(k, k 2) for kEC+ \ {O j in the weak 
operator topology of 2'(18, 18*) follows as in Ref. I from an a 
priori estimate 

Ik Illull'8O(Rn) <C II [Ho(k) - k 2 - iE]uii;a(Rn,, 

uEJf"'2(R") kEC, Ik I>~, EER, (4.1) 

which is proved in Appendix A. 
Actually, (4.1) implies uniform boundedness in 
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J((~, ~*) of Ro(k, k 2 + iE) for k in any compact subset of 
C+ '\ 101 and E> O. Existence of the weak limits as E tends to 
o follows from the consideration of the mean values 
(u,Ro(k, k 2 + iE)U) , where U,U E'ff O'(Rn). We have, forE> 0, 

(u, Ro(k, k 2 + iE)V) 

= ( D(t)u(t) dnt 
JR" (t + kUJ_f - k 2 - iE 

= ( ~(t-kUJ_)u(t-kUJ_)dnt 
JR" t 2 - k 2 - iE ' 

where we have used analyticity of the Fourier transforms u 
and fj to perform the complex change of variables. In the last 
integral, another deformation of contour allows to avoid the 
singularity at t 2 = k 2 when kER'\ { 0 J ; then existence of the 
limits for E = 0 is obvious as well as analyticity of these limits 
in kEC + '\ (O J. Now previously established uniform boun
dedness of Ro(k, k 2 + iE) and density of C(! O'(Rn) in ~(Rn) 
implies existence of the weak limits Ro(k, k 2) in J((~, ~*) for 
kEC + '\ 10 J and continuity in k of these limits. 

To prove analyticity in C+ '\R, we can use again the 
density of C(! O'(Rn) in ~(Rn) and the analyticity of 
(un' Ro(k, k 2)Vn), for Un' UnEC(! O'(Rn), in kEC+ '\R. We have 
shown that such functions are uniformly bounded by 

IIRo(k, k 2)11.Y'(~. ~') Ilun II~ Ilun II~. SO ifun-u, Vn-V in ~(Rn), 
then the limit (u, Ro(k, k 2)U) also is analytic in C+ '\R by a 
well-known result on limits of uniformly bounded sequences 
of analytic functions. From this follows that Ro(k, k 2) is 
weakly analytic in C + '\ R, and hence analytic (Ref. 18, 
p.152-3). 

The symmetry (ii) is obtained by taking the limit E = 0 
m 

Ro(k, k 2 + iE) = Ro( - k, k 2 - iE)*, E> O. 

Hence Ro(k, k 2) obeys Schwarz reflection around lR +. 
Finally (iii) follows from the a priori estimate (4.1) 

giving IIRo(k, k 2 + iE)II.Y'(~. ~') <c Ik I-I for Ik I ~8 and the 
required estimate in the limit E = O. 

Let K (k, z) = VRo(k, z), zEpo(k). Recall [see remark 
(ii) in Sec. lIB] that, if V is a short-range potential, then 
{K (k, z)} is an analytic family of compact operators in ~(W) 
as long as ZE Polk ). 

Lemma 4.3: Let Vbe a short-range potential. Then the 
limits 

K(k, k 2) = limK(k, k 2 + iE), kE C+'\{Oj, 
€~o+ 

exist in the norm operator topology of J((~, ~) and are 
analytic in C+ '\R with norm continuous boundary values on 
R'\ 10}. Furthermore, K (k, k 2) is compact for 
kEC+'\ {OJ. 

Proof The standard compactness arguments of Ag
mon l •

6 imply with some simple modifications that 
K(k, k 2) is compact onL ;(Rn) for! <s <soandalsoon~(Rn). 

Analyticity properties are straightforward conse
quences of analyticity results of Lemma 4.2. 

Lemma 4.4: Let Vbe a short-range potential, kEC + '\R. 
Then 
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(4.2) 

IImk'I<Imk 

in the norm operator topology of J((~, ~), Furthermore, 
the eigenvalues of K (k', k 2) are independent of k' for 
11m k '1<lm k. 

Proof By the same type of arguments as in Lemma 4.2, 
one can show that 

IImk'I<Imk 

in the weak topology of J((~, ~*). By the compactness prop
erties of V, this implies, as in Lemma 4,3, the norm conver
gence property (4.2). Now let tJ = {k 'EC, 11m k 'I < 1m k I; 
the family 1 K (k', k 2), k 'EtJ 1 is an analytic family of 
compact operators in J( (~, ~) since k 2E Polk ') for k 'EtJ. Ac
cordingly, theeigenvaluesofK (k', k 2)arebranchesofanalyt
ic functions.· 8 But, since B (1'), 1'E R, is unitary on ~(Rn), the 
operators K (k ' + 1', k 2) and K (k " k 2) are equivalent for all 
real 1'. So eigenvalues of K (k', k 2) only depend on 1m k', 
which implies that they are constant. This concludes the 
proof. 

Lemma 4.5: Let Va short-range potential. Then: 

(i) -IEO'p(K(k,k 2)), kEC+'\{Oj, iff k 2EO'p(H). 
(ii) Nonzero eigenvalues of H are isolated and have fi

nite multiplicities. The corresponding eigenfunctions are in 
L ;(Rn), for any real s. 

Proof Assume first that kER'\ (O}. Since B (k ) is 
unitary on ~(Rn), it follows that K (k, k 2) has the same point 
spectrum as K (0, k 2). By Lemma 4.4, this is also true for 
kEC + '\ { O}. Then the statements of the lemma follow from 
the well-known Agmon bootstrap argument. 1.6 

The next result is a version of Klein-Zemach theorem4
: 

Lemma 4.6: Let Va bounded short-range potential. 
Then 

(i) Let 8 > O. For kE C+, Ik I ~8, one has 

IIK(k, k 2)11.Y(~.~) <C Ik I-I, 

where C is a constant depending only on 8. 
(ii) O'p (H) is a bounded set. 

Proof (i) This is an immediate consequence of Lemma 
4.2 (iii). 

(ii) This follows directly from (i) and Lemma 4.5 (i). 
Now we come to the following: 

Proof of Theorem 4.1: Since H (k ) = Ho(k ) + V, one 
has by the second resolvent equation 

R (k, k 2 + iE)(1 + K(k, k 2 + iE)) = Ro(k, k 2 + iE) (4.3) 

for E> O. Assume that kEC + '\.2'; then, by Lemma 4.5 and 
the Fredholm alternative, 1 + K (k, k 2) is invertible and, 
by Lemma 4.3, its inverse (1 + K (k, k 2)) -I is the norm 
limit of (1 + K (k, k 2 + iE))-1 as E!O+. Hence, by Lemma 
4.2(i), 

R (k, k 2 + iE) = Ro(k, k 2 + iE)( 1 + K (k, k 2 + iE))-\ 

converges in the weak operator topology of J((~, ~*) as 
E~O+ and 

(4.4) 
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Then, by the analytic Fredholm theorem, Lemmas 4.2(i), 
4.3, and 4.5, R (k, k 2) is meromorphic in C+ '\R with 
poles on (.2'niR +) '\ [ 0) and has continuous boundary values 
on R'\.2'. 

This shows (i) and (ii) of Theorem 4.l. 
Property (v) follows as for Ro(k, k 2) [Lemma 4.2(ii)] 

from taking the limit E = ° in 
R (k, k 2 + iE) = R ( - Ie, Ie 2 - iE)*, E> 0. 

The estimate in (vi) follows from (4.4), Lemma 4.2(iii) 
and Lemma 4.6(i), while the boundedness of up(H) is just 
Lemma 4.6(ii). 

The proof of (iii) is given in Appendix B. 
Finally, we want to investigate the poles of R (k, k 2) on 

lR+. Let k ~E [up(H )nR-]'\ (0). Consider firstP(k, k~) for 
kER; by the O'Connor-Combes-Thomas theorem, 14 

P (k, k ~) is analytic in [kEC, 11m k I < I ko I ) as a compact 
operator-valued family in .!i'(L 2, L 2), hence also in .!i'(~, 
~*). Consider now the Laurent expansion of R (k, k 2) around 
ko' which we can write in the form 

2 N D, A 2 
R(k,k )= L +R(k,k ), 

I~I (k2_k~)1 

where DIE .!i'(~, ~*) and R (k, k 2) is the regular part of 
R (k, k 2) in the neighborhood of ko. Let u, liE ~ 0' (Rn) and 
u(k) = B (k )u, v(k) = B (k lv, kER. These ~(Rn)-valued 

functions obviously have analytic continuations to C. Con
sider, for kEC+ ,\.2': 

g(k) = (u, R (k, k 2)V) 

N (u, Dlv) A 2 
= L + (u, R (k, k )v). (4.5) 

I~ I (k 2 
- k~)' 

For k real, one has also, by unitarity of B (k): 

g(k) = (u(Ie), R (0, k 2)v(k i), (4.6) 

where R (0, k 2) denotes the weak limit in .!i'(~, ~*) of 
(H - k 2 - iE)-1 as E~O+. The rhs of (4.6) has a mero
morphiccontinuation toC+ sinceu(Ie), v(k )andR (0, k 2)do; 
around the pole ko, one has, from the spectral theorem, an 
expansion 

(u(Ie), P [k ~ ) v(k ) 
g(k) = k~ _ k2 

+ (u(Ie), R (0, k 2)v(k i), 
A 

where R (0, k 2) is the reduced resolvent of H. Comparing 
with (4.5), one gets D, = ° for I> 1 and 

(4.7) 

Now, for k real, 

(u(Ie), P [k ~ jV(k) = (u, P(k, k ~)v). 

Since both terms in this equality have analytic continua
tions to [kE C, 11m k I < Ikol j, equality also holds in this 
strip, and therefore (4.7) gives 

(u, Dlv) = - lim (u, P(k, k~)v) 
k-ko 

IImkl<lkol 

showing in particular, since DIE .!i'(~, ~*), that the weak 
limitofP(k, k~) as k-ko, 11m k I < Ikol, exists in .2"(~, ~*). 
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v. PROPERTIES OF THE CROSS SECTION 

In this section and in the following, we will consider 
potentials V such that 

(A) W(x)I<C(l + Ix/)-In+ 11/2(10g(2 + Ixl))-I-E, 

C, E>O. 

We will investigate mostly the non-Born part t (k; w_) of the 
forward scattering amplitude and the total scattering cross 
section u(k; w_} at fixed incident direction w _E S n - I. 

For kER+,\ [OJ, 

t (k; w_) = _l- lim ( Veikw_.x, R (0, k 2 + iE)Veikw-.x ). 

(21Tt E!O+ 

By (3.4), one has 

t(k;w_}=_1_(V,R(k,k 2)V). (5.1) 
(21Tt 

The cross section u(k; w_) is related to the imaginary part of 
t (k; w _) by the optical theorem which will be stated below. 
So let us show first: 

Theorem 5.1: Let V satisfy assumption (A). Then 
(i) t(k; w_) is finite and continuous on R+,\[O). 

(ii) It (k; w_)1 = 0 (k -I) as k-oo . 

Proof Since VE ~(Rn), continuity of t (k; w _) on R + '\.2' 
follows from Theorem 4.1(i}. So we only need to investigate 
t (k; w _) for k in the neighborhood of any point koER + '\ 10) 
such that k ~E up(H). For k near ko, k =lko, we make in (5.1) 
the splitting 

t(k;w_}= (2~t [(k~ _k2)-I(V,P(k,k~)V) 

+ (V,R(k,k 2)V)]. 

The second term on the right-hand side is continuous at ko 
by Theorem 4.1 (iii). Let us show that the first one, which can 
be rewritten as 

(Veikw _.x , P [k 6) Veikw _.X) 

vanishes when k approaches ko. 

For this, since P { k 6l is finite dimensional, it is enough 
to verify that, if CPoEL 2(Rn) satisfies (H - k ~ )CPo = 0, then 

lim (q -k2)-II<V,cpoe-ikW_'X)JZ=0 whenw_eS n- l . 
k_k() 

Since fiJ(H) = fiJ(Hol, one has (Ho - k~)cpo = - VCPo; as 
stated in Lemma 4.5, the Fourie! transform /Po of CPo is in 
~ 00 (Rn) and, accordingly, (VCPo) (kw_) 
= (k~ - k 2)/Po(kw_). So 

(q - k 2)-II(V, cpoe- ikw _'X) 12 = (21T)n(k~ - k 2)I/Po(kw_W, 

which has a zero limit as k--+ko. This concludes the proof of 
(i). 

The asymptotic estimate (ii) follows immediately from 
(5.1) and theorem 4.1(vi). 

The method used in the proof of Theorem 5.1 works as 
well for the analysis ofthe non-Born term t (k; w_, w+l 
given by (3.1). One obtains in this way the following: 

Theorem 5.2: Let V satisfy assumption (A). Then: 
(i) t(k; w_, w+) is finite and continuous on 

(R+ '\ [OJ)XS n - I Xsn - I. 
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(ii) It (k; cu_, cu+)1 = 0 (k -I) as k~oo, uniformly in 
cu±ESn-l. 

Proof With our previous notational convention (3.4), 
one can rewrite t (k; cu _, cu +) as 

t(k; cu_, cu+) = [l/(21Tn<V(k; cu_, cu+), R (k, k 2)V) 
(5.2) 

with V(k; cu_, cu+)(x) = V(x)e ikl
",+ -",_l·x. 

Now V(k; cu_, cu+) is strongly continuous in ~(lRn) for 
(k; cu_, cu+)E(R+ \ 10J) xs n - 1 xs n - I; the verification is 
elementary with the definition of~(lRn). This gives the con
tinuity of t (k; cu_, cu+) for (k; cu_, CU+)E(lR+ \.2') xs n - 1 

Xsn-I. Near koE lR+ \ 10J such that k 6E up(H), one can 
decompose as before 

t(k; cu_, cu+) 

= [l/(21Tn [(k6 - k 2)-I(V(k;cu_,cu+),P(k,k6)V) 

+ (V(k; cu_, cu+), R (k, k 2)V) ]. 

The second term is continuous at ko by Theorem 4.1(iii). 
The first one can be rewritten as 

(k6 _k2)-I(V(k; O,cu+),Plk~JV(k; -cu_, 0); 

one shows that its limit at k = ko vanishes as in the proof of 
Theorem 5.1(i). 

Finally (ii) follows from (5.2) and theorem 4.1(vi). 

We now tum to the analysis of the cross section 
u(k; cu_) given by (3.2). However, contrarily to the case of 
uB(k; cu_), the integral form of u(k; cu_) in terms of Fis not 
very convenient for our purpose. A standard consequence 
of the unitarity of the S matrix is the "optical theorem" 
stating that 

u(k; cu_) = (2C~/1Tk) 1m t(k; cu_). (5.3) 

It is a rather elementary exercise to justify (5.3) under our 
assumption on V, using the connection between the kernel 
of the S matrix and the function T(k; cu_, cu+), namely 

(S - I)(kcu+, k 'cu_) = - 2i1TD (k 2 - k '2)T(k; cu_, cu+). 

From (5.3) and Theorem 5.1 follows our main result on the 
cross section: 

Theorem 5.3: Let V satisfy assumption (A). Then: 
(i) u(k; cu _) is finite and continuous on lR + \ 10 J . 
(ii) u(k; cu_) = 0 (k -2) as k~ + 00. 

Remark: By (3.3) and Lemma 4.2(i), uB(k; cu_) is also 
continuous on lR + \ 10 J . 

To conclude this section, let us give an estimate of the 
correction u(k; cu_) - uB(k; cu_) to the Born approxima
tion of the cross section. 

Theorem 5.4: Let V satisfy assumption (A). Then 

Iu(k; cu_) - uB(k; cu_)1 = O(k -3) as k~oo. (5.4) 

Proof By the optical theorems (5.3) and (3.3), on~ has 

u(k; cu_) - uB(k; cu_) 

2C 2 1 
=_n --lm(V[R(k, k 2)-Ro(k, k2)]V) 

1Tk (21Tr 

2C 2 

- _n _1_ Im< V, R (k, k 2)K (k, k 2)V). 
1Tk (21T)" 
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In the last equality, we have used the resolvent equation 
(4.4). Now, by Theorem 4.1(vi) and Lemma 4.6(i), 

(V,R(k,k2)K(k,k2)V) =O(k-2) ask~+ 00. 

This completes the proof. 

Remark: As noticed in Sec. VII, the estimate (5.4) is 
weakened if V has local singularities. 

VI. ANALYTICITY PROPERTIES OF THE FORWARD 
SCATTERING AMPLITUDE 

Continuation of the scattering amplitude in the com
plex plane is a fundamental problem in scattering theory, 
leading, if one has a suitable low energy behavior (see the 
Introduction), to the powerful dispersion relations 

Ret(k'cu )=...3... (+oo k'lmt(k';cu ) dk' 
, - 1T Jo k ,2 _ k 2 

r 
+ I k 2 ~ k 2 • (6.1) 

} . j 

The sum in the rhs extends over k JE [up (H )nlR -] \ 10 J and 
rj is the "residue" given by (6.2) below. For n;;;.3, the sum is 
finite under our assumption (A) on V. We refer to Ref. 5 for 
a derivation of (6.1). For potential scattering, n = 3, the 
analyticity problem is reviewed in Simon's monograph.4 

Our approach allows a unified treatment in any dimension; 
since we consider only the non-Born part of the scattering 
amplitude, our assumption (A) on the potential weakens the 
traditional decay assumption 

V(x) = O(lxl- 3 -<), e>O, as Ixl~oo, 

in the case n = 3. Indeed, since the Born part is real, it does 
not enter into the dispersion relations which involve only 
the imaginary part of the forward amplitude, whose quo
tient by k is proportional to the scattering cross section by 
(5.3). In this way, our decay assumption (A) on the potential 
appears as optimal as long as physical dispersion relations 
are concerned. 

The main statement of this section is: 

Theorem 6.1: Let V satisfy assumption (A). Then: 
(i) t (k; cu _) has a merom orphic continuation to C + with 

simple poles on (.2'nilR +) \ 10 J . 

(ii) Ifk JE[ up(H)nR-l\ 10J, then theresidueatk = kj 

is given by 

(2kj )-l r; = - [l/(21Tt](V,P(kj,kJ)V), (6.2) 

where P (kj' k])E 2'(~, ~.) is defined in Theorem 4.1(iv). 

(iii) t(k; cu_) = t( - k; cu_), kEC+\.2'. 

(iv) It (k; cu_)1 = 0 (Ik 1-1) as Ik I~oo, kEC+. 

Proof: Since VE ~(lRn) (see Sec. lIB), Theorem 6.1 im-
mediately follows from (3.4) and Theorem 4.1, the mero
morphic continuation of t (k; cu _) being provided by 
[ l/(21Tt] ( V, R (k, k 2) V) . 

VII. HIGH-ENERGY BEHAVIORS FOR SINGULAR 
POTENTIALS 

In the previous sections, we have considered only 
bounded potentials. Here, we allow local singularities of 
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the type 1/lx - xol a
, a < 2. For simplicity, we will consider 

only one singularity at Xo = 0; with more work it is possible 
to extend the results to a finite number of singular centers. 
Notice first that the restriction a < 2 allows us to define 
self-adjoint realizations of -.::l + Von L 2{JR"); we refer to 
Ref. 15 for the various ways to define a self-adjoint H in this 
case. 

For sEJR, we define Ps(x) = 1/lxl s and 
Ps(x) = 1/(1 + Ixl)'; one has 

Theorem 7.1: Assume that Vlx) = v!x)/!xl a with 
vEL 00 (JRn

) and 1 < a < 2. Then, for any s, ! < S < 1, 

(i) II PsR !k, k 2)Psll = O(lk I-I) as Ik 1-00, kEC+, 

(ii) II PsR (k, k 2)psII = 0 (lk 1- 2+ 2s) 

as Ik 1-00, kEC+. 

Remark: Obviously, this result applies as well to short
range potentials having a weaker singUlarity 1/lxl a

, a< 1. 
It shows that the conditions on the potential imposed in 
Theorem 4.1(vi) can certainly be drastically weakened 
without altering the asymptotic behavior of R (k, k 2). 

Pro%/Theorem 7.1: Write V = UW, with U = V Pal2 
and W = Pa12' Let 1/ > O. (i) By the resolvent Eq. (4.4), for 
kEC+ and SEJR, 

PsR (k, k zIps = PsRo(k, k 2) Ps 
-PsR(k, k2)UWRo(k, k 2)Ps· (7.1) 

By Lemma 4.2(iii), 

IlPsRo(k,k2)Psll<Clkl-1, kEC+,lkl>1/. (7.2) 

Applying Theorem C.I to Ps <Ps' ~ <S < 1, we get 

IIWRo(k, kZ)Psll<C'lk 1-2+012+s, kEC+, Ik 1>1/, 

and 

IIPsR(k, k2)UII =O(lk l-2+ a l2+S) aslkl-oo, kEC+. 

Therefore, 

/lPsR (k, k 2)UWRo(k, k 2)ps II 
= O(lk 1- 4 +1>+2S) as Ik 1--00, kEC+. (7.3) 

So (i) holds if 1 < 2s < 3 - a and, since IIPsR (k, k zIps II is 
decreasing in s, it holds for all ~ < s < 1. 

(ii) Replacingps by Ps in (7.1), we have, for sEJR, 

PsR (k, k 2)ps = PsRo(k, k 2)ps 
- PsR (k, k 2)UWRo(k, k Z)Ps' (7.1') 

By Theorem C.l(i), for ~ <s < 1, 

IIPsRo(k,k2)Psll<Clkl-2+2S, kEC+, /kl>1/. (7.2') 

Applying now Theorem C.1, we get 

IIPsR(k, k2)UWRo(k, k 2)Psll 

= OUk 1- 4 +1>+25
) as Ik 1--00, kEC+. (7.3') 

Since a < 2, applying (7.2') and (7.3') in (7.1'), we obtain the 
desired result. 

Applying Theorem 7.1 tot (k; ill_land t (k;ill_,ill+l, we 
obtain 

Theorem 7.2: Assume that V satisfies the following 
condition: V(x) = v(x)llxl a

, with vEL "'(JR"), n>3, and 
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1 <a <2, and, for some E>O, V(x) = O(lxl-(n+ 1112-E) as 

lxi-co. 
Then: 

(i)lfl <a < 1, It (k;ill_ll = 0 (lk I-I), lk l-oo,kEC+. 
(ii)If1 <a <2, It (k;ill_1I = O(ik I-I +0) foranyo > 0, 

as Ik 1-00, kEC+. 

The same result holds for t (k; ill _, bJ +), as k_ + 00, uni
formly in ill ± ES" - 1. 

Before proving Theorem 7.2, we can state its immedi
ate consequence, by means of the optical theorem (5.3): 

Theorem 7.3: Assume that V satisfies the condition of 
Theorem 7.2. Then: 

(i) If I <a <1, u(k; ill_) = 0 (k -2) as k_ + 00. 
(ii) If1,-<a <2, u(k; ill_) = 0 (k - 2 + .5), for any 0 > 0, as 

k- + 00. 

Now we come to the proof: 

Pro%/Theorem 7.2: (i) By (3.4), this is a direct conse
quence of Theorem 7.1(i), since, in this case, VEL ;(JRn

) for 
any s, ! <s < ~ + E. 

(ii) By (3.4), this is a direct consequence of Theorem 
7.1(ii). Indeed, in this case,p -s VEL 2(JR") for S = ~ 
+ 012, 012 < E, and arbitrarily small, and we can write 

< V, R (k, k 2)V) = < p -s V, PsR (k, k 2)ps(p -$ V». 

Remark: For n>4, Itlk; ill_)1 = O(lk I-I) as Ik 1-00, 
kEC+, for any I < a < 2 since, in this case, VEL ;(JR") for any 
s,! <s<! + E. 

Finally, we prove the asymptotic estimate of the cor
rection to the Born approximation of u(k; ill _) which, for 
any a < 2, is weaker than in the case of bounded potentials: 

Theorem 7.4: Assume that V satisfies the condition of 
Theorem 7.2. Then lu(k; ill_) - uB(k; 
ill-)I = O(k -4+a+6) for any 0>0 as k- + 00. 

Remarks: (i) Comparing Theorems 7.3 and 7.4 and 
also 3.1, we see that u(k; ill _) - 0' B (k; ill _) is really a correc
tion to 0' B (k; ill _) since, in any case, the former decreases 
more rapidly than the latter as k-- + 00. 

(ii) In general, it is not clear whether the estimate for 
a> I can be improved by another method. In fact, it seems 
reasonable to expect that, the stronger the singularities of V 
are, the slower is the decay of CT(k; ill_) - uB!k; ill_) for 
large k; this is suggested in particular by the analysis of 
Jensen who obtained in Ref. 11 another estimate in the case 
of the cross sections averaged over all incident directions in 
R3. The potentials considered by Jensen are of the type 
V(x) = (1 + Ix1 2

) -pv(x) with/3> 1 and vEL P(JR3), 
-t < p< + 00, which locally corresponds exactly to our con
dition a < 2; so (for n = 3), he covers a larger class than ours 
in the sense that the local singularities do not have to be in 
finite number. However, his result for the averaged cross 
sections u(k) and uB(k), 

lU(k)-uB(k)1 =O(k -3+ 3/2p) ask_+ 00, (7.4) 

coincides with ours only for p = + 00, that is a = 0 (see 
our Theorem 5.4) and is weaker for -t < p < + 00, that is 
0< a < 2. For example, for a = 1 (Coulomb and Yukawa 
potentials), (7.4) becomes 
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lCT(k1-uB(k11 =O(k -5/2+
li 1, forany8>0, as k-+ oo , 

while our Theorem 7.4 gives 

Iu(k; lU_1 - uB(k; lU_)1 

=O(k -3+li) forany8>0, as k-+oo. 

Pro%/Theorem 7.4: As in the proof of Theorem 5.4, 
one has 

u(k; lU_) - uB(k; Ul-1 

2C~ 1 2 2 
= - ---Im(V,R(k,k 1UWRo(k, k )V). 

1Tk (21Tr 

Using the same trick as in the proof of Theorem 7.2, this 
implies that, for s = ! + 8/2,8/2 < E and arbitrarily small, 

Iu(k; Ul_) - uB(k; lU_)1 

2C~ 1 211 2 2 <---llp-sVII PsR(k,k )UWRo(k,k )VII· 
1Tk (21T) " 

So, by (7.3/) 

Iu(k; Ul_) - uB(k; Ul_)1 

= 0 (k - 4 + a + li) for any 8 > 0 as k-+ + 00. 

VIII. DILATION ANALYTIC POTENTIALS: ANALYTIC 
CONTINUATION ON THE UNPHYSICAL SHEET 

We recall that a potential is said to be dilation analytic 
if the family { VA' AER + 1, where VA (x) = V (A -I x), has an 
analytic continuation as a family of compact operators 
from ~(R") to L 2(JR"). We refer to Ref. 19 for the investi
gation ofthe family {H (A ) = A 2 Ho + VA J and in particular 
a proof that it is analytic oftype A with essential spectrum 
A 2JR +, its point spectrum containing, in addition to the 
point spectrum of H, some complex eigenvalues in the sec
tor (ZEC, 2 arg A < arg Z < 0 J, in case arg A < O. Such com
plex eigenvalues are commonly interpreted as reson
ances. 20 Actually, we could now repeat the arguments of 
Sec. IV, using the dilation group instead of the boost group, 
provided the potential is dilation analytic. We refer to Ref. 
14(b) for details. The important point is that this extra as
sumption allows to reach regions { kEC, ()o < arg k < 0 land 
to prove meromorphy of the scattering amplitude in these 
regions, with possible poles only at resonance eigenvalues. 
We will not develop the detailed proofs; they are developed 
and used in Ref. 21 in the special case of electron-atom 
scattering. 
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APPENDIX A: A PRIORI ESTIMATE FOR Ho(k) 

Following Agmon, I we establish the a priori estimate 
used in the proof of Lemma 4.2(iii). In fact, we prove it for 
any k = (kl' ... , k" )EC" and not only for klU_, where kEC 
and lU _ is a unit vector in JR". 

Before this, we need to list some properties of Besov 
norms. 2 First, recall the following two equivalent norms on 
l!3(JRn

): 
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Ilull'8> = sup [_1_ ( lu(xW dX] 112 
]>0 Rj J[Jj 

(see Sec. II for the definitions of Rj and nj ) and 

lIull~> = sup [~ ( lu(xW dX]ll2. 
R>I R J1xl<R 

Let now rpE cr; O'(JR"), rp>O, rp(x) = 1 for Ixl < 1 and 
supp rpC (XEJRn

, Ixl <2N J for some N> 1. 

Define rpY(x) = rp(rx) for 0 < r< 1, 

Y ( ) _ 1 y(x) " R 1 rpR X - R 1/2 rp Ii lor > 

and 

If X is the characteristic function of supp rp, define sim

ilarly X Y, X ~, and lIull~~. 
One can easily prove that 

(AI) 

and 

(A2) 

and it is not much more difficult to show that we have also 

(A3) 

and 

(A3/) 

Therefore, all the norms 11,11'8>' II'II~>, II'II~:, and II'II~: are 
equivalent. 

Now we can state: 

Theorem A.I: Let 8> O. Then, for any UE ~(JR"), 
kEC", Ik I >8, and EEJR, 

Ik Illull'8>(R")<CII(Ho(k) - k 2 
- iE)ull'8>(R"I' (A4) 

where C is a constant depending only on 8. 

For the proof of this theorem, we need four lemmas. 

Lemma A.2: For any UE jY'1(JR) and AEC, 

IIUII'll>(R)<II(~ -A )ull . 
dx L'(RI 

(AS) 

Proof We can assume Re A <0 without loss of genera
lity. Let/ = (d /dx - A )u. 

If/EEL I(JR), then the right-hand side of (AS) is infinite 
and there is nothing to prove. Suppose then/a I(JR). We 
have 

u(x) = f: '" fIt )e" (x - t I dt. 

Thus 

So 

IU(X)I<f_+",'" If(t)1 dt= IIfIIL'(R)' 

(lu(xWdx<Rjllflli'(R) 'tij>O J[Jj 
and finally 
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Lemma A.3: Let x = (x)' x'), where x' = (xz' ... , xn). 
Then, for any uE~(Rn), 

Proof Set U = l:t=) uj ' where uj = Xju and Xj is the 
characteristic function of flj • 

Then 

L+",,"" Ilu(x),)IIL'IR" ~ I) dx)\t) J~+ ",,"" Iluj(x),lIIL'IR"~ I) dx). 

For anyj, since uj(x), x') = 0 for any x'ERn-) if Ix)1 >Rj' 

L+",,"" lIuj(x),lIIL'IR"~ I) dx) 

= J:~ Iluj(x),)IIL'IR"~I) dx). 
) 

By Schwarz inequality, this gives 

J
+"" 

_ "" lIuj(x),)IIL'IR"~ I) dx) 

<~2Rj(i Iluj(x),)II~'IR"~I) dxJ12 

= ~2Rj (i" luj(xW dx ) liZ 

= v1(Rj L lu(x)I Z dx ) liZ. 

) 

So finally 

L+",,"" Ilu(x),)1I L'IR" ~ I) <Y2llulI~IR")' 
Lemma A.4: Let Dj = - iJIJxj • For any UE JV2(Rn), 

kEcn, ZEC, andj = 1, ... , n, 

II(Dj + kj)ulI~.IR")<2v1II(Ho(k) -z)ull~IR")' 
Proof It is sufficient to prove the estimate for 

UE Crfi O'(Rn). Consider first the case n = 1. Let D = - id 1 
dx, kEC,ZEC, andAECsuch thatz = -A z. By LemmaA.2, 
we have 

II(D + k )ull~.IR) 

So 

<H II [i(D + k) + A ]ull~.IR) 

+ II [i(D + k) - A ]UII~.IRd 

<H II [i(D + k) -A ][i(D + k) +A ]uIIL'IR) 

+ II [i(D + k) +A ][i(D + k) -A ]uIIL'IRd 

= II[ -(D+kf-AZ]uIIL'IR)' 

II(D + k )ull ~.IR) < II [(D + k)Z - Z ]uIIL 'IR)' 

Let now n be arbitrary and choosej = 1. Write 
k = (k), ... , kn)Ecn, u(x) = u(x), x'), where x' = (xz' ... , xn) 
and denote by iI(x), p') the Fourier transform of u with re
spect to x', withp' = (Pz, ... ,Pn)' 

The result for n = 1 gives us, for any fixed p', 
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II(D) + kdil(·, p')II~.IR) 

<II [(D) + k))Z + (pz + kzf + ... 
+ (Pn + kn)Z - z] iI(·, p'lIlL '(R)' 

Therefore, by (AI), we have, for any R > 1, 

J... r I(D) + kdil(x), p'W dx) 
R J1x,1 <R 

<4(L+oo"" [(D) + k))Z + (pz + kz)z + ... 

+ (Pn + knf -z]iI(x),p') dx)Y. 

Integrating now both terms of this inequality with re
spect to p' and applying, on one hand, Schwarz inequality 
to the integral of the right-hand side, and, on the other 
hand, Parseval's formula, we obtain 

J... r I(D) + kdu(x) IZ dx 
R J1X,I<R 

<4(L+",,"" II [Ho(k) -z]u(x), ')IIL'IR"~I)dX)r 
By Lemma A.3, the right-hand side of this inequality is 
smaller than 

811(Ho(k) - z)ull~IR")' 
By (AI), 

II(D) + k))ull ;.IR") <sup J... r I(D) + k))u(xW dx 
R>I R J1xl<R 

So, finally, 

II(D 1 + k))ull~.IR") <811(Ho(k) - z)ull~(R") 

for any UE '1ff O'(Rn) and in fact for any UE JV2(Rn) by a den
sity argument (see Ref. 1). 

Lemma A.5: Let 8> O. Then, for any UE JV2(Rn), 
kE en, Ik 1;:;.8, and EE R, 

Ik Illull~.IR")<CD(II(Ho(k) - k
Z 

- iE)ull~.IR") 

+ 2jtl II(Dj + kj)ull~.IR")). (A6) 

where CD is a constant depending only on 8. 

Proof Let k = a + ibE Cn and EE R. 
We prove first (A6) with L z-norms. Let 

n 

F(p)= l(p+kf-kZ-iEIZ+4 I Ipj +kjIZ. 
j=) 

An easy estimate shows that, for I k 1;:;.8, 

F(p);:;.Crfi~ Ik IZ, where Crfi~ = min(2, 8 2/4). (A7) 

Let now uECrfi 0' (Rn). Multiplying both sides of (A 7) by 
I iI( pW, integrating on Rn, and applying Parseval's formula, 
we get, for any kEcn, Ik 1;:;.8, and EE R 

n 

Crfi~ Ik IZlIuIl 2<II(Ho(k) - k Z - iE)ull Z + 4 I II{Dj + kj)ull Z 
j=1 

and then 
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n 

'G' 81k Illull<II(Ho(k) - k 2 - iE)ull + 2 I II(Dj + kj)ull· 
j=1 

(A8) 

Let now q;1 , 0 < r< 1, and R > 1, as defined in the beginning 
of this appendix, and apply (A8) to q;1 UE 'G' O'(JRn

): 

'G' 81k 111q;1 ull < II(Ho(k) - k 2 - iE)(q; 1 ulll 
n 

+2III(Dj+kj)(q;1ulll. (A9) 
j= 1 

Remark now that, for any a = (a l' ... , an)' 
lal =a1 + ... +an,xEJRn, andR> 1, 

ID aq;1(x)1 <rCa (q;)XR (x), (AW) 

where Ca(q;) = CasuPl<lal<21ID aq;t ~IRn), Ca depending 
only on a. 

By means of(AIO), we can evaluate the right-hand side 
of(A9): 

II (Ho(k ) - k 2 - iE)(q; ~u)11 

<11q;1(Ho(k) - k 2 - iE)U II 
n n 

+ 2 I II (Djq; 1 )(Dj + kj)ull + I II(D Jq; 1 )ull· 
j= 1 j= 1 

So 

II(Ho(k) - k 2 - iE)(q; ~ulll 

<11q;1(Ho(k) - k 2 - iE)ull 
n 

+ r 2Cl(q;) I IlxR(Dj + kj)ull + r nC2(q; 1I1xRuil 

and 

So 

j= 1 

(All) 

II(Dj +kj)(q;1u)II<IIq;1(Dj +kj)ull +rCl(q;lIlxRUII· 
(AI2) 

Applying (All) and (AI2) in (A9), we have 

n 

<11q; 1(Ho(k) - k 2 - iE)ull + 2 I 11q; 1(Dj + kj)ull 
j=1 

+r[2Cl(q;)jtlIIXR(Dj +kj)ull 

+ n(C1(q;) + C2(q; ))llxR ull]. 

Take the supremum over all R > 1. This gives, using (A2), 

CrfJ 81k Illull~. 

<II(Ho(k)-k2_iE)ull~: +2± II(Dj +kj)ull~: 
j=1 

+ r[2C1(q; )11(Dj + kj)ull~: 

+ n(Cdq;) + C2(q; ))llull~:]· 
Applying (A3) and (A3') in (Al3), we get 
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(Al3) 

'G'8Iklllull'B·<2NI2
+

1 

X [11(Ho(k) - k 2 - iE)ull'B' + 2jtl II(Dj + kj)ull'B' ] 

+ rI/22N12[ 2CI(q;)jtl II(Dj + kj)ull'B' 

+ n(CI(q;) + C2(q; ))lIull~. ]. (AI4) 

Since 0 < r< 1, (AI4) gives, setting 
C8 = 2N12 + 1(2 + Cdq;))I'G' 8: 

Ik Illull'B> <!C8 [11(Ho(k) - k 2 - iE)ull~. 

+ 2jtl II(Dj + kj)ull'B> ] 

+ Ik Irll2 2NI2n(c~~ + C2(q; )) Ilull~ •. 
8 

Finally, choosing r such that 

r l/2 2N 12n(CI(q;) + C2(q;) )/8CrfJ 8 <! 
(AI5) becomes 

Ik I Ilull~. <C8 (11(Ho(k) - k 2 - iE)ull~. 

+ 2jtl II(Dj + kj)ull~.). 

(AI5) 

which is the desired result for UE 'G' O'(JRn
). The result for 

UE JIr2(JRn
) follows again by a density argument. 

Now, we can give: 

Pro%/Theorem A.l: Let UE JIr2(JRn), kE en, Ik 1;;;08, 
and EEJR. By Lemma A.5, 

Ik Illull'B' <C8 [11(Ho(k) - k 2 - iE)ull~· 

+ 2jtlll(Dj + kj)ull~·l 
By Lemma A.4, 

II(Dj + kj)ull~. <2v'LII(Ho(k) - k 2 - iE)ull~. 

Thus, finally, 

Ik Illull~. <C8 (I + 4v'Lnlll{Ho(k) - k 2 - iE)ull~ 

since 

II·II'B· <II·II~· 

APPENDIXB 

We provide here the tools for the proof of (iii) in 
Theorem 4.1. 

Lemma B.l: Let Vbe a short-range potential. Then, if 
k ~ E£Tp (H )nJR + , k ~ # 0, there exists a real neighborhood 
v(ko) of ko and a norm continuous family (r (k ), kEV(ko) 1 of 
bounded linear operators on ~(JRn) such that 

(I-P(k, q))(1 +K(k, k 2))r(k)= I-P(k, k~) 

and, for kEV(koh( ko 1, 
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(1 - P(k, k~))R (k, k 2) = (1 - P(k, k~))Ro(k, k 2)r(k). 
(Bl) 

Proof We refer to Refs. 1, 6, and 22 for a proof that the 
null spaceN(I + VR (0, k~)*) isP! k~ J.l1'. Equivalently, 

N(1 +K(ko, k~)*)=P(ko, k~).l1'. (B2) 

Actually, since PI k ~ J is finite-dimensional and 
P ! ~ IL 2(Rn) CL :(Rn

) for all seR, P (ko, k ~) is a bounded 
operator on ?B(Rn) and ?B*(Rn). This also applies to 
! P (k, k ~), keR J , which is readily seen to be norm contin
uous in keR on both ?B(Rn) and ?B*(Rn

). Now, by (B2), the 
range of 1 + K (ko, k~) is equal to (1 - P(ko, k ~))?B(Rn); in 
fact, both subspaces are closed, since K (ko, k ~) and 
P (ko, k ~) are compact on ?B(Rn), and they have the same 
annihilator in ?B*(Rn), namely, P (ko, k ~)L 2(Rn). By the gen
eral theory of Fredholm operators,23 there exists a bounded 
linear operator r (ko) on ?B(Rn) such that, with Q (ko, k~) 
= 1 - P(k, k ~), one has 

(1 + K(ko, k 6))F(ko) = Q(ko' k 6)· 

Consider now A (k) = Q(k, k 6)(1 + K(k, k 2)); then 
! A (k ), keR \ ! 0 11 is norm continuous in k on ?B(Rn) since 
both factors are. Since, furthermore, the kernels and coker
nels of A (k ) and A (ko) have the same dimensions for k in a 
neighborhood v(ko) of ko, there exists a continuous family 
{r (k ), kev(ko) I of right pseudo-inverses of A (k) such that 

A (k)F(k) = Q(k, k~). 

Now, applying R (k, k 2) to the left of this equality, 
kev(kol\ {kol, one gets 

R(k, k 2 )Q(k, k6) 

= R (k, k 2)Q(k, k~)(1 + K(k, k 2))F(k) 

= Q (k, k 6 )Ro(k, k 2)r (k ). 

In the last equality, we have used the easily justified 
R (k, k 2 )Q(k, k6) = Q(k, k 6)R (k, k 2) and (4.4). 

Lemma B.2: (1 - P(k, k~))R (k, k 2
) satisfies (iii) of 

Theorem 4.1. 

Proof This follows immediately from (B 1) since 
Q (k, k 6) and F (k ) are norm continuous on ?B*(Rn) and 
?B(Rn), respectively, for kev(ko) and Ro(k, k 2) is weakly con
tinuous in .2"(?B, ?B*) by Lemma 4.2(i). 

APPENDIXC 

We give a technical estimate, based on scaling argu
ments, which is needed in the proof of Theorem 7.1. 

Theorem C.l: Assume that V satisfies the condition of 
Theorem 7.1. Then, for! <Sl' S2 < 1, one has 

(i) II Ps, Ro(k, k 2) Ps,lI 

=O(lkl-2+s,+s,) aslkl-+oo, keC+, 

(ii) II Pal2R (k, k 2) Ps,lI 

= O(Ik 1 -2+<>/2+S,) as Ik 1-+00, keC+. 

Proof (i) We show this result first for Ro(k, k 2) and for 
keR +. The proof extends easily to keC+ . An essential role 
is played by the fact that, for O.,;;s < 1, Ps is a bounded map 
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from .l1'+ I(Rn) to L 2(Rn) and from L 2(Rn) to .l1'-I(Rn) (see, 
e.g., Ref. 15). Accordingly, Ps, Ro(k, k 2 + iE) Ps, makes 
sense as a bounded operator on L 2(Rn) for E> O. By unitar
ity of the scalingtransformationD (k): u(xJt-+k n/2u(kx) and 
since D -I(k )Ho(k)D (k) = k 2Ho(I), one has 

II Ps, (Ho(k) - k 2 - iE)-lps,1I 

= k -2+s, +s'll Ps, (Ho(1) - 1 - iEk -2)-lps,ll 
=k -2+ s,+s'IIPs,(Ho-I-iEk-2)ps,ll. 

So it remains to show that the last factor on the rhs of 
this equality is uniformly bounded on L 2(Rn) as k-+ + 00, 
E ~O+. Using the first iteration of the resolvent equation and 
the fact that,os, {Ho - 1 - iEk 2)-I,os, is uniformly bounded 
for Sl' S2 >! by Agmon's theory, I it is enough to show that 
Ps,(Ho + l)-lps"Ps,(Ho + 1)-2ps" andps,(Ho + I)-Ips, 
are bounded. For the first two terms, this follows from the 
previously mentioned properties of the mappingsps' For 
the last one, it is enough to use the commutation property 

Ps, (Ho + I)-Ips, 

=,os, Ps,(Ho + 1)-1 

+Ps,(Ho + 1)-I[Ho,,os,](Ho + I)-I. 

It is easy to show that, since S I < 1, the commutator 
[Ho, ,os~ I] is Ho-bounded, so that [Ho, ,os, ] (Ho + 1)-1 is 
bounded on L 2(Rn). The other terms,os, Ps, (Ho + 1)-1 and 
Ps, (Ho + 1)-1 also are by relative boundedness arguments. 

(ii) We now apply this result to R (k, k 2); by the second 
resolvent equation 

PaI2R(k, k2)ps, =Pa/2Ro(k, k2)ps, 

- PaI2Ro(k, k 2)U Pa/2R (k, k 2) Ps,' 

where U = V Pa/2' By (i), II Pa/2 Ro(k, k 2)U II = 0 (k - 2 + a) 
as k-+ 00 , so that, for k large enough, 1 + P a/2 Ro(k, k 2) U is 
invertible and 

Pa/2R (k, k2)ps, 

= (1 + PaI2Ro(k, k 2)U)-IPa/2Ro(k, k 2) Ps,' 

which concludes the proof by another application of (i). 
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Finite rank approximation of wave operators for short-range 
and Coulomb interactions 
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For the two-body system wave operators are shown to be strongly approximatable by finite rank 
operators which are obtained from finite rank approximations of the full and asymptotic 
Hamiltonian in the sense of strong resolvent convergence. This is demonstrated for short-range 
potentials plus the Coulomb potential with expansion functions chosen in momentum space as 
step functions. A generalization to the N-body system is indicated. 

PACS numbers: 03.65.Nk, 02.60. + y 

I. INTRODUCTION 

In a previous paperl a new approach has been suggested 
by the author for the calculation of quantum mechanical S
matrix elements between wave packets. It is based on strong 
approximations of the wave operators by exponentials of 
bounded or even finite-rank operators. The approximation 
using finite-rank operators is practically very convenient be
cause the calculation of the approximate wave operator es
sentially reduces to the diagonalization of two finite, real, 
symmetric matrices (corresponding to the full and asympto
tic Hamiltonian). In Ref. 1 the finite-rank approximation has 
been derived as a second step from an approximation of the 
wave operators by exponentials of bounded (but not finite
rank) operators. In the first step the approximation of wave 
operators by exponentials of bounded operators is achieved 
by some "deformation" of the unbounded Hamiltonians. 
For example, the kinetic energy Hamiltonian H ° is substitut
ed by a bounded Hamiltonian H ~ 

H°---+H~ = E IS arctan(SHOIE) , (1.1) 

where E > 0 is a scaling factor of energy dimension and S > 0 
is an approximation parameter. If, in the simplest case, the 
potential Vis a bounded operator (which is not valid for the 
Coulomb potential), one can substitute the full Hamiltonian 
H by a bounded Hamiltonian H S via 

H---+Hs = H~ + V. (1.2) 

If the Moller wave operator .0 (±) is substituted by nS •T via 

.0 (±) = S - lim exp(iHt) exp( - iHOt) 
t_ =F 00 

(1.3) 
---+flS.T = exp(iHsT) exp( - iH~T) , 

it can beshownl thatns.T tends strongly ton (±) for suitably 
chosen S---+O, T ---+ + 00. 

This approach can be generalized to include a large 
class of short-range unbounded potentials, like, e.g., the 
Yukawa potential, if the wave operator exists and the poten
tial can be "deformed" to a bounded one. Also the Coulomb 
potential can be included which requires "deformations" of 
HO, of Dollard's anomalous term in the wave operator and 
of the Coulomb potential. 

In a second step an approximation of the wave opera
tors by exponentials of finite-rank operators was intro-

duced, 1 which, in the simplest case of a bounded short-range 
potential, substitutes 

H~---+H~.N = PNH~PN , (1.4a) 

Hs---+Hs.N = PNHsPN , (l.4b) 

where P N is an orthogonal projector on the first N elements 
of a complete orthogonal function system. Substituting 

ns,T---+nS.N.T = exp(iHs.NT) exp( - iH~.NT), (1.5) 

one can show 1 that .0 S.N. T tends strongly to .0 ( ± ) for suitably 
chosen S---+O, N---+ 00, T ---+ =+= 00. 

For practical calculations the approximation by expon
entials of finite-rank operators seems very convenient be
cause its evaluation basically means the diagonalization of 
the finite, real, symmetric matrices corresponding to 

HS.N,H~.N' 
This approach has been tested in practical calculations 

of S-matrix elements in the two-body system with a short
range potential, with a Coulomb potential and with a sum of 
both, and was found to give results converging to the refer
ence solution.3 Also it has been applied in the three-body 
system for p + d scattering.4

.5 The first results demonstrate 
the practical applicability of the method. 

In practical calculations it has turned out, however, 
that the approximation by exponentials of finite-rank opera
tors can be obtained directly from projections, i.e., by avoid
ing the "deformations" which were intended for the boun
dedness of the approximate Hamiltonians. For a bounded 
short-range potential that means 

H°---+H~ = PNHoPN , 

H---+HN = PNHPN , 

.0 (± )---+nN.T = exp(iHNT) exp( - iH~T) . 

(1.6a) 

(1.6b) 

(1.6c) 

The validity of the direct approximation of wave operators 
by exponentials of finite-rank operators, Eq. (1.6), compared 
with the indirect one, Eqs. (1.4), (1.5) would improve and 
strengthen the method because one source of numerical er
ror could be avoided. It is the aim of this paper to demon
strate that the direct approximation is actually valid. In par
ticular we will prove it for bounded or H ° -relatively bounded 
short-range potentials and also the Coulomb potential, using 
as expansion functions the step functions in momentum 
space. 

1875 J. Math. Phys. 25 (6). June 1984 0022-2488/84/061875-06$02.50 @ 1984 American Institute of Physics 1875 



                                                                                                                                    

In Sec. II. we discuss the two-body case. In Sec. III a 
generalization to the N-body case is indicated. 

II. TWO-BODY SYSTEM 

In the two-body system we assume that the center of 
mass motion can be split off and consider only the relative 
motion. For simplicity we drop spin dependence. which can 
be included also. (The notation is taken from Ref. 1.) I quote 
a result given by Weidmann. 6 which will be used in the fol
lowing. 

Definition of strong resolvent convergence (src). Let 
Tn (nEN). Tbe self-adjoint operators with domains 
D (Tn ). D (T). respectively. in a Hilbert space dY'. Tn is said 
to converge to T in the sense of strong resolvent convergence 

if(z - Tn)-I~(z - T)-I for some ZEC '\lR. 

Theorem on src: Let Tn (nEN). Tbe self-adjoint opera
tors with domains in a Hilbert space dY'. Assume there is a 

core C of T. i.e .• a subset of D (T) with the property TI c = T. 
For every f EC. let fED (Tn) for n larger than some no and 
Tn f-+ Tf Then Tn converges to T in the sense of src. More-

s 

over u( Tn )-+u( T) for every continuous bounded function u 

defined on K. in particular exp(iTn)~ exp(iT). 

In the following we want to use this theorem. Thus we 
have to find cores c.cas for the Hamiltonian H and the 
asymptotic Hamiltonian Has. respectively. and finite-rank 
Hamiltonians Hn.H ':." such that for fEC Hn f-+Hf, for 
gECas H~s g-+Hasg. 

In the following we use the momentum space. which 
means in this section the relative momentum between the 
two particles. We denote by dY' = !f 2(K3) the usual Hilbert 
space and dY'0 by 

dY'0 = {h (q) If'" dq q21h (qWexists} (2.1) 

with the usual scalar product. 
We want to deal with the expansion functions above 

referred to as step functions. 
Definition 1: ForeachNEN let [q\N)li = 1 ..... N + 1} de

note a monotonous discretization of the interval [O.q~~i]. 
with q\N) = O. qWlI = q~~i. such that with increasing N 

Let 

h \N)(q) = a\N)8 (q - q\N))8 (q\~ I - q) • 

where a\N) normalizes h \N) to 1. i.e .• 

a\N) = (! . (q\~ I 3 _ q\N)3)) -1/2. 

The functions h IN). i = 1 ..... N; N = 1.2 .... form a complete 
basis of dY' 0. with 

(h (N)lh (N) = 0 ... 
I ) ij 

Hence. 

N 

PN = L Ih IN) (h IN)I 
i= 1 
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is an orthogonal projector on dY'0 with 

From this set of expansion functions on dY'0. one can con
struct a set of expansion functions on dY'. e.g .• by using the 
spherical harmonics Y1m 

h IX~ (q) = h \N)(q) Y1,m (q) . 

Hence. 

is an orthogonal projector on dY' with 

Now we claim 
Proposition 1: Let D = D (H 0) = [¢ 1¢EdY'.H 0¢EdY'}. 

For each t/JED and using the projectors given in Definition 1 
one has 

(i) HOPN¢-+Ho¢. 
(ii) PNHoPN¢-+Ho¢. 

(2.2a) 
(2.2b) 

Proof The proof would be trivial. if H ° would be bound
ed. which is not the case. But H ° is rotationally symmetric 
and acts in the space of the angular variables q like a con
stant. hence it is sufficient to consider HOIJYo' with 
Do = [¢ 1¢EdY'0. HO¢EdY'o}' One has for t/JEDo 

N 

IIHoPN¢11 2 = L (¢Ih IN)(h \N)IH02Ih IN)(h IN)I¢) • 
;= 1 

(2.3) 

where the H 02 matrix elements vanish off the diagonal which 
is a property of the step functions. One can estimate (omit
ting the upper index N) 

.;; a/¢/ (f'+1 dqq2y = ¢/Ia/. 

- 2 12 where ¢; = SUPqe[ q"q, + I ]1 ¢(q) and 

(h; IH02Ih;) = f'+ I dq q2 a/(i:r 

where 

.;;a/ H?2 rq

,+ I dq q2 = H?2. 
)q, 

H
02 q q;+1 ( 2)2 (2 )2 
.= sup - =--
I qe[q"q,+ d 2m 2m 

Hence. 
N _ 

IIHoPN¢1I 2.;; L '¢/a; -2 H?2 
j= 1 

N rqi + 1 --2 

= i~1 )q, dq q2 ¢;2 H? . 

The expression on the rhs is an upper sum of 

feu< dq q2 1¢(qW (i:r 
Helmut KrOger 
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Because of t/JEDo that integral exists in the limit qcut - 00, 

yielding IIH°tPII2. The upper sum 

it! [,'+ 1 dq q2 fi,/ H?2 

tends with N- 00 to the same limit, because by Definition 1 
q~rv..i-oo,..:i (N)-o, hence IIHoPNtPlI, N = 1,2 ... has no accu
mulation point larger than IIH °tPll and there is an upper 
boundM>O, 

IIHoPNtPll <M, N = 1,2,.. . (2.6) 
s 

Because PN-I, one has for every tP', t/JEDo 

(tP'IHoPNltP) = (H°tP'IPNtP) 

_(H°tP'ltP) = (tP'IHoltP) . (2.7) 

Because D (H 0) is dense in JY (see, e.g., Ref. 7), Do is dense in 
JYo, and IIHoPNtPll is bounded [Eq. (2.6)], one has for every 

t/>e%o, t/JEDo 
(t/> IHoPN ItP)-(t/> IHoltP) , (2.8a) 

i.e., 

Now we claim for t/JEDo 
lIB ° P NtPll-IiH °tPll 

(2.8b) 

(2.9) 

IIH oF N tPlI, N = 1,2, ... has no accumulation point larger than 
IIH°tPll. Ifa subsequence IIHoPN.tPlI, N'EN would have a 
smaller accumulation point 

then 

I (H°tPIHoPN·tP) 1<IIH°tPIIIIHoPN·tPll 
-IIH°tPI12 - t5IIH°tPll , 

but (2.8b) implies 

(H °tPIHoPN·tP)-IIH °tPII2, 

which contradicts (2.11) and thus establishes (2.9). 
Now Eq. (2.8b) and (2.9) together imply for t/JEDo 

(2.10) 

(2.11) 

(2.12) 

HOPNtP-H°tP. (2.13) 

Because PN is an orthogonal projection, IIPNII = 1, and be
cause of (2.13), one can estimate for t/JEDo 

IIPN(HOPNtP-H°tP)II<IIPNlIllBoPNtP-H°tPll-o· 

Because PN~I, tfEDo, H°t/le%o one has 

Equations (2.14), (2.15) imply 

PNHoPNtP-H°tP . 

(2.14) 

(2.15) 

(2.16) 

The generalization ofEqs. (2.13), (2.16) on JYo to Eq. (2.2) on 
JY is straightforward due to the rotational symmetry of HO. 

If we want to also treat the case where the Coulomb 
interaction is involved, Dollard's anomalous term2 in the 
asymptotic Hamiltonian has to be approximated. It can be 
written as 
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A C(t) = sign(t) (;0) 1/2 e1e210g (41t IHO) 

and the time-dependent asymptotic Hamiltonian as 

HOc(t) =Ho.t +A C(t). 

Proposition 2: Let D = D (HOC(t)) 

(2.17) 

(2.18) 

= It/> I t/>e%,HOC(t )t/>e%J. For each t/JED and using the pro
jections from Definition lone has 

(i) HOC(t )PNtP-HOC(t)tP, 

(ii) PNHOC(t)PNtP_HOC(t)tP· 

(2.19a) 

(2.19b) 

Proof Also HOc(t) is an unbounded but rotationally 
symmetric operator and one can proceed similarly as in Pro
position 1. We consider HOc(t )Iyo with 
Do = It/> It/>e%o, HOC(t) t/>e%oJ. D is dense in JY and Do is 
dense in JYo' For t/JEDo one has 

N 

IIHOC(t )PN tPll 2 = I (tPlh IN) (h IN)IHOC(t )21h IN) (h IN)ltP) 
j=! 

and 

(h j IHOc(t )2Ih j ) 

= i q

,+ 1 dq q2a/[.!L.t 
9, 2m 

+ sign(t) : e1e2 10g C!2 1t I) r 
<a/ HOc(t)/ r9

'+ 1 dq q2 = HOc(t)/, 
)qj 

where 

HOC(t )j2 

(2.20) 

(2.21) 

= sup [.!L.t + sign(t) m e1e2 10g ( 2q2I t 1)]2 . 
qe[q"q,+ d 2m q m 

Hence 
N 

IIHOc(t )PNtPI1 2< I tP,za j -2 HOC(t )/ 
i= I 

(2.22) 

The rhs is an upper sum of 

Because t/JEDo this integral exists in the limit qcut-oo yield
ing IIHOC(t )tPI12. The upper sum 

it! [,'+ 1 dq q2 tPj 2 HOC(t )j 2 

tends with N-oo to the same limit, because of 
q~rv..i-oo,..:i (N)-o, hence IIHOC(t )PNtPll, N = 1,2, ... has no 
accumulation point larger than IIHOC(t )tPll. 

The rest of the proof is quite analogous to the steps in 
the proof of Proposition 1. 

Now we have to establish the same kind of result for the 
full Hamiltonian H as was established in Propositions 1 and 
2 for the asymptotic Hamiltonian. 
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Proposition 3: Let P N denote the orthogonal projectors 
from Definition 1. 

(i) If V is bounded one has 

(2.23a) 

(ii) If Vis relatively bounded with respect to H ° one has 
for t/IED (H 0) 

(2.23b) 

Proof: (i) is trivial. 
(ii) is called relatively bounded with respect to H°,7 if 

D (H°H;;;;D (V) and there are a > 0, (3) 0 such that 
for each t/IED (H0) 

I 1Vif'1 I <allif'11 + (3 IIH°if'11 . (2.24) 

Because range (PNH;;;;D(HO), N = 1,2, ... , one implies for 
t/IED(HO) 

IIV(PN -1)if'II<all(PN -1)if'11 +(3IIH °(PN -1)if'11· 

(2.25) 

The rhs tends to 0 with N---+ 00 because P N~ 1 and because of 
Proposition 1. 

Moreover 

P N Vif'---+ Vif' . (2.26) 

Thus Eqs. (2.25), (2.26) and IIPNII = 1 imply (2.23b). 
Now we are prepared to establish an improved result of 

Theorem 2 and Theorem 4 of Ref. 1. 
Theorem: Assume the potential Vis such that it yields a 

self-adjoint HamiltonianH = Ho + VwithD (H) = D (HO), 
moreover let Vbe bounded or be relatively bounded with 
respect to H 0. Finally we assume that V guarantees the exis
tence of the Moller wave operators n I ± I in the short-range 
case [given by Eq. (1.3)] or the Dollard2 modified wave oper
ators n c( ± I given by 

n c( ± 1= S - lim exp(iHt) exp( - iHOC(t)) (2.27) 
t_ =F 00 

in the case where long-range Coulomb forces are involved. 
Let PN,N = 1,2, ... denote the orthogonal projections from 
Definition 1 and 

H';. =PNHoPN, 

(2.28) 

HN =PNHPN · 

Then for each ~ one can find NEN, T> 0 such that in the 
short-range case 

Ilnl+1if' - exp( - iHNT) exp(iH';.T)if'11 

and 
lin (- lif' - exp(iHNT) exp( - iH';.T)if'11 

become arbitrarily small. In the case where the Coulomb 
potential is involved 

lin c( + lif' - exp( - iHNT) exp(iH~(T))if'11 

and 

lin c( - Iif' - exp(iHNT) exp( - iH~(T))if'11 

become arbitrarily small. The corresponding approximated 
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S-matrices 

(exp(iHNT) exp( - iH';.T))t exp( - iHNT) exp(iH';.T) , 

(exp(iHNT) exp( - iH~(Tmt exp( - iHNT) exp(iH~(T)) 

are unitary. 
Proof: The proof relies on the theorem of src. Let us 

consider firstly the short-range case. Then the asymptotic 
Hamiltonian is H 0. H ° is self-adjoint, the domain D (H 0) be
ing dense in JY' (see, e.g., Ref. 7). Hence HO is closed and 
D (H 0) is a core of H 0. The expansion functions are such that 
range (P N ) ~ D (H 0). Proposition 1 and the src theorem to
gether imply for each tER 

exp(iH';.t)~ exp(iHOt). (2.29) 

For the full Hamiltonian one has by assumption that H is 
self-adjoint with the domain D (H) = D (H 0). Hence H is 
closed and D (H 0) is a core of H. Proposition 1, Proposition 3 
and the src theorem imply for each tER 

exp(iH Nt ) ~ exp(iHt ) . (2.30) 

Then the existence of the wave operators (strong limit) and 
Eqs. (2.29), (2.30) imply the claim for the short-range case. 
Let us consider the case, where the long-range Coulomb 
force is involved. The (time-dependent) asymptotic Hamil
tonian is H OC(t). H OC(t ) is self-adjoint (which is a special case 
of a more general result from Ref. 7) and D (H OC(t )) is dense 
in JY'. HOC(t) is closed, D (HOc(t)) is a core of HOC(t) and the 
expansion functions obey range (PN )~D (HOC(t)). Proposi
tion 2 together with the src theorem implies for t #0. 

exp(iH~(t)) ~ exp(iHoC(t)) . 

For the full Hamiltonian H, which now includes a Coulomb 
potential, one has to verify that the assumptions made above 
on the potential give no contradiction. The Coulomb poten
tial is relatively bounded with respect to H ° and H ° + vcoul 

is a self-adjoint operator with D (H) = D (H 0). This is shown, 
e.g., in Ref. 7. The rest of the proof in the long-range case is 
analogous to that of the short-range case. The finite-rank 
Hamiltonians H';.,H~(t ),H N are self-adjoint and hence the 
approximate S-matrices are unitary. 

We want to remark that some general conditions can be 
given2

,6,7 such that the potential meets the above assump
tions. For example, this holds for the square-well potential, 
the Yukawa potential, separable potentials if the form fac
tors are square integrable, the Coulomb potential and com
binations of those. 

III. N-BODY SYSTEM 

In this section a generalization of the result for the two
body system will be sketched without giving proofs (for nota
tion see Ref. 1). Let us firstly consider only short-range po
tentials. Let Vij denote the interaction between the 
elementary particles i,j and assume a total interaction of the 
form 

V= I Vif. (3.1) 
l<i<j<N 
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Corresponding to a cluster channel a, which denotes which 
of the N elementary particles form a composite particle, 
there is a channel interaction 

va= L VV, (3.2) 
l<.i<j<.N 

ijCa 
where ijea indicates that the elementary particles i and j 
are both contained in the same composite particle of the clus
tera. 

Let H ° denote the free Hamiltonian, H a = H ° + va a 
channel Hamiltonian, H = H ° + V the full Hamiltonian 
and 

n al ± l = s - lim exp(iHt) exp( - iHat) (3.3) 
I-=F 00 

the wave operators defined on Jir', a subspace of the Hilbert 
space JiY, which is a projection on all the boundstate wave 
function for any composite particles in channel a. 

As a generalization of the set of expansion functions one 
could take the set of expansion functions from above for each 
single particle and form the tensor products. Alternatively, 
using a set of Jacobi coordinates in momentum space, one 
could take the set of expansion functions from above for each 
Jacobi variable and also form the tensor products. Using any 
of those generalized expansion functions, orthogonal projec
tions P N can be defined with 

s 

PN-+l, HOPNI/J-+HoI/J, 
(3.4) 

PNHOPNI/J-HoI/J, !/JED (HO) 

in analogy to Proposition 1. Now we assume that each pair 
interaction VV is a bounded or relatively bounded operator 
with respect to H ° v, which describes the free relative motion 
of the particles i,j, i.e., there are a V > 0, P v> 0 such that for 
each !/JED (H ° V) 

II VVI/JII<aijllI/J11 + pijIlHOijI/JlI· (3.5) 

For each i,j there are Jacobi coordinates describing the rela
tive motion complementary to the relative motion of parti
cles i,j (plus the center of mass motion) and there is a corre
sponding free Hamiltonian H ° comp ij with 
HO = HOv + Hocompv. HOij,H0compij commute and are 
nonnegative operators, hence Eq. (3.5) yields for !/JED (HO) 

II VijI/JlI<avlII/J1l + pijIlHoI/JlI· 

Thus Eqs. (3.4), (3.6), imply for !/JED (HO) 

PN VVPNI/J-+vvI/J 

in analogy to Proposition 3 and hence 

PNHPNI/J-HI/J . 

(3.6) 

(3.7) 

(3.8) 
In order to find finite-rank approximations for the asympto
tic channel Hamiltonian H a a set of expansion functions 
more suitable for channel a can be chosen. Thus correspond
ing to a channel a let I = 1,2, ... , Imax count the distinct ele
mentary or composite particles, now called generalized par
ticles, in that channel. The expansion functions can be 
chosen as tensor products of the single generalized particle 
expansion functions or as tensor prod ucts of expansion func
tions corresponding to a set of Jacobi coordinates of the gen-
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eralized particles. Let us denote the corresponding orthogo
nal projections P~, with 

P~I/J-I/J, ~, Hap~I/J'-+HaI/J', 

p';.Hap~I/JI-+HaI/J', I/J'ED (Ha)~ . 

That leads us to the following. 

(3.9) 

Conjecture: Let VV, va, V be defined as above, such that 
H,H a are self-adjoint Hamiltonians with 
D (H) = D (H a) = D (H 0), let V v be bounded or relatively 
bounded with respect to H ° v, and assume the existence of 
the Moller wave operators n al ± l. Let P N denote the above 
projectors and HN = PNHPN, H~ = p';.Hap';.. Then for 
each channel a, ~, 

lin al + lI/J - exp( - iHNT) exp(iH';.T)I/J1l 

and 

lin al-lI/J - exp(iHNT) exp( - iH';.T)I/J1l 

can be made arbitrarily small for suitable NEN, T> O. 
Finally we want to consider some of the elementary 

particles as charged and take into account the Coulomb po
tential. For a channel a let e J denote the charge of the gener
alized particle I, m J its mass, m IJ the reduced mass of the 
generalized particles I,J and H OIJ the Hamiltonian of the 
free relative motion of the generalized particles I,J. Let 

A /JC(t) = sign(t )eJe J (2;:J) 112 log (41t IHOJJ) , 

A aC(t) = L A /JC(t). 
1<1 <J<.Imax. 

/JCa 

(3.10) 

A aC(t) denotes Dollard's anomalous term of the asymptotic 
channel Hamiltonian 

(3.11) 

and 

n ac( ± l = S - lim exp(iHt) exp( - iHac(t)) (3.12) 
t_ 'f 00 

is Dollard's modified wave operator defined on Jir'. Because 
the Coulomb potential is a relatively bounded operator,7 the 
finite-rank approximations of Hand eiHt can be used from 
the short-range case. The anomalous term in the asymptotic 
channel Hamiltonian has to be treated additionally. Because 
A JJc(t)commuteswithA J'J'C(t)forIJ differentfromI'J',itis 
sufficient to find for each IJ a set of expansion functions. 
Because A /JC(t) effects only the relative motion between the 
generalized particles I,J one chooses the above expansion 
functions only in the Jacobi variable corresponding to that 
relative motion. Let P IJ denote the corresponding orthogo
nal projectors, with 

PIJA /JC(t )PIJI/J-A /JC(t)I/J (3.13) 

for !/JED (A JJc(t)). Thus we are led in the Coulomb case to the 
following. 

Conjecture: Let VV, va, V be defined as above but may 
include also Coulomb potentials, such that H,Ha are self
adjoint withD (H) = D (H a) = D (H 0). Let V ijbe bounded or 
relatively bounded with respect to HOv, assume the existence 
of the wave operators n ac( ± l. LetP N denote orthogonal pro-
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jectors corresponding to an arbitrary complete set of Jacobi 
variables. Let P ~ ,P % denote the orthogonal projectors as 
described above. Let 

A W(t) = P%A /JC(t )P% , 

A ~(t) = r A %C(t), 
1 <I<J<:.lmB1. 

/JCa 

H~(t) = p~Ha.tP~ + A ~(t), 

HN=PNHPN · 

Then for each channel a, ~ 

lin ac(+)tP - exp( - iHNT) exp(iH~(T))tPll 

and 

lin act -)tP - exp(iHNT) exp( - iH~(T))tPll 

can be made arbitrarily small for suitable NEN, T> O. 

IV. CONCLUSION 

(3.14) 

It has been shown in the two-body system and indicated 
in the N-body system, how wave operators can be approxi
mated by finite-rank operators which makes its calculation 
relatively simple. That holds for a wide class of short-range 
potentials and includes the long-range Coulomb potential. 
The finite-rank approximations are obtained from a set of 

1880 J. Math. Phys., Vol. 25, No.6, June 1984 

expansion functions, using step functions in momentum 
space. The question can be asked, if that would also hold for 
other sets of expansion functions, like, e.g., the Hermite 
functions. The crucial point is to find a core C such that 
PNHoPNtP_H°tP for t/'EC. One can find Do, a dense subset 
of D (HO) where that convergence property holds, but Do 
could not be verified to be a core. 
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(a) Absence of singular continuous spectrum for H and unitary equivalence of ho(P) with the 
absolutely continuous part of H is proved for the self-adjoint operator H = ho(P) + WS (Q, P) 
+ WL (Q, P) on L 2(R n), where (i) ho is a smooth, nonnegative, real valued function on R n of at 
most polynomial growth with hot 00 ) = 00, (ii) the critical values of ho has a countable closure, (iii) 
the symbol Ws (x, t ) is a smooth function of at most polynomial growth in t and is of short range in 
x, and (iv) WL (x, t ) is a smooth real-valued function of x, t with at most a polynomial growth in t 
and 0 (Ix I - {j) at 00 for some {) > O. Further we have (b) essential spectra of Hand ho(P ) are equal 
and (c) eigenvalues of H can accumulate only at the critical values of ho. 

PACS numbers: 03.65.Nk, 02.30.Tb, 03.65.Fd 

1. INTRODUCTION 

Let the self-adjoint operator H = ho(P) + Ws(Q, P) 
+ W(Q, P) be as in Sec. 3 satisfying conditions (i)-(xi). Our 

aim is to prove 

Theorem 1: (a) 

(Tess(H) = (Tess (Ho), Ho = ho(P)· 

(b) There exists a unitary evolution exp[ - iX(t,P)] such 
that the wave operator n ± = s-limr~ ± 00 exp(itH) 
X exp[ - IX (t, P)] exists. 

(c) Range n ± = Kc (H), the continuous spectral sub
spaceofH. 

(d) 10 J = Ksc (H), the singularly continuous spectral 
subspace of H. 

(e) n ± :L 2(R n)---+Kac (H) (the absolutely continuous 
spectral subspace of H) is unitary and n ~ H IKac n ± 

=Ho· 
(t) The eigenvalues of H can accumulate only at the 

critical values of ho. 
Whenho(t) = !t2, W(x,t) = Wdx,t) = O,and Ws(x, 

t) = Ws(x) is of short range the existence of the wave opera
tors n ± as strong limits of exp(itH) exp( - itHo) as t---+ ± 00 

for the pair (H, Ho) is well known, 1-4 where Ho = ho(P ), 
H = ho(P) + Ws(Q, P). The completeness, i.e., Ran-
ge n + = Range n _ = Kac (H ) is also known using time
independent methods. 1.4.5 Using time-dependent methods 
strong asymptotic completeness, viz., Range n + 

= Range n _ = Kc (H) was proved by Enss.6 The method 
was refined by Davies,7 Mourre,8 Perry,9 and Sinha. 10 For 
extensions in this direction one can refer Simon II and 
Umeda. 12.13 

When there is also long range present, i.e., when 
H = V'2 + Ws(Q) + W(Q) with Wsmooth long range po
tential of 0 (Ix I - {j) at 00 for some {) > 0 existence of the wave 
operators was proved by Alsholm,14 Buslaev-Matveev,15 
Hormander, 16 and Berthier and Collet. 17 Using time-inde
pendent methods, completeness was proved by many people 
which includes Lavine,18 Kitada and Ikebe-Isozaki,19 Ag
mon,20 Amrein, Martin, and Misra,21 and Thomas. 22 By us-

ing time-dependent methods, completeness was proved by 
Enss23.24 for{»(2n + 2)1(2n + 3),Perry,25 for{»!withthe 
further assumption W is dilation analytic, Muthuramalin
gam and Sinha26.27 and Muthuramalingam28 for {) > !; 
Muthuramalingam29 for {) = I, and Kitada and Yajima30 for 
{) > O. While Refs. 25 and 27-29 require the theory of asymp
totic evolution of observable, Refs. 23, 24, and 30 do not 
require it. The results ofUmedal3 for short range are ex
tended here to long range. While we use the ideas of Enss,23 
Kitada and Yajima,30 for estimating the norms we use the 
techniques of Hormander. 16 

Finally we sketch the contents of the article. In Sec. 2, 
we introduce a positive operator valued map T which was 
introduced and used by Davies in Ref. 7. Also it was used 
successfully in Refs. 27 and 28. This operator Twill help us 
make calculations simultaneously in position and momen
tum variables. We derive certain simple useful properties of 
T. We also have some simple theorems on integral kernels. 

In Sec. 3 we state the assumptions on the Hamiltonian 
H and prove Theorem I(a) using the arguments of Ref. 13. 
Let us remark that, in Ref. 13, (a) of Theorem I was a conse
quence of (c) and (t). 

In Sec. 4, we derive the modified free evolution and a 
position-momentum-dependent evolution approximating 
the total evolution. This can be done either by solving the 
Hamilton-Jacobi equation 16.30 or use iteration,14.15 and we 
use iteration. We derive various growth and decay properties 
of the iterations to be used in Secs. 5 and 6. 

In Sec. 5 we sketch a proof of the existence of the wave 
operators for two reasons: (i) for the sake offullness and (ii) to 
bring out the similarity between existence proof and com
pleteness proof. We reproduce l6 almost verbatim. 

In Sec. 6 we prove that the total evolution can be ap
proximated in operator norm by an auxiliary position-mo
mentum dependent evolution. Here we closely follow. 16 

In Sec. 7 we prove Theorem (I) (c)-(t). In Sec. 8, we 
prove smoothness and growth properties of diffeomor
phisms of functions used in Sec. 6. 

We very freely use the techniques from Refs. 13, 16,23, 
and 30. 
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Throughout this publication K will denote a generic 
constant and F(M) the indicator (characteristic) function of 
the setM. 

2. A POSITIVE OPERATOR VALUED MEASURE 

Choose and fix some c* in (0, 1),1] in Y(R n)-the 
Schwartz space of rapidly decreasing functions such that 
~-the Fourier transform of 1] defined by 

~(k) = (21T) - n12 J dx e - ik.x1](X) 

has 

supp ~ C {kE R": Ik I..;;~ c·J. (2.1) 

We further normalize 1] by 

111]11 2 = J dx 11](xW = 1. (2.2) 

Define for (x, k ) in R n X R n the function 1] xk by 

1]xdY) = 1](Y - x) exp[ik.(y - x)] (2.3) 

so that 

(1]xk((P) = ~(p - k) exp[ - ix.p]. 

1]xk is called a generalized coherent state. 
Define ZTJ: L Z(R ")---+L 00 (R " X R n) by 

(ZTJf)(x, k) = (1]xkIJ), 

(2.4) 

(2.5) 

where ( I ) denotes the inner product on L Z(R "), linear in 
the second variable. Then it is known31 that ZTJ takes values 
in L Z(R nXR") and ZTJ: L 2(R ")---+L Z(R "XR") is an iso
metry but not unitary. For any Borel subset M of R "X R " let 
F (M) denote the indicator (characteristic) function of M. For 
every Borel subset M of R n X R " define the operator 

T (M) : L Z(R ")---+L Z(R ") by 

T(M) = Z~F(M)ZTJ' (2.6) 

Clearly Tis a positive operator-valued measure defined 
on the Borel subsets of R " X R " so that for Borel subsets M I' 
MzofR "XR" 

(2.7) 

T(MluMz) = T(Md + T(M2) if MI,Mz are disjoint, 
(2.8) 

(2.9) 

and 

0..;; TZ(MIl";; T(MI)";; T(R nXR") = 1. (2.10) 

TZ(M) stands for (T(M)f 
An explicit representation of T is given by 

T(M) = (21T) - "IZJM dx dk (1]xk 1)1]xk' (2.11) 

where the integral is the weak integral. 
Let us remark that Q = (QI' Qz, ... , Q"), P = (PI' P2, ... , 

p"),Pj = - i a/aXj = - iDj will denote the self-adjoint op
erator families on L 2(R ") representing the position and mo
mentum observables, respectively. 

Of special interest is whenMI = BI XR" andM2 = R" 
XBz with B I, Bz Borel subsets of R". In such a case 

1882 J. Math. Phys., Vol. 25, No.6, June 1984 

T(BI XR ") [T{R " XBz)] is a multiplication operator in the 
position [momentum] space and is given by 

T(BI xR ") = (F(BIl*I1]I Z)(Q), (2.12) 

(2.13) 

where. denotes the convolution operation. All the above 
can be found in Refs. 7, 31, and 32. 

Lemma 2.1: (i) Let O..;;X..;; YI, O..;;X..;; Yz be bounded self
adjoint operators on a Hilbert space with YI Yz compact. 
Then X is compact. 

(ii) For any two bounded Borel subsets B I' Bz of R "the 
operator T (B I X Bz) is compact. 

(iii) For any bounded Borel subset M of R n X R " the 
operator T (M) is compact. 

(iv) Let X, 0..;; YI < Yz, be bounded operators on a Hil
bert space. If XY2 is compact then so is XYI. 

Proof (i) Since O";;YIXYI";;YIYZYI' we get YIXYI is 

compact. Noting (..[Y YI"[y) 2 = ..[Y YIXYI"[y, we have 
V XYI V X is compact. The result follows by noting 

O..;;Xz..;;"[yYI"[y· 
(ii) It is well known that if/I andfz are bounded real

valued functions on R n vanishing at 00, then the operator 
fl(Q )f2(P) on L 2(R n) is compact. The result follows from (i) 
by taking YI = T (B I X R n), Y2 = T{R " X B2), and 
X = T(BI XB2 ) and using (2.12), (2.13), and (2.9). 

(iii) If M is bounded, then there are two bounded Borel 
subsets ofR n such that MCBI XBz. The result follows from 
(i) and (ii) by noting 0..;; T(M)..;;T(BI XB2). 

(iv) By assumption IX I Y21X I is compact. Since 

0..;; IX I YIIX I..;; IX I Y21X I, we have IX I~ is compact and 
now the result follows. Q.E.D. 

Lemma 2.2: (i) For Borel subsets M I, M z of R nXR n 
andfin L 2(R n) 

IIT(MluM2)fI1
2
..;;[IIT(MI)fll + IIT(M2)fll]llfll· 

(ii) For M I, M2 as above and Yany bounded operator on 
L2(R n) 

II T(MluM2)Y 112..;; [IIT(MI)YII + IIT(M2)YII]IIYII· 

(iii) For MI CM2 andfin L 2(R n) 

IIT(MI)fI1
2
..;;IIT(M2)fIIIIJII· 

(iv) For MI CM2 and Yany bounded operator on 
L2(R n) 

IIT(MI)YI1 2..;;IIT(M2)YIIIIYII· 

(v) LetB2 be any Borel subset ofR n,M any Borel subset 
of R n X B2 and t/J any bounded continuous function on R n 
such that dist(B2, supp t/J ) > l c*. Then 

t/J(P)T(M)=O= T(M)t/J(P). 

Proof (i) Follows from (2.7), (2.10), and Cauchy
Schwartz inequality. (ii) Follows from (i). (iii) Follows from 
(2.9), (2.10), and Cauchy-Schwartz inequality. (iv) Follows 
from (iii). (v) Clearly it is enough to prove when t/J is real
valued. 

Case (i): Let M = R n XB2• Then by (2.13) the operator 
T(M) is a mUltiplication operator in the momentum space 
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with support in a a c* neighborhood of B2 and so the result is 
clear. 

Case (ii): Let MeR nXB2. Then by (iv) we get 
I/T(M)t,6 (p)1/2<I/1iR n XB2)t,6 (P)I/I/t,6 (PHI so that by case (i) 
T(M)t,6 (P) = O. Taking adjoints, one gets 
t,6(P)T(M) =0. Q.E.D. 

Let us also note that, for any bounded complex valued 
function t,6 on R n and for any Borel subset M of R n X R n, we 
get 

[t,6(P)T(M)f](q) = IM dXdk (1/xkif> 

X I ds t,6 (5 )",(s - k ) 

Xexp[i(q·s-x·s)] (2.14) 

for fin L 2(R n), q in R n. 

Lemma 2.3: Let I: R n XR n_c be a measurable func
tionsuchthatSdq II(q,x)I<C~ a.e.xandSdx II(q,x)I<C~ 
a.e. q. Then the operator f: L 2(R n)-L 2(R n) defined by 
(f f)(q) = SdxI(q,x)f(x) is bounded and IIfll<C\C2· 

Proof The above lemma is the same as corollary of 
Theorem 6.24 of Ref. 3. 

Lemma 2.4: Let I: R n X R n X R n -c be any measura
ble function and B any bounded subset of R n. Further let, for 
each fixed kin B, I (k,.,.) be the integral kernel of a bounded 
operator f{k): L 2(R n)-L 2(R n) and 

C = sup! I/f(k )1I:kEB}. 

Define an operator on Y(R n) by 

(Lf)(q) = r dx dk (1/xdf)I(k, q, x) 
JR"XB 

forfin Y(R n) andqinR n. ThenL is a bounded operator on 
L 2(R n) and 

ilL II < [meas(B )]c. 

Proof Define F(k, x) = (1/xk if> for fin Y(R n). Then 

Idq I(Lf)(qW 

= I dqlL dk [f(k)F(k, ·)](qf 

< [meas(B wI dk I dq I [f(k )F(k, ·)](qW 

by Cauchy-Schwartz inequality and Fubini's Theorem 

< [meas(B Wi dk IIf(k )F(k, .)jj2 

< [meas(B wc 2I dk dx jF(k, xW 

= [meas(B)fC 2I1fW· 

The result is now clear. Q.E.D. 
We now state a result similar in spirit to that of Cal

deron-Vaillan court theorem. 33 Unlike Ref. 33, we do not 
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use the notion of oscillatory integrals, and we give a simple 
proof for our case. 

Theorem 2.S: Let X: R nXR n_R, a: R nXR n_c be 
C 00 functions with all the derivatives bounded. Assume that 
there is a compact set C such that a(x, S ) = 0 if s is not in C, x 
in R n. On X we impose the following conditions: 

and 

sup{lV'sV'xX(x,s)-II: SEC\, xER n}<!, (2.15) 

sup! IDtV'xX(x, s)l: SEC\, xER n} <Ka for lal;;;.l, 
(2.16) 

where C\ is a compact neighborhood of C. 
Now define A: R nXR n_c by 

A (q, x) = L ds a(x, S )exp(i[q·S - Xix, S )]). 

Then A h,) is the integral kernel of a bounded operator .s;f on 
L 2(R n) and 

1I.s;fIl<KM(C\) L sup IDt(a(x, s))I, M>n + 1, 
/al<M x,s 

whereKM(CIl depends on C and a bound on 

sup{IDtV'xX(x,s)l: SEC\,X, 1<lal<M+ I}. 

Proof Let f!lj = .s;f*.s;f. Then an easy calculation shows 
that B (q, x), the integral kernel of f!lj, is given by 

B (q, x) = L ds a(q, s )a(x, s) exp(i[X (q, s) - X (x, s)])· 

(2.17) 

LetM (n, R ), GL(n, R ) be the set of all n X n, n X n inver
tible matrices over Rand S = {EEM (n, R ): IE - I I <~ J . 
Then S is a compact convex subset ofGL(n, R ). Now 

V'dX(q,s) -Xix,s)] 

= f dpV'xV'sX(pq+(I-p)x,s)·(q-x) 

= t,6 (q, x, s ).(q - x), (2.18) 

where, by (2.15), the matrix t,6 (q, x, s) is in S for aIls in C\, q, 
x. From (2.18) 

Iq-xl = 1[t,6(q,x,s)]-\Vs!X(q,s)-X(x,s)JI 

,;XsIVs{X(q,s) -X(x,s)J I, (2.19) 

whereO<Ks < 00 depends only onS. By (2. 16) and the mean 
value theorem we get 

IDt{X(q, s) -Xix, s)J I<Ka Iq -xl for lal>1. 
(2.20) 

Now apply the stationary phase Lemma A.l of Ref. 16 
or Lemma I of the Appendix of Ref. 12 to (2.17), using (2.19) 
and (2.20), to get 

IB (q, x)1 <KM(1 + Iq - Xl)-M 

X )' sup IDt{a(q,s)a(x,sJ}1 
/at<'MQ,X,S 

so that, by Lemma 2.3, 

1I.s;f1l2<KM L sup IDt{a(q, s)a(x, sJ} I if M>n + 1. 
lal<M q,x,S 
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Now the result is immediate. Q.E.D. 

Remark 2.6: Suppose X is as in Theorem 2.5 and a: R n 
XR nXR n---+c is Coo with all the derivatives bounded and 
for some compact set C we have a(q, x, S) = 0 for S not in C. 
Now define the kernel 

A (q, x) = f dS a(q, x, S)exp(i[q·S - X (x, S)]) (2.21) 

and s/ be the operator on L 2(R n) induced by A. 
For the simple case when XIx, S) = x·S, lis/II has a 

bound in terms of the derivatives of the symbol a by the 
Calderon-V aillan Court theorem. 33 

For the general X, the answer is not known to the au
thor. If one can prove a result similar to Theorem 2.5 for 
(2.21), then the proof of Lemma 6.1 (vii) can be made short 
and simple. 

The next lemma will be useful in the proof of Lemma 
6.2 (ii). It is adapted from Ref. 34. 

Lemma 2. 7: Let B be any bounded subset of R n. For 
each m = 1,2, ... and k in B, let J m (k ) be an integral opera
tor on L 2(R n) with kernel Im(k, q, x) so that [J m(k )f](q) 
= Sdx 1m (k, q, x)f(x). Further assume that 

(i) sup! IIJ m(k )11: kin B, m = 1,2, ... 1 < 00, 

(ii) s-limm~oo J m (k ) exists for each k in B. 

Define (Lm f)(q) = S R nXBdx dk( 'T/xk If)I m (k, q x). 

Then s-limm~oo Lm exists. 

Proof Step i: For gin L 2(R n) define G: R n ---+L 2(R n) by 
[G (k )](x) = ('T/xk Ig). WeshowthatG (B )isaboundedsubset 
ofL 2(R n). 

Let (Jk denote the multiplication operator (in the posi
tion variable) by ~(. - k) and Y the Fourier transform. 
Then, using Parseval's relations, we see that 
G (k) = Cy-l(JkYgforsomeconstantc. Since7]EC a(R n), 
G is continuous. Since B is bounded, it is a subset of a com
pact subset and so G (B ) is bounded in L 2(R n). 

Step ii: For gin L 2(R n) it suffices to show that Lmg is a 
Cauchy sequence. With G as in step (i), a careful look at the 
proof of Lemma 2.4 yields 

IILmg - Lpgl12 

< [meas(BWi dk II [J m(k) - Jp(k)]G(k )11
2. 

Now the result is a consequence of Lebesgue dominated con
vergence Theorem, the assumptions on J m (k ) and step 
(i). Q.E.D. 

3. THE HAMILTONIAN 

In this section we state the assumptions on the free and 
total Hamiltonians ho(P), H and prove Theorem l(a). 

Let ho: R n---+R be any function such that 

(i) ho is Coo, 
(ii) limlsl~oo Iho(s)1 = 00, 

(iii) Iho(s)1 <K (1 + Is I)k Vs for suitable constantsK, k, 
(iv) Is: h ~(S) = 0 or det h ;;(S) = 01 is a (closed) subset 

of R n of (Lebesgue) measure O. 

1884 J. Math. Phys., Vol. 25, No.6, June 1984 

We shall denote by Ho the closure in L 2(R n) of ho(P) 
with domain Y(R n). 

For the part Ws(Q, P) with the symbol Ws(x, S), we 
make the same assumptions as in Ref. 13. For this we intro
duce, as in Ref. 13, the following notation; let Vbe a measur
able function on R n. If there exist constants E> 0, (J, r in R, 
such that, for some constant K and measurable set reR n 

with 

meas(Fn!xERn: Ixl>rll=O(r- 26
) asr---+oo, (3.1) 

the estimates 

W(x)I<K(l + Ixl)-I-E forxinRn"r (3.2) 

W(x)1 <K (1 + IxlV for x in r (3.3) 

are valid for a measurable function V then we say V is in V 
(E, r, (J). Our assumption on Ws(x, S) is 

(v) Ws: R n X R n---+c is measurable and for each fixed x 
the map Ws(x, .) is Coo function of S, 

(vi) there are constants E> 0, r> - 1, (J> r + 1, andm* 
in R such that for some V in V (E, r, (J) the estimate 

IDtWs(x,s)I<W(x)l(l + Isl)m* 

is valid for every multi-index 11 with 
1111 <2(2 + [~(n + 2Irl)]). Here [a] denotes the integral part 
of the real number a. 

For the long range part W (Q, P) we assume on the sym
bol W(x, S) the following: 

(vii) W: R n XR n---+R is a C 00 function and there is some 
{) in (0,1] such that for any compact subset B of R n 

sup ID~D~W(x,SlI<K(B,a,,8)(1 + Ixl)-If3I- 8 
SEB 

for all a,,8 where K (B, a,,8) are constants, 
(viii) for the same m* as in (vi) we have 

IDtW(x,s)I<KI'(l + Ixl)-8(1 + Isl)m* 

for suitable constants KI' for alI 11 with 1111 <2([!n] + 2). 
Now let us recall that 13 the operators WS (Q, P), W (Q, P ) 

are given for fin Y(R n) by 

!Ws(Q,P)fl(q)= f ds!(S)Ws(q,s)exp(iq·s), 

(3.4) 

! W(Q, P)fl(q) = f ds!(s)W(q, s) exp(iq·s)· 

When the above assumptions are satisfied we can prove 

Lemma 3.1: Let N be any positive integer such that 
N>k and N> m* + n. Then 

(i) for some Eo>O the operator Ws(Q, P) 
(1 +p 2)-NI2(1 + IQ 1)1 Ho is bounded, 

(ii) W(Q,P)(l +p2)-N!2(1 + IQI),5isbounded. 

Proof (i) is the same as Corollary 3.2 of Ref. 13 and 
proof of (ii) is similar to the proof of Corollary 3.2 of Ref. 13 
by using the condition (viii). Q.E.D. 

By Lemma 3.1 we see that the operator Ws 
+ W= Ws(Q,P) + W(Q,P)isdefinedonDom((1 + IPlt) 
taking values in L 2(R n). We make, as in Ref. 13, the final 
assumptions: 

(ix) The operator Ws + W is symmetric and 
(x) Ho + (Ws + W) on Dom(1 + IP n has a self-ad-
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joint extension Hon L 2(R n) such that 

Dom HCDom((1 + IPI)"} for somes>O. 
Also we may impose the following condition on critical 

values, viz., 
(xi) Closure of [holS): h blS) = 0 or det h ~IS) = OJ is a 

countable set. 
Now we give some examples. 

Example 3.2: (Hamiltonian for the static electromag-
netic field): Take ho(s) = !S2, Ws(Q, P) = Ws.o(Q) 
+ ~;= I WSJ(Q)PjandW(Q,P) = Wo(Q) + ~;= I Wj(Q)Pj , 

where (i) the functions WSJ ' Wj are all real-valued and Wj 
are C <X> for j = 0, 1, 2, ... , n, (ii) for some E> 0 the operators 

Ws.o(Ho+ 1)-1(1 + IQ I)IH, WSJ(Q) 
(Ho + 1)-1/2(1 + IQ 1)1 H are all bounded forj = 1,2, ... , n, 
(iii)forsomel5>O~;=o ID a Wj(x)I<Ka (1 + Ixl)-'a ' -Ilfor 
suitable constants Ka for all multi-indices a, and (iv) 
o = ~;= I aWSJ(x)laXj + ~;= I aWj(x)/aXj in the sense of 
distributions. The condition (iv) is only to ensure symmetry 
ofH. 

In this case note that (xi) is satisfied for ho. Further, the 
symbols Ws, W for the operators Ws(Q, P), W(Q, P) are 

given by Ws(x, S) = Ws.o(x) + ~;= 1 WSJ(x)Sj and W(x, S) 
= Wo(x) + ~;= 1 Wj(x)Sj' respectively. 

Though this example does not satisfy the condition (v) 
and (vi), nevertheless, Lemma 3.1 is valid. A careful look at 
the proofs will show that all the results hereafter are valid 
under the statement of Lemma 3.1. So Theorem 1 is valid for 
Example 3.2. 

Example 3.313: Let n = 3, Ho = (1 + P2)1/2, Ws 
(Q,P)=(1 +Q2)-Il(1 +p 2)3/2(1 +Q2)-ll withl5>!and 
W(Q, P) = O. Clearly, ho satisfies condition (xi). Let us note 
thatthesymbols W, Ws for the operators W(Q,P), Ws(Q P) 
are given by W(x, S) = 0 and Ws(x, S) = Osc 
ffdyd)' (1 +x2)-Il(1 + (S +). ff/2(1 + (x + yf)-Il 
Xexp[ - i(y.).)). For details see Refs. 12 and 13. 

Now let the conditions (i)-(x) be satisfied. Let 
(;EC O'(R n) be such that {; (x) = 1 for Ixl < 1,0 for Ixl ;>2, and 
O<{; (x)< 1 for all x. Then 

Lemma3.4:(i)Theoperator{;(Q /r)(H + i)-liscompact 
for every r> O. 

(ii) The operator {; (Q /r)(Ho + i)-I is compact for every 
r>O. 

(iii) For tf in CO' (R ) the operator (1 + P 2),12tf(H) is 
bounded. 

(iv) For tf in C O'(R) the operator (1 + p2)'12tf(HO) is 
bounded. 

(v) for t/J, tf in C O'(R ) we have 

lim II [t/J (H) - t/J (Holl [1 - {;(Q /r)]tf(H)1I = O. 

(vi) For t/J, tf in C O'(R) we have 

lim II [t/J (H) - t/J (Holl [1 - {;(Q /r)] tf(Ho) II = O. 

(vii) For t/J: R-C continuous and vanishing at ± 00 the 
operator t/J (H) - t/J (Ho) is compact. 

Proof (i) Same as Lemma 4.1 of Ref. 13. 
(ii) Follows from the assumptions (i) and (ii) on ho. 
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(iii) Same as Lemma 4.2 of Ref. 13. 
(iv) Obvious. 
(v) Same as Lemma 4.3 of Ref. 13. 
(vi) Similar to the proof of Lemma 4.3 of Ref. 13. 

(vii) Step i: Assume that t/JEC O'(R ) and t/J is real valued. 
By (i) and (v) the operator [ t/J (H) - t/J (Ho) J t/J (H) is compact. 
Similarly, using (ii) and (vi) we have the compactness of 
[t/J (H) - t/J (Ho)]t/J (Ho)· So [t/J (H) - t/J (HoJ]2 is compact yielding 
the result. 

Step ii: By step (i) the result is true for t/J in CO' (R ). The 
result follows by noting that any t/J as in hypothesis can be 
approximated uniformly by functions in C O'(R ). Q.E.D. 

Proof of Theorem l(a): By Lemma 3.4 (vii) the operator 
(H + i) - I - (H 0 + i) - I is compact. The result follows from 
Weyl's theorem on essential spectrum (given in, for example, 
Ref. 5 as Theorem XIII. 14). Q.E.D. 

4. ITERATIONS FOR THE SOLUTION OF A HAMILTON
JACOBI EQUATION 

In this section all we need to assume on ho is that ho is a 
C <X> real-valued function on R nand 

G = [S: h blS)#O, det h ~(S)#OJ (4.1) 

is a nonempty (open) subset of R n. On W = W(x, S) we as
sume condition (vii) of Sec. 3. 

Motivated by Ref. 30, we solve the Hamilton-Jacobi 
equation aX(t, x, s)lat = ho(S) + W(Vs-X(t, x, S), S) with 
the initial condition X (0, x, S ) = x·S. What we do is simply 
use Picard's method of iteration. 

Let 15 be as in condition (vii) of Sec. 3. By decreasing 15, if 
necessary we assume that 15 > 0 and 1 is not in [0,15, 215, ... ,jl5, 
... J. Choose an integer mo such that 

ma15 < 1 < (mo + 1)15. (4.2) 

Let C be a fixed compact subset of G such that for some 
c>O we have 

C3c = [pER n: dist(p, C)<3cJ CG. (4.3) 

Let x, S in R n be such that 

x·h b (k );>0 for some k in C (4.4) 

and 

Is - k I <! c with k as in (4.4). (4.5) 

Let 

3a = inf[ Ih b(k )1:kEC3c J. (4.6) 

We can further assume that C3c is chosen so that s-h b (S) is 
diffeomorphism on an open neighborhood of C3c and 

sup[ Ih b(stl- h bIS2)1:lsl - s21<2c, SI' S2EC3c J <a2- 1/2. 

Then for x, k, S as in (4.4), (4.5) and s;>O we get 

Ix+shb(s)1 

;>lx+shb(k)l-sa2- 1/2 by(4.7), 

;>2- 1/2(lxl + 3as) - sa2- 1/2 by (4.4), (4.6), 

(4.7) 

;>2- 1/2(lxl+2as) witha>O. (4.8) 

For all the "position" x and "momentum" S [not necessarily 
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satisfying (4.4) and (4.5)] define Y(m, to, t, x, s) for integral 
m = 0, 1, ... , mo' time t>to>O, by 

Y (0, to, t, x, s) = 0, (4.9) 

Y(m, to, t, x, s) = L ds W(x + sVho(s) 

+ V,;- Y(m - 1, to, s, x, s), s) (4.10) 

sothatifwedefineX(m,to,t,x,s) = xs + tho(s) + Y(m,to,t, 
x,s), thenaX(m,to,t,x,s)/at = ho(s) + W(V,;-X(m - 1, to, 
t, x, s ), s) and X (m, to, to, x, s) = x's + toho(s ). 

We study the decay and growth properties of the Y(m) 
in Lemma 4.1 which can be compared with Propositions 2.3 
and 2.8 of Ref. 30. 

Lemma 4.1: Let x, S be as in (4.4) and (4.5), O<m<mo, 
O<M. Then there exists a t _ I = t -I{m, M, C »0 such that 
for r> to> C I the following hold: 

(i) ID~Y(m, to, t, x, S)I<Ka{l + t)I-05 for lal<M. 
(ii) ID~D!Y(m, to, t, x, s)1 

<Kap(l + Ixl) - 8 for fJ =1=0, la + fJ I <M. 

(iii) There exists ro = ro(t_ l) such that, for all r>ro and 
Ixl>r, 

ID~D:{ W(x + (t - to)Vho(s) + V,;-Y(mo, to, t, x, s), s)) I 
<Kap(lxi + t)-o5 for la +fJi<m, 

(iv) There exists ro = ro(t-d such that, for all r>ro and 
Ixl>r, 

ID~D~t W(x + (t - to)Vho(s) + V,;-Y(mo, to, t,x, s), 5) 
- W(x + tVho(s) + Vs Y(mo, to, t, x, s), 5)) I 
<Ka.8to(1 + Ixl +t)-1-o5 for la+/3I<M. 
(v) ID~D~{ Y(m, to, t, x, s) - Y(m - 1, to, t, x, s)) I 

<KaP(l + t)1 - mo5 

for l<m<mo, la + /31<M. 

(vi) ID~D~{ W(x + tVho(s) 
+ VsY(mo, to, t,x, 5), s) 
- W(x + tVho(s) 
+ VsY(mo - 1, to, t, x, 5), s)) I 

<Kap(1 +t)l- mo<'i(1 +t+ Ixl)-1-o5 

for la + fJ I<M, 
(vii) sup{ I W(tVho(5) + V s Y(mo, to, t, 0, 5),5) 

- W(tVho(s) 

+ Vs Y(mo - 1, to, t, 0, s),S)I:SEC2c ) 

<K(l +t)-lmo +I)o5. 

(viii) lim Y(mo, to' t, x, 5) - Y(mo, to' t, 0, 5) exists. 
t~oo 

(ix) lim Y(mo, to, t + s, 0, s) 
- Y(mo' to' t, 0, s) = ° Vs. 

Proof Let us remark that the proof of (v)-(ix) will not 
depend on (iii) or (iv). 

(i) and (ii): We prove simultaneously (i) and (ii) by induc
tion on m. For the sake of simplicity we give the proof when 
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n (the dimension of the space R n) is 1. The results are easily 
true when m = 0. Assume the result to be true for 
m<mo - 1. Then 

D~D~Y(m + 1, to, t,x,s) 

= LdSD~D~{W(X+Sho(s) 
+ as Y(m, to, s, x, s), 5)) 

= L ds D~D~{ W(Z, s)), (4.11) 

whereZ = Z(m, to,s, x, s) = x + sh o(s) + as Y(m, to, s,x, 
5)' By the induction hypothesis on Y (m) it is clear that 

ID~ZI<Ka(1 +s) for a =1=0, (4.12) 

and 

(4.13) 

Also, using (4.8) and choosing C I still larger if necessary, we 
easily get 

IZI>Ko(1 + Ixl +s) withKo>0. (4.14) 

So using (4.14) and condition (vii) of Sec. 3 

I Y(m + 1, to, t, x, 5)1 <L dsl W(Z, 5)1 

<K L ds (1 + Ix I + s) - .5 

<K(1 + t)I-05. 

Thus we have proved (i) and (ii) for m + 1 when a + fJ = 0. 
Now let us assume that a + /3> 1. Then one can very 

easily prove, by induction on a + fJ, the following: 
CLAIM: D 1D ~ (W (Z, s)) is a finite linear combination 

of terms of the form [W;J(Z, 5)]·(~'a~'zY'.'''·(dspa~pZr<p, 
where 

(a) WiJ(x, s) = (D~D ~ W)(x, s). 

(b) l<i + j<a + /3. 

(c) the product (a g'~IZ )'<''''(dsP~Z (p mayor may not 
appear; if the product appears, then: 

(d)AI + ... + Ap <i, AI' ... ,Ap>l; 

(e) l<a l + bl , ... , ap + bp<a + /3; 
(f) if /3 =1=0, then bl + b2 + ... + bp > 1. 

We sketch the proof of the CLAIM. For a + fJ = 1 ei
ther a = 0, /3 = 1 or a = 1, /3 = ° in which case the claim is 
easily verified. Assume the claim to be true for all a, /3 with 
a + /3 = y. Now Y + 1 can be obtained as (a + 1) + /3 or 
a + (/3 + 1) where a + /3 = y. In either case, using induc
tion hypothesis the CLAIM is verified. 

Now let us consider a typical term as in the CLAIM. 
Using (4.12), (4.13), (4.14), and condition (vii) of Sec. 3, we 
have 

L dsl WiJ(Z, s )(~'a~'Z Y<I ... (a"/a;.z (PI 

<K L ds (1 + Ix I + s) - i - O( 1 + sy if fJ = ° 
or 
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.;;;K (' ds (1 + Ixl + s)-i-li(1 +S)i-I if{3 #0 
Jto 

.;;;K L ds (1 +S)-Ii or K L ds(1 + Ixl + S)-l-Ii as 

{3 = 0 or {3 #0, respectively, 

.;;;K(1 +t)l-liorK(1 + Ixl)-li as {3=Oor{3#O,re-
spectively. (4.15) 

Now the result follows from (4.11), (4.15), and the 
CLAIM. 

(iii) Put Z = x + (t - to)h ~(S) + as Y(mo, to, t, x, s)· 
Then choose ro large so that, by using (4.8) and (i) 

IZI>Ko{1 + Ixl +t) forsomeKo>O. (4.16) 

Clearly, 

(4.17) 

and 

(4.18) 

Now the result follows as in (i) and (ii), by using CLAIM, 
(4.16), (4.17), and (4.18). 

(iv) Put Z = x + th ~(S) + as Y(mo, to, t, x, S), 

U(x, S) = - (Vx W)(x, S)·Vho(S), 

so that, by condition (vii) of Sec. 3, for any compact set B of 
Rn 

sup IDgD~U(x, S)I.;;;K(B, a,(3)(1 + Ixl)-IPI-l-li. 
sinB 

Then, 

DgD~ {W(x + (t - to)h ~(S) + as Y(mo, to, t, x, S), S) 

- W(x + th ~(S) + asY(mo, to, t, x, S), sll 

(4.19) 

= tof dp DgD~ U(Z - ptoh ~(S), n. (4.20) 

By (4.8), (i), and (ii) we have 

IZ-ptoh~(s)1 

>Ko{1 + Ixl + t -pto) -K(I + t)I-1i 

for some K o > 0 

>!Ko{1 + Ixl + t) if ro is large, (4.21) 

IDg{Z-ptoh~(S)II.;;;Ka(1 +t) fora#O, (4.22) 

and 

IDgD~{Z - ptoh ~(s)l I.;;;Kap for (3 #0. (4.23) 

Now the result follows by (4.19), to (4.23) as in (i), (ii). 
(v) We prove the result by induction on m. For m = 1 

the result follows from (i) and (ii). Now assume the result to 
be true for m with I.;;;m.;;;mo - 1. 

Y(m, to' t, x, S) - Y(m - I, to, t, x,S) 

= (dp (' ds (V x W)(Z, S ).U, Jo Jto 
(4.24) 

where 
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and 

Z = Z (p, to, s, x, S) 
= x + sh ~(S) + pas Y(m - I, to, s, x, S) 

+ (1 - p)asY(m - 2, to, s, x, S) 

U = U(to, s, x, S) 
= VsY(m - I, to,s, x, S) - VsY(m - 2, to, s,x, s)· 

Note that by induction hypothesis we have 

IDgD~UI.;;;Kap(1 +s)I-lm-I)1i fors>to' (4.25) 

Also by (i) and (ii) 

IDtD~Z I';;;Kap(1 + s) if{3 = 0, a#O, (4.26) 
.;;;Kap if (3 #0. (4.27) 

Furthermore, by choosing t _ I large, if necessary, we 
have by (4.8) 

IZ I >Ko{1 + Ix I + s) for s>to, with Ko > O. (4.28) 

Now the result follows from the techniques of the proof of (i) 
and (ii) by using (4.24H4.28) and condition (vii) of Sec. 3. 

(vi) Follows from (v) by writing 

W(x + th ~(S) + asY(mo, to, t, x, S), sl 
- W(x+th~(s)+asY(mo-l,to,t,x,s),s) 

11 d 
= dp - W(x + th ~(s) + pasY(mo, to, t, x, s) 

° dp 
+ (l-p)as Y(mo - I, to, t,x, s), S) 

and using the techniques of the proof of (v). 

(vii) Follows from (vi) by taking a + {3 = 0, x = O. 
(viii) la (Y(mo, to, t, x, S) - Y(mo, to, t, 0, S) llat I 

= If dp(Vx W)(px + tVho(S) 

+ VsY(mo - I, to, t,px, s), s) 

.{x + (Vx VsY)(mo - 1, to, t,px, s)l I, 
.;;;f dp(1 + Ipx + tVho(S) 

+ Vs Y(mo - I, to, t,px, Slll-l-li(lxl +K) 

by (ii) and condition (vii) of Sec. 3, 

';;;(1 + Itl)-I-li(lxl +K) by (i) and (4.8). (4.29) 

The result follows from (4.29) by noting 0> O. 
(ix) Clearly for '1' very large we get by (i) and (4.6) 

l'1'h ~(S) + as Y(mo - I, to, '1', 0, s)1 >2a'1' with a > Oso 

that 

I W('1'h ~(S) + as Y(mo - I, to, '1', 0, S), s)1 
.;;;K(I + '1')-li. 

By (4.30) we get 

I Y(mo, to, t + s, 0, S) - Y(mo, to, t, 0, s)1 

.;;;K r+ s 
d'1' (I + '1') -Ii. 

The result follows by noting limhoo S: + sd'1' (I + '1') - Ii 

(4.30) 

=0. Q.E.D. 

PI. Muthuramalingam 1887 



                                                                                                                                    

We define the modification for the free evolution to be 
Y(mo, t, S), where 

Y(m, t, s) = Y(m, 0, t, 0, s) for t;>O. (4.31) 

Then we have 

Lemma 4.2: (i) For C and to as in Lemma 4.1 and 
O<,m<,mo, we get 

(a) supIID~{ Y(m, t, s) - Y(m, to, t, 0, sll I: t;>to, 
SEC2e ) <,Ka, 

(b) lim Y(m, t, s) - Y(m, to, t, 0, S) exists forSin CZe ' 
,~oo 

(ii) lim Y(mo, t, S) - Y(ma, ta, t, 0, S) exists for S in 
,~oo 

(iii) lim Y(ma, t + 5, S) - Y(ma, t, S) = ° for all 5 and 
,~oo 

all S in G given by (4.1). 

Proof (i) We prove by induction on m. For m = ° it is 
easy to verify. Assume the result to be true for m with 
O<,m<,ma. For t;>ta define ¢(m, t, S) by 

¢(m, t, S) = Y(m, t, s) - Y(m, ta, t, 0, s). (4.32) 

Then by induction hypothesis 

sup { ID ~ ¢(m, t, S ) I: t;>ta, SEC2e J <,Ka < 00, (4.33) 

and 

lim ¢(m, t, S ) exists for S in CZe ' 
,~oo 

Then by (4.32) we have for t;>ta 

¢(m + 1, t, Sl 

= 1'0 ds W(sho(s) + asY(m, 5, S), S) 

+ L ds f dp (Vx W)(sh olS) + pad(m, 5, S) 

+ asY(m, to,s, 0, S), s)Vd(m, 5, s)· 

(4.34) 

Now the result follows by (4.32), (4.33), (4.34) and using the 
technique of the proof of Lemma 4.1(i). 

(ii) Follows from (i)(b) by taking m = ma. 
(iii) Let Cbe as in Lemma 4.1. Then by Lemma 4.1(ix) 

and Lemma 4.2(ii), we get for S in C 

lim (Y(ma, t + 5, S) - Y(ma, t, s)) = 0. 
,~'" 

The result follows by noting G is a union of such sets 
C. Q.E.D. 

Remark 4.3: We can define for t<,ta<,O the function Yby 
(4.9), (4.10) and prove results similar to (a) Lemma 4.1 when 
(4.4) is replaced by x·h o(k )<,0 and (b) Lemma 4.2. 

5. EXISTENCE OF THE WAVE OPERATOR 

This section closely follows Ref. 16. Let Y (ma, ta, t, 0, S ) 
and Y(ma, t, S) be as in (4.10) and (4.31), respectively. Define 
X(t, S), X (ta, t, S) by 

1BBB 

X(t,s)=tha(s)+Y(ma,t,S) 'VSEGof(4.1), (5.1) 

X (ta, t, S) = tho(S ) + Y (mo' ta, t, 0, S) 'V SEG, t;>to· 
(5.2) 
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Let Ha = ha(P), H be the free and total Hamiltonians 
given by conditions (i)-(iv), statement of Lemma 3.1, (vii), 
(ix), and (x) of Sec. 3. Define the free, modified free, total 
unitary evolutions U" Z" V" and for t;>ta a unitary evolu
tion Z (ta, t) by 

Z, = exp[ - iX(t, P)], U, = exp( - it H o), 

V, = exp( - it H), Z(to, t) = exp[ - iX(ta, t, PI]. 
(5.3) 

The aim of this section is to show 

(i) n+ = s-lim V~Z, exist, 

(ii) v,n+ =n+u, 'Vt, 

(iii) Range n + C JYac (H), the absolutely continuous 
space for H. 

Lemma 5.1: Let the compact set C and c > ° be as in 
(4.3) and further assume that S--+V holS) is a diffeomorphism 
on a neighborhood of C3e • Let t/JEC O"(G) be such that 

supp t/J C (sER n: dist(S, C l< c J. (5.4) 

LetfEY(R n). Then 

(i) Ie dt 11(1 + IQ I) - 1 - EoZ (ta, t)t/J (P)fll < 00. 

(ii) roo dt II Ws(Q, P)Z (ta, t)t/J (P )fll < 00. 

(iii) roo dtll{W(tho(p)+aY(ma-l,to,t,O,P)/aP,P) 

- w(aX(ta, t, p)lap, P))t/J (P)II < 00. 

(iv) L" dtll{W(Q,P)- w(aX(ta,t,p)lap,p)j 

xZ (to, t)t/J (P )fll < 00. 

(v) n "'+ = s-lim V~Z(ta, t)t/J (P )exists. 
r~oo 

Proof (i) Leta> Obe as in (4.6). Then (i) follows if we can 
show 

roo dt IIF(IQ l<,at)Z(10 ' t)t/J(P)fll < 00. 

Clearly, 

(Z (ta, t)t/J (P)f)(q) 

= f ds t/J (S )IIS) exp(i[q·s - X (1o, t, s)])· (5.5) 

For S in C2e and Iql<,at, we have 

I V s {q·s - X (to, t, S) II 
;>tIVho(s)I-lql-IVs Y(ma,1a,t,0,s)1 

;>2 at - K (1 + t )1-.5 by Lemma 4.1(ii) and (4.6) 

;>~ at for t;>ta with ta large; (5.6) 

also by Lemma 4.1(i) 

ID~lq's-X(ta,t,s)JI<'Kt forlal;>1. (5.7) 

Now apply the stationary phase Lemma A.I of Ref. 16 or 
Lemma I of the Appendix of Ref. 12 to (5.5) using (5.6) and 
(5.7) to get 
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IF(lql<at )(Z(ta' t)t/J (P)/}(q)1 

<KM(l + t) - MF(iql <at) L liD t {t/J (S )/(s) III "" 
lal<M 

<KM(f)(l + t)-MF(lql<at). 

Choosing M = [!n] + 3 in (5.8), we get 

L"" dt IIF(IQ l<at)Z(ta' t)t/J (P)/II < 00 

and so the result follows. 
(ii) We deduce from (i) and Lemma 3.1. Put 

(5.8) 

t/J(S) = t/J (S )( 1 + s 2t 12 with N as in Lemma 3.1. Then note 
that t/tEC O'(G) and supp t/J = supp t/J so that as in (i) we have 

LX> dtll(l + IQ 1)-I-E°t/J(P)Z(ta, t)/1I < 00. (5.9) 

By Lemma 3.1 we have 

II Ws(Q, P)t/J (P)Z(ta, t )/11 

= IIWs(Q,P)(l +p 2)-NI2(1 + IQW+Eo 

X (1 + IQ \) - I - E°t/J(P)Z (ta, t )/11 
<K 11(1 + IQ \) - I - E°t/J(P)Z(ta, t )/11 for K < 00. 

(5.10) 

The result follows from (5.9) and (5.10). 
(iii) By Lemma 4. 1 (vii) we get 

II (W(IVha(P) + aY(ma - 1, ta, I, 0, p)lap, P) 

- W(aX(la, I, p)lap, P)Jt/J (PHI 

<K(l +1)-lmn+I)IJ. 

Now the result follows since (rna + 1}15 > 1 by (4.2). 

(iv) Step 1: (integration near ta). By Lemma 3.1 (ii) and 
condition (vii) of Sec. 3 we have 

sup(IIW(Q,P)t/J(P)11 + IIW(aX(ta, t,p)lap,p) 

1,6 (P)II:t>taJ < 00. 

So we very easily get for every finite tl>ta 

f' dt II (W(Q, P) - W(aX(ta, t, p)lap, P)J 

XZ(ta, 1)t/J(P)fll < 00. 

So from now on we assume that l>tl>la, where II is large. 
Step 2: (qt -I outside an annulus): Define g(t, q) by 

g(l, q) = [( W(Q, P) - W(aX(ta, I, p)lap, P)J 

Xt/J (P)Z (ta, I )f](q) (5.11) 

so that by (3.4) 

g(t, q) = J dS (W(q, S) - W(asX(ta, I, S), S)J 

Xt/J (S V(S )exp[i( q·S - X (la, I, S)J]· 

Let 

a = inf (I -IIX~(ta, t, s)l: SECc ' t>tI!, 

b = sup (t -IIX ~(Ia, t, t)l: tECc ' t>tI! 

so that ° < a < b < 00. 

By Lemma 4.1(i) it is easily seen that, for IqlEl:nat, 2bt] 
and tin Cc ' 
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IVs lq's-X(ta,t,slll>K*(l + Iql +t) withK*>O, 
(5.12) 

IDt{q·t - X (ta, t, s)l I<Ka(l + Iql + t) for lal>1. 
(5.13) 

Now apply the stationary phase Lemma A.1 of Ref. 16 or 
Lemma I of the Appendix of Ref. 12 to the integral expres
sion for g(t, q), using (5.12) and (5.13), to get 

Ig(t, q)F(lqIEl:Bat, 2bt])1 

<KMF(lqIEl:Oat, 2bl])(1 + Iql + t) - M 

X { L IIDtl W(q, t)t/J (t)/(s)Jli"" 
lal<M 

+ L IID t ( W(XWa, t, S), S)t/J (s)/(s)J II",,} 
lal<M 

<KM(f)(l + Iql + t)-M. 

Choosing M = [~n] + 3, we see that 

L"" dl Ilg(l, .)F(I·IE£[!at, 2bl ])11 < 00. (5.14) 

Step 3: (qt -I is inside the annulus but away from critical 

points): Let XaEC O'(R n) be such that O<Xa< 1, Xa = 1 on 
Ixl < 1, ° on Ixl >2. Then, for any L > 0,0' in (0, !), we get 

1 = (1 - Xa)(tU-IL -I [q - X~(ta, t, t)]) 

+Xa(tu-IL-I[q-X~(ta,t,t)]). (5.15) 

Then 

g(t, q) = gl(l, q) + g2(t, q), (5.16) 

gl(t, q) = f ds [W(q, s) - W(X ~(ta, t, s), 5)]t/J (s VIS) 

X(1 - Xa)(tU-IL -I [q -XWa, I, S)]) 
xexp(i[q'5-X(ta, t,5)])' (5.17) 

g2(t, q) = f dp f ds (Vx W)(pq + (1 -p)X~(ta, t, S), S) 

.[q - VsX(ta, t, sl]t/J (S)/(S) 

XXa(t U
- IL -I [q - X Wa, t, 5)]) 

Xexp(i[q·S - X(to, t, 5)]) 

= f dp g2(P, t, q). 

As in Step 2, we have 

Igl(l, q)F(lqIE[!al, 2bl ])1 

(5.18) 

<KM(f)F(lqIE[!at, 2bt ])(1 + LI I-U)-M(l + t1M 

<KM(f)t -M(I-2U)F(lqIE£!at, 2bl ]). 

Now choosing M large so that - M (1 - 20') + !n + 1 < 0, 
we easily see that 

LX> dl Ilgl(t, .)F(I·IE[!at, 2bl ])11 < 00. (5.19) 

Step 4 (q is nearer the critical points): As in Ref. 16, 
choose 5a in Cc and a diffeomorphism t/J defined in a neigh
borhood ofO such that for Iql in nal, 2bt] 

q = X ~(ta' I, Sa), 

t/J(O) = So' 
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q.t/I(y) -X(to, t, t/I(y)) = qSo -X(to, t, So) + t (Ay,y), 

A = X ;(to, t, So)/2t. (5.20) 

Note that So depends on t, q; A depends on t, q but under 
our assumptions it varies in a compact subset of GL(n,R ); t/I 
also depends on t, q. Further by Lemma A.6 of Ref. 16, we 
have 

I(D;t/I)(O)I";Xa for all a. (5.21) 

Now, applying Lemmas A.4 and A.2 of Ref. 16 to 
(5.18), we get, for every M>2, 

Ig2(P, t, q)F(lqIE[!at, 2bt])1 
M-I 

< I K/ -j-n/21(A -ID,D)i 
j=1 

x !(Vx W)(pq + (1 -P)Xt(to, t, t/I(y)), tP(y)) 

. [q - X Wo, t, t/I( y))] tP (t/I( y)lf(t/I( y))ldet t/I'( y)1 

XXo(t a-IL -I [q - X Wo, t, t/I( y))]) J I 

+KMt -M-n/2 I IID t 
lal.;;s 

{(Vx W)(pq + (1 - p)X t(to, t, s), s) 

X [q-Xt(to,t,s)] 

XtP (slftS )xo(ta- IL -I [q - X wo, t, s)])J 1100' 

where s > 2M + !n and D is the differential operator w.r.t. y 
aty = O. 

By Lemma 4. 1 (i), condition (vii) of Sec. 3, and (5.21), we 
see that 

Ig2(P, t, q)F(lqIEUat, 2bt])1 

<{Kj Mil t -j-n/2-1-8+I-a+2ja 
j=1 

+KM I t -M-nI2-1-8+(I-al +sa} 
lal.;;s 

XF(lqIE[!at,2bt]) 
<{K!t - I - n/2 -8 + a + KMt - M- nl2 -8+ (s- IlaJ 

XF(lqIEBat,2bt]) sinceO'<!. 

Now it is easily seen that if 0' is in (0, min { 8, !J) and 
- M - 8 + (2M + n - 1)0'< - 1, then 

Joo dt IIg2(t, ·)F(I·IE[!at, 2bt ])11 < 00. (5.22) 

By step 1, (5.11), (5.14), (5.16), (5.19), and (5.22) the re-
sult follows. 

(v) By using (ii)-(iv) we see that for fin Y(R n) 

(00 dt II!!.. {V~Z(to, t)tP(P)fll < 00 l dt 

so that s-limhOO V~Z (to, t)tP (P)fexists. The result follows 
since Y(R n) is dense in L 2(R n). 

Theorem 5.2: (i) l1+ = s-lim,_oo V~Z, exists, 
(ii) l1+ is an isometry and V,l1+ = l1+ U, for all t, 
(iii) Range l1+ cJl1"ac(H). 

Proof (i) FortP as in Lemma 5.1, using Lemma 4.2 (ii) we 
get the existence ofs-limhoo V~Z,tP (P). The result is clear 
since u (Range tP (P): tP, C as in Lemma 5.1 J is dense in 
L 2(R n) by condition (iv) of Sec. 3. 
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(ii) It is clearthatl1+ is an isometry. As in Ref. 16, using 
Lemma 4.2 (iii), we get V,l1 + = l1 + U,. 

(iii) Follows from (ii) and the proof of Proposition 1, 
XI.3 of Ref. 4. Q.E.D. 

Remark 5.3: By the remark 4.3 we can define Z, for 
t<O. Then we have l1_ satisfying Theorem 5.2 for l1_. Note 
that we have proved Theorem l(b). 

6. APPROXIMATING THE TOTAL EVOLUTION BY AN 
AUXILIARY POSITION-MOMENTUM-DEPENDENT 
EVOLUTION ON A HALF-SPACE 

Let the compact set C of Lemma 5.1 be a closed sphere, 
i.e., (xER n: Ix -xol<rJ forsomexoER nandr>O,letY(mo, 
to, t, x, S) be as in (4.10), and let (4.3) to (4.7) be satisfied. The 
operators Hand H o are as in Sec. 5. Define for t'~to 

X (to, t, x, S) = x'S + (t - to)ho(S ) + Y (mo, to, t, x, S ). 
(6.1) 

Let T be as in Sec. 2 with the constant c* of (2.1) less 
than or equal to the constant c of (4.3). Define the sets E (C, 
±,r)by 

E(C, ±, r) = {(x, k)ER nXR n: kEC, 

x·h o(k )~O, Ixl>rJ. (6.2) 

For tP in C ;(G) [with G as in (4.1)], define the integral 
kernels 11,."'/5 of (q, x) depending on to, t, tP, k by 

I I (to, t, tP, k, q, x) 

= f dS tP (S )7}(S - k) exp(i[q·S - X (to, t, x, S)]), 

12(to, t, tP, k, q, x) 

= f dS tP (S )7}(S - k){ exp(i[q·S - X (to, t, x, S)]) J. 

X (W(XWo, t, x, S), S) - W(x + th o(S) 

+ J"Y(ma - 1, to, t, x, S), S)J, 
13(to, t, tP, k, q, x) 

= f dS tP (S)7}(S - k){ W(q, S) 

- W(Xt(to, t, x, S), S)J 

X exp(i[q·S - X (to, t, x, S)]), 

14(to, t, tP, k, q, x) 

= f dStP(S)7}(S-k)W(q,S) 

X exp(i[q'S-X(to,t,x,S)]), 

15(to, t, tP, k, q, x) 

= f dStP(S)7}(S-k)W(X t (to,t,x,S),S) 

X exp(i[q·S - X (to, t, x, S)]) 

so that 13 = 14 - Is· 
Define the operator EI(to, t, C, tP, +, r) by 

(EI(ta, t, C, tP, +, r)fJ(q) 
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= r dx dk ('YJxk 1/)11(to, t, r/J, k, q, x). 
JE(C,+,r) 

Note that 

{r/J(P)T(E(C, +, r))/J(q) 

= L(c, +,r) dxdk ('YJxdf) fdsr/J(s);'(s-k) 

X exp(i[q·s - xs]) 

so that 

(6.4) 

EI(to, to, C, r/J, +, r) = r/J (P)T(E(C, +, r)). (6.5) 

TheoperatorsEI(to,t, C,r/J, + ,r)and T(E(C, + ,r))can 
be compared with, respectively, E + .r(t. s), P +,r of Ref. 30. 
We wish to prove statements similar to Theorem 4.4 and 
Propositions 4.5 and 4.6 of Ref. 30. To this end and let us 
note that. by (4.10). 

[ -iV, _ , ~{V~_t EI(to.t.C.r/J, +,r)/J](q) 
° dt ° 

= {Ws(Q, P)EI(to, t, C, r/J. +. r)/J(q) 

+ i dx dk ('YJxk 1/)(12 + 13)(to, t. r/J. k. q. x), 
E(C, + ,r) (6.6) 

= {[ Ws(Q. P) + W(Q. P)]EI(to• t. C, r/J, +. r)/J(q) 

+ i dx dk ('YJxk If)(12 - 15 )(tO' t, r/J, k. q. x). 
E(C,+,r) (6.7) 

Define integral kernels J I • .... J5 by 

-0(to, t, r/J, r, k, q. x) 

= F(x.h ~(k »0. Ixl>r)/;(to, t. r/J. k, q. x). (6.8) 

For any kernelJ = J(q. x) let IIJ(.,.)II denote operator 
norm of the operator on L 2(R n) induced by the kernel J. 

The motivation for the following Lemma 6.1 whose 
proof has a striking similarity to the proof of Lemma 5.1 is 
clear from (6.6)-(6.8). 

Lemma 6.1: Let T, r/J, C be as above. Then: 

(i) !~~ L" dt 11(1 + IQ j) - I - €oEI(to, t, C, r/J, +, r)1I = 0; 
o 

(ii) !~~ 1'" dt II Ws(Q, P)EI(to, t, c, ¢, +, rlll = 0; 
o 

(iii) lim r'" dt sup IIJ2(to, t, ¢, r, k, '.)11 = o. r-oo Jto keC 

For every finite tl>tO: 

(iv) !~~ {' dt II W(Q, P)EI(to, t, C, ¢, +, r)1I = 0; 

(v) lim t, dt sup IIJ5(to, t, ¢, r, k,. , ·HI = 0; r-oo Jto keC 

(vi) lim t, dt II~ {V~_lo EI(to, t, C, r/J, +, r)11 = o. r~", J,o dt 

If further diameter of C3c is small, then: 

(vii) lim i'" dt sup IIJ3(to, t, r/J, r, k, " ')11 = 0 
7-00 t) keC 
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(viii) lim r'" dt II~ {V~-Io EI(to, t, C, r/J, +, rlJ II = 0; 
r~", Jro dt 

(ix) limsupllVr_lor/J(P)T(E(C, +,r)) 
7_00 t>to 

- EI(to, t, C, r/J, +, r)1I = 0; 

(x) lim S -I f dt IIT(E(C, +, O))r/J (P)V~ III = 0 
s-+'" Jo 

for each lin Yl"c(H). 

Proof (i) DefineJ?(to, t,¢, r, k,q,x) = (I + Iqll-l- €oJ1(tO' t, 
r/J, r, k, q, x). By (6.4) and Lemma 2.4 we need only to show 
that 

lim r'" dt sup lin (to, t, r/J, r, k, " ')11 = 0, 
r_oo Jto keC 

which we do in three steps. 

Step 1: We show that SUP'>lo IIE1(to, t, C, r/J, +, rlll < 00 

for large r. 

By Lemma 4.1 (ii) we get for x·h ~ (k »0, k in C, 
Is - k I<i c*, and Ixl>r, rlarge 

IVs VxX(to, t, x, s) - 1 I<~ 

and 

ID'IVxX(to, t, x, S)I<Ka for lal>l. 

By Theorem 2.5, 

sup sup IIJ1(to, t, r/J, r, k, " ')11 < 00. 
1>10 keC 

Now Step 1 follows by Lemma 2.4. 

Step 2 (q is near the origin): When x·h ~(k »0, 

(6.9) 

Is - k I<Ac*, and Ixl>r, rlarge, we get by Lemma4.1(i) and 
(4.8) 

IVsX(to,t,x,s)1 

>2K*(lxl +t-to) forsomeK*>O. 

If, further, Iql<K*(lxl + t- to), then 

IVs {q·s - X (to, t, x, s)J I>K*(lxl + t - to), 

ID'I ! q·s - X (to, t, x, S ) I I 
<Ka(lxl+t-to) forlal>1. 

Now an application of the stationary phase Lemma A.l of 
Ref. 16 or Lemma I of the Appendix of Ref. 12 gives, for each 
M> 1, there exists KM such that 

IF(lql<K*(lxl + t - to))J?(to, t, r/J, r, k, q, x)1 
<KM(Ixi + t - to)-MF(lql<K*(lxi + t - to)). 

By taking the Hilbert-Schmidt norm we get, for M>n + 2 

[f dq dx {F(lql <K *(lxl + t - to)) 

X In (to, t. r/J. r, k, q, x)1 J211/2
] 

<K (r + t - tol- 2 for all k in C. (6.10) 

Step J (q is away from the origin): Clearly for Ix I >r 

F(lql>K*(Ixi + t - to))<F(Iql>K*(r + t - to)) 

so that, using (6.9). we have 
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operator norm of the kernel 

(1 + Iqi)- /IF(lqi)>K *(Ixl + t - to)JI("') 

<X(r+t-to)-/I forallkinC,6>0. (6.11) 

By (6.10) and (6.11) we get the operator norm of the kernel 
(1 + Iql) - /I JI(tO' t, 4J, r, k, q, x)<K (r + t - to) - /I for 6 in 
[0,2], k in C. Now by Lemma 2.4 we get 

11(1 + IQ IJ - /lEI(to, t, C,4J, +, r)1I 

<X (r + t - to) - /I for 0<6<2. (6.12) 

The result follows by taking 6 = 1 + Eo' 

(ii) We deduce from (i) and Lemma 3.1(i). Choose 4JI in 
C O'(G) such that 4J14J = 4J. Then by (6.4) and (6.3) we have 

4JI(P)EI(tO' t, C,4J, +, r) = EI(to, t, C, cp, 4J, +, r) 
= EI(to, t, C,4J, +, r). (6.13) 

It is easy to see by commutation rules that for any r/J in 
Y(R n) the operator (1 + IQ 1)-2r/J(P)(1 + IQ 1)2 is bounded 
and so, by interpolation, (1 + I Q I) - /lr/J(P)( 1 + I Q 1)/1 is 
bounded for 6 in [0,2]. Now from Lemma 3.1(i) we see that 

II Ws(Q, P)4JI(P)(1 + IQ III + Eoll < co. 

By (6.13) and (6.14) 

II Ws(Q, P)EI(to, t, C,4J, +, r)1I 

,K 11(1 + IQ I) -1- EoEI(to, t, C,4J, +, r)1I 

and now the result follows from (i). 

(6.14) 

(iii) In Step 1 of the proof of (i) we have for x·h ~(k »0, k 
inC, Is-kl,~c*, Ixl>r,rlarge 

IVs VxX(to, t, x, s) - I I,! 
and 

IDc;VxX(to' t, x, s)I,Ka for lal>l. 

Now by Theorem 2.5, Lemma 4.1(iv), (vi) 

sup IIJz(to, t, 4J, r, k, " ·)\1 
kEC 

,K [to(1 + r + t) - I - 6 

+(1 +t)l-mo6(1 +t+r)-1-6]. 

The result follows since (mo + 1)15 > 1 by (4.2). 

(iv) Put 6 = 15 in (6.12) to get 

11(1 + IQ Il -6E1(tO' t, C,4J, +, r)II<K(r + t - to) -6. 

Now the proof is similar to the proof of (ii) by using Lemma 
3.1(ii). 

(v) As in (iii) using Theorem 2.5, Lemma 4. 1 (iii) 

sup IIJ5(to, t, 4J, r, k, ')11 ,K (r + t - to) - 6. 
kEC 

Now the result is immediate. 
(vi) Follows from (6.7), (ii), (iii), (iv), (v), and Lemma 2.4. 
(vii) This is the central part of this publication. The 

proofis lengthy and so we split it into seven steps. We always 
take t 1 large such that t 1 - to is large. 

Step 1 (q near the origin): Using the condition (vii) of 
Sec. 3 and Lemma 4.1 (iii), we see as in Step 2 of proof of (i) 

sup operator norm of 
kEC 
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F(lql<K*(\xl + t - to))J3(tO' t, 4J, r, k, q, x) 

<K (r + t - to)-2, where K * is as in (6.10). (6.15) 

Step 2 (q away from the origin and away from the criti
cal points): We split 13 into two parts. Choose 17 in (0, ~), X 0 in 
C O'(R n) such that O<Xo' 1, 1 on lxi, 1,0 on Ixl >2. Define 
J6(17, to, t, ... ) by 

J6(u, to, t, 4J, r, k, q, x) 

=Fllql>K*[jxl +t-to])F(x.h~(k»O, Ixl>r) 

xf dS 4J(S)~(S - k){ W(q, S) 

- W(XWo, t,x,S)'S)} 

X (I - Xo((t - tor-IL -I[q -X';'(to, t, x, s)])J 

xexp(i[q'S-X(to,t,x,s)]), (6.16) 

and, for 0, p, 1, define J7( p, u, ... ) by 

J7( p, 17, to, t, 4J, r, k, q, x) 

=F(lql>K*[lxl +t-to])F(x.h~(k»O, Ixl>r) 

so that 

X f dS 4J (S )~(S - k ) 

X(Vx W)(pq + (1 -p)X';'(to, t, x, S), S) 
. [q - X ';'(to, t, x, S)] 

XXo((t - tor-IL -I [q - Xi (to, t, x, s)]) 

X exp(i[q·S - X (to, t, x, S I]), 

= J6(17, to, t, 4J, r, k, q, x) 

+ f dp J7( p, 17, to' t, 4J, r, k, q, x). 

(6.17) 

(6.18) 

J7 ( p, 17, ... ) will be estimated from the next step onwards and 
J6(17, ... ) will be estimated now. 

Make a change of variable S-*S(t - to)-<1 in (6.16) and 
apply the stationary phase Lemma A.l of Ref. 16 or Lemma 
I of the Appendix of Ref. 12 to get, using the condition (vii) of 
Sec. 3 and Lemma 4.1(iii), 

IJ6 (17, to, .. ·}I 
,KM(t - to) - n<7(t - to + r) - 6 

xF(inf Iq -X';'(to' t, x, s)I>L (t - to)I- <7). (6.19) 
SECc 

Let Ce (t - to) = {A.ER n: all the coordinates of A. are integers 
and A. (t - to) - <7 is in Ce } . Note that the number of elements 
in Celt - to) isK (t - to)n<1, whereK is independent oft, to, 17. 

Now 

F(Sin Cel< L F(S:\S - A. (t - to)-<1II«t - to)-"), 
AECc(t- tol 

(6.20) 
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Iq - XWo, t, x, S)IF(S:ls -A (t - to)-UII«t - to)-U) 

;;;.llq -XWo, t,X,A (t - to)-11 

- IX ~to' t, x, A (t - to)-1 

-X~(to, t, x, s)1 IF(s:"') 

;;;.llq -xWo, t, x, A (t - to)-11 

- [KI(t - to) + K2(1 + t)1 - 6](t - to) - UIF(s:"')' 
(6.21) 

where we have used boundedness of h ;; in C3e , Lemma 4.1 (i), 
and the mean value theorem in the last step. Now choose L 
such that 

!L< sup (t - to)-1 [KI(t - to) + K2(1 + t)1 -6]. 
t>t( 

Since, in (6.19), Iq - X ~(to, t, x, s)I;;;.L (t - to)1 - U, we get 
from (6.21), when A is in Celt - to)' 

Iq -XWo, t, x, S)IF(S: ... ) 

;;;.{ Iq -XWo, t, X,A (t - to)-U)I 

-!L (t - to)l-aIF(S:"') 

;;;.!Iq - XWo, t, x, A (t - to) -U)I 

XF(s:ls -A (t - to)-all<t - to)-a). (6.22) 

From (6.19), (6.20), and (6.22), 

IJ6(0', to, t, f{J, r, k, q, x)1 

<KM(t-tO)-na(t-to+r)-6 L 
AEC~I- 10 ) 

F(lq -X~(to' t, x, A (t - to)-11;;;.L (t - to)I-, 

Xlq-XWo,t,x,A(t-to)-11- M. (6.23) 

Clearly for A in Celt - to) 

fdq F(lq - X~(to, t, x, A (t - to) -11;;;'L (t - to)l-a) 

X Iq -Xi!to, t,X,A (t- to)-11- M 

<f dqF(lql;;;'L(t-tO)I-1Iql-M 

< [L (t - to)1 - U] 1- M + n a.e.x. (6.24) 

Also 

f dx F(lq -Xi(to, t, x, A (t - to) -11;;;'L (t - to)'-1 

X Iq -xi!to, t, X,A (t- to)-11- M 

= f dyF!lq-yl;;;.L(t-tO)I-1Iq-yl-M 

X Idet[(Vx V,;X)(to, t, x, A (t - to) -1] I-I 

<K f dy F(lq - yl;;;.L (t - to)I-1Iq _ yl-M, 

where K depends only on Ce due to I V xV,;X (to, t, x, 

S) -II<!, 

<K [(t - to)I-U] -M+n. 

By (6.23H6.25) and Lemma 2.3, we have 
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(6.25) 

(6.26) 

Step 3 (q nearer the critical points: An expansion using 
Morse's lemma): Put 

W;(x, S) = aW(x, s)/axj , 

Xj(x) =xjXo(x) 

so that by (6.17) 

(t - to)"- IL -IJ7(p, 0', to, t, f{J, r, k, q, x) 

= ttl f dSf{J (S )~(S - k) 

X W;(pq + (l-p)Xi(to, t,x,s),s) 

XXj((t - to)a-IL -I [q - X~(to' t, x, s)]) 

Xexp(i[q·S - X (to, t, x, s)))} 

(6.27) 

XF(x·h o(k );;;'0, Ixl ;;;'r)F(lql;;;.K * [Ixl + t - to)). 
(6.28) 

As in Step 4 of the proof of Lemma 5. 1 (iv), let So = So(to, 
t, q, x) in Ce be the unique critical point, i.e., 

(6.29) 

Apply Lemma A.6 of Ref. 16 to the function 
s~(t - to)-I{ q·s - X (to, t,x,s) I to get a function ¢rdefined 
in a neighborhood of 0 such that 

¢rIO) = So' 

q.r/A.. y) - X (to, t, x, ¢r( y)) 

= q·So - X ~(to, t, x, So) + (t - loj(Ay,y), 

A = X ;(/0 , t, x, So)/(2(1 - to))· 

(6.30) 

(6.31) 

(6.32) 

Note thatA, '" depend on So and therefore on to, I, q, x. Since 
So is always in Ce , the real symmetric matrix A varies in a 
compact subset of GL(n, R ). The signature of a matrix is a 
continuous function of the matrix. So, by shrinking Ce if 
necessary, we can assume that the signature of A is constant 
for all t, to, q, x. 

Applying Lemma A.2 and A.4 of Ref. 16, we have, for 
M;;;.2, 

rhs (6.28) 

= F(x.h o(k );;;'0, Iql;;;.K*[ Ixl + I - to),lxl;;;'r) 

Xexp(i[q·So - X (/0' t, x, So)]) 
n M-I 

X L L Kj (t-/o)-nl2- j 

m=lj=O 
X (det A )-1/2[ (A -ID, D)j 

X {f{J (r/A..y))~(r/A..y) - k)Wm(pq + (1 -pi 

XXi (to, I,x, ¢r(y)), ¢r(y))ldet ¢r'(Y)1 

XXm((1 - to)'7- IL -I [q - X ~(to, I, x, r/A..y))]) 1(0)] 

+ Mth term, (6.33) 

where (i) the KJ are constants independent of to, t, q. x, (ii) Dis 
the differential operator (a /a YI' ... , a/a Yn)' and 

IMth term I 
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XF(x·h~(k);;;.O, Iql;;;'K*[lxl +t-to], Ixl;;;.r) 
n 

X L L IID t !¢(s)7}(s-k) 
m = I lal <2M + n 

x Wm(pq + (1 -p)XWo, t, x, S), S) 

XXm((t - to)a-IL -I [q -Xg(to, t, x, s)])IIo" .(6.34) 

Now we estimate the norm oftheMth term. The norm ofthe 
other terms of the rhs of (6.33) will be estimated from next 
step onwards. For (6.34) we have 

Ipq+(I-p)Xg(to,t,x,s)1 

;;;.IX g(to, t, x, s)1 - plq - X g(to, t, x, s)1 

;;;.z-1/2[1xl +2a(t-to)] -KI(1 +t)I-O 

- 2L (t - to)l-a 

by (4.8), Lemma 4.1(i), and the presence ofXm in (6.34) 

;;;.a( Ix I + t - to) with some a > 0 

if t;;;.t I with t I - to large. 

By (6.35) and condition (vii) of Sec. 3. 

IMth term of the rhs of(6.33)1 

<KM(t - to) - n/2 -M+(2M+ n)a(t _ to + r) -I - 8 

XF(x.h~(k);;;.O, Ixl;;;.r) 

(6.35) 

XF(SUP Iq - X g(to, t, x, s)1 <2L (t - to)1 - a).(6.36) 
SECc 

It is easily seen, by using (4.7), that 

F(SUP Iq - X g(to, t, x, s)1 <2L (t - to)I- a) 
SECc 

< L F(lq-XWo,t,x,A(t-to)-a)1 
AECc(l- ' 0 ) 

«2L + 2 + a)(t - to)1 -,. (6.37) 

Again using the techniques in (6.24) and (6.25) we see 
that for each A in Cc (t - to) 

operator norm of 

F(iq - X g(to, t, x, A (t - to) - a)1 «2L + 2 + a)(t - to)1 - 0") 

<K (L )(t - to)n(1 - a). (6.38) 

By (6.36)-(6.38) 

operator norm of M th term of rhs of (6.33) for all k in C, 
l;;;.p;;;'O, 

<K M (L )(r + t - to) - I - 8 

X(t _ to) - nl2 -M+ (2M + n)a+ n(l-a) +na 

<KM(L)(r + t - to)-I-O(t - to)-M(I-2a)+n(0"+ 112). (6.39) 

Step 4 (bounds on the derivatives of So and tP): Note that 
since q = X g (to, t, x, tP(O)) and X m (0) = 0 for each m 

jth term ofthe rhs of (6.33) for j = 0 vanishes 

for each m = 1, 2, ... , n. (6.40) 
By Sec. 8 we get if Cc is sufficiently small, then (i) for 
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each fixed x the map tP = tP(to, t, q,x;y) isaC '" functionofq 
and y, (ii) So = 50(to, t, q, x) is a C '" function of q and x for 
fixed t, to, (iii) ID ~sol <Ka for all to, t, q, x under considera
tion, (iv) ID ~A (to, t, q, x) I + ID ~A -I(to, t, q, x) I <Ka for all 
to' t, q,xunderconsideration, (v) ID~D~tPl aty = O<KaP for 
all to, t, q, x under consideration, (vi) ID ~! so(q, xd - so(q, 
x2)l I<Ka IXI - x 21(t - to)-1 for alIa, q,X I,X2, t, to, and (vii) 
Iso(q, xd - so(q, x2)I;;;'K~lxI - x21(t - to)-1 for someK~ 
> 0 for all to, t, q, X I' x2. 

The proof of(iHvii) is not short. Since we do not want to 
break the continuity of the proof of the present lemma, we 
prove these results in Sec. 8. 

Step 5 [simplifying the terms on the rhs of (6.33)]: De
fine forj = 1,2, ... ,M -1, m = 1,2, ... , n, 

fmj(q, x) = fmj( p, (T, to, t, k, q, x) 
= (detA )-1/2[ (A -ID, D)j 

X!¢ (tP(y))7}(tP(y) - k )Idet tP'(y)1 

X Wm(pq + (1 - p)X Wo, t, x, tP(y)), tP(y)) 
XXm((t - to)a- IL -I [q - X g(to, t, x, tP(y))] )l(O) 

(6.41) 

Then by the assertions (iHv) of Step 4, (6.35), 
n 

L fmj(q, x) = (t - to + r) - I - 8(t - to)2 jagj (q, x), 
m= I 

(6.42) 

wheregj = gj(p, (T, to, t, k, q, x) satisfies 

ID ~gj(q, x)1 <Ka for all a, p,(T,to,t,k,q,x; 

further, for every fixed to, t, k, p, x the function gj has com
pact support in q. (6.43) 

Put 
hj(q, x) = exp(i[q·so - X (to, t, x, So)])gj(q, x), 

= hj(p, (T, to, t, k, q, x). (6.44) 

Step 6 (calculating the operator norm of hj ): Let Hj 

= Hj ( p, (T, to, t, k ) be the operator induced by the kernel hj • 

Then 

(the kernel of Hj*Hj)(q,x) 

= f dy hj(y, q)hj(Y' x) 

= f dy gj( y, q)gj( y, x)exp(i[ y,so( y, x) 

- X (to, t, x, 50( y, x)) - y,so( y, q) 

+ X (to, t, q, so( y, q))]), (6.45) 
Vy (the phase in the rhs of (6.45)) 

= Vy ! y,So(y, x) - X (to, t, x, So(y, x)) 

- y,So( y, q) + X (to, t, q, So( y, q))) 

= So(y, x) - So(y, q) by (6.29). (6.46) 

By (6.46) and assertions (vi) and (vii) of Step 4, we have 

ID; (the phase on rhs of (6.45))1 

<Kalq-xl(t-to)-I forlal;;;'l, 

IVy (the phase on rhs of (6.45))1 

;;;.K*lq -xl(t - to)-1 for someK* >0. 
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Now one can apply the stationary phases Lemma A.l of Ref. 
16 or Lemma I of the Appendix of Ref. 12 to the rhs of(6.45) 
using (6.43) to get 

Irhs of (6.45)1 <KN(1 + Iq - xl(t - to)-I) -N. (6.47) 

Take N = n, n + 1 in (6.47) and interpolate to get 1 the inte
gral kernel of (H1'Hj) at (q, 
x)I<K(1 + Iq - xl(t - to)-I) - n -.5/4 so that 

Ilhj{-,')II<K(t - to)nl2+.5/8 for all k,p, a, to, r. (6.48) 

Now from (6.33), (6.39), (6.40), (6.41), (6.42), (6.44), and (6.48) 
we get 

Operator norm of rhs of (6.28) 

<KM(t - to + r)-I-.5(t _ to)-M(I-2u)+n(u+ 1/2) 

M-I 
+ L Kj(t-tO)-n/2- j(t-tO+r)-I-.5 

j=1 
X (t - tofjU(t - to)n/2 + .5/8 

<KM(t - to + r) -1-.5[(t _ to) -M(I- 2u)+ n(u+ 1/2) 

+ (t _ to) - I + 2u+ .518] 

since a is in (0, !). (6.49) 

Step 7 (the concluding step): By (6.15), (6.18), (6.26), 
(6.28), and (6.49) we get 

sup IIJ3(to, t, ¢J, r, k, " ')11 
kEC 

<K [(r + t - to)-2 + (t - to + r) - .5(t - toll - M + n)(1 - u) 

+ (t - to + r)-I-.5(t _ to)-M(I-2u)+n(u+ 112)+ I-u 

+ (t - to + r) -1-I5(t - to) -I +2u+.5I8+ I-u. (6.50) 

Now choose a = kt5, M large, such that 

( - M + n + 1)(1 -At5)< - 1, 

and - M(l - !t5) + n(lt5 +!) + 1 -115<0 so that from 
(6.50) 

sup IIJ3(to, t, ¢J, r, k, " ')11 
kEC 

<K [(t - to + r)-2 + (t - to + r)-.5(t - to)-1 

+ (t - to + r) - I -.5 + (t - to + r) - I -15(t - to)15/4 J 

for all t'~tl';;>tO with tl - to large. 

Now the result follows by noting 15 > O. 
(viii) By (6.6), (6.8), (ii), (iii), (vii), and Lemma 2.4, we 

have 

lim (00 dt II ~ [ V~_ 'oEI(tO' t, C, ¢J, +, r) II = o. 
r_oo J., dt 

Now the result follows from (vi). 
(ix) Follows from (iii) and (6.5). 
(x) By (6.12) and (ix) we get 

lim sup 11(1 + IQ 1)-2V._ 'o¢J (P)T(E(C, + ,r))11 = o. 
'_00 t>to 

This leads to, since Range(1 + IQ 1)-2 is dense in L 2(R n), 

lim sup IIT(E(C, + ,r))¢J (P)V~ /11 = 0 
r_oo t>O 

for each/in L 2(R n). (6.51) 
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By Lemma 2. 1 (iii) and the RAGE theorem,4 we have for/in 
fft'c(H) 

lim S -I ( dt liT! Ixl<r, keC, x·h b(k )';;>O) 
5-+00 Jo 

X¢J (P)V~ /11 = 0 

for each fixed r. (6.52) 

The result follows from (6.51) and (6.52). Q.E.D. 

Lemma 6.2: Let ¢J be as in (5.4), C, c, Tbe as in Lemma 
6. 1 (viii) and Z (t), Z (to, t) as in (5.3). Then: 

(i) ¢J (P)EI(to, t, C, ¢J, +, r) = EI(to, t, C, ¢J 2, +, r); 
(ii) s-lim Z (to, t)* EI(to, t, C, ¢J, +, r) exists; 

'_00 

= s-lim Z (t - to)*EI(to, t, C, ¢J 2, +, r) exists; 
'_00 

= s-lim V~_ 'oEI(tO' t, C, ¢J 2, +, r) exists; 
'_00 

(v) nl(to, ¢J, C, +, r) = n+wl(to, ¢J, C, +, r); 
(vi) lim 11¢J2(P)T(E(C, +,r))-nl(to,¢J,C, +,rlll =0; 

(vii) lim 11(I-n+n"'t- )¢J2(P)T(E(C, +,r)lIl =0. 
r_", 

Proof (i) Follows from (6.3) and (6.4). 
(ii) We deduce this result by verifying the conditions of 

Lemma 2.7 by using Theorem 2.5 and results of Sec. 4. A 
simple calculation shows that for/in L 2(R n) 

Z(to, t)*EI(to, t, C, ¢J, +, r) 

= f dx dk (TJxk If)l(to, t, C, ¢J, +, r, k, q, x), (6.53) 

l(to, t, C, ¢J, +, r, k, q, x) 

= F (E (C, +, r)) f d5 ¢J (5 )f](5 - k ) 

X exp(i[ q'5 - A (to, t, x, 5)])' 

A (to, t, x, 5) = x'5 - toho(5) + Y(mo, to, t, x, 5) 
- Y(mo, to, t, 0, 5), 

where Y is as in (4.10). 

(6.54) 

The integral operator induced by the kernel 1 (to, t, C, ¢J, 
+ , r, k, q, x) will be denoted by 1 (to, t, C, ¢J, +, r, k). The 

presence of ¢J and f] forces that for some bounded subset B of 

1 (to, t, C, ¢J, +, r, k) = 0 for k not in B. (6.55) 

Further, by Theorem 2.5 and Lemma 4.1(ii), we see that 
there is some r 0 > 0 so that 

sup[1I1(to, t, C, ¢J, +, r, k)ll: r,;;>ro, t';;>to, k inR n} < 00. 

(6.56) 

When x and 5 are as in (4.4) and (4.5), it4.s easy to verify 
as in (4.29) that for each a 
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sup ID~ ~ {A (to, t, x, t)J I 
x.s at 

..;Ka(1 + It I) -1-1l(1 + Ixl). 
By the last inequality, Lemma 4.1(ii), and Theorem 2.5, we 
arrive at, for each s > 0, 

f'" dt operator norm of the kernel 

d 
dt 1 (to, t, C,1;, +, r, k, q, x)F(lxl..;s) < 00. (6.57) 

By (6.56) and (6.57) we have 

s-lim 1 (to, t, C,1;, +, r, k) exists for each k. (6.58) 
t~oo 

Now the result follows from (6.53), (6.55), (6.56), (6.58), and 
Lemma 2.7. 

(iii) Clearly s-limt~oo Z (t - to)* Z (to, t)1; (P) exists by 
Lemma 4.2(ii), (iii). 

The result follows from (i), (ii). 
(iv) Follows from Lemma 6.1 (viii). 
(v) Follows from (iii) and (iv). 
(vi) Follows from (iv) and Lemma 6.1(ix). 
(vii) Since 1 - n +n ~ is bounded, we get from (vi) that 

lim 1I(I-n+n~ )(1;2(p)T(E(C, +,r)) 
'-00 

- nl(to, C,1;, +, r) J II = O. 

Since(1 - n+n ~ )n+ = 0, we get by (v) that (1 - n+n ~ ) 
n I (to, C, 1;, +, r) = 0 for each r and now the result is 
clear. Q.E.D. 

Remark 6,3: By Remark 5.3 we have the operator n_. 
Using the techniques of the proof of Lemma 6.1 and 6.2, we 
can prove Lemma 6.1 (x) with V~ replaced by VI and + 
replaced by -; Lemma 6.2(vii) with + replaced by -. 

More precisely we have proved the following 

Lemma 6.4: Let G be given by (4.1) and q be in G. Then 
there exists a compact sphere (of nonzero radius) Aq with 
center q and a constant aq > 0 such that I p: dist( p, Aq )..;aq J 
C G. Let T be any operator of Sec. 2 with [refer to (2.1)] 

supp ~C I k:lk I..;Ab } suchthatO <b..;aq • Let1;beinC O'(G). 
Then: 

(i) lim 11(1 - n ± n!: )1; 2(p )T(E (Aq, ±, r))11 = 0 
'-00 

when supp 1; C I p: dist( p, Aq) < aq J; 

(ii) ;~~ S -lis dt IIT(E(A q , ±, 0))1; 2(p)V 'frill = 0 

for f in Yrc (H). 

7. PROOF OF THEOREM 1 (c), (d), (e), (f) 

Let the Hamiltonians Hand H o be as in Sec. 6 and 
further satisfying condition (xi) of Sec. 3 and let G be as in 
(4.1). 

Theorem 7.1: Let A be any compact subset of G. Then 
there exists an operator TofSec. 2 depending only onA such 
that 

(i) (1 - n ± n!: )1; 2(P)T I x·h ~ (k »0 J is compact 
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for each 1; in CO'(G) with supp 1;CA, 

(ii) ;~~ S -lis dt liT {x·h ~(k )~OJ1; 2(P)v!:rlll = 0 

for fin Yrc(H), 1; as in (i). 

Proof (i) Step 1: Let q be in G, A q , aq , Tas in Lemma 6.4 
and tf; in C O'(G). Then we prove that 

lim 11(1 - n ± n!: )~(P)T(E(Aq, ±, r)1I = O. (7.1) 
'_00 

Choose a smooth 1; such that 1; = 1 on I p: dist(p, Aq) 
..;lb J and supp 1; C I p: dist( p, Aq) < aq }. Then by Lemma 
6.4 

lim 11(1 - n ± n!: )~(P)1; 2(P)T(E(A q , ±, r))11 = o. 
'_00 

(7.2) 

By Lemma2.2(v), [1 - 1; 2(P)]T(E(A q , ±, r)) = o for each r. 
Now (7.1) follows from (7.2). 

Step 2: Let A be compact in G. Then there is an operator 
T of Sec. 2 depending only on A such that for all tf; in CO' (G ) 

(l-il±n!:)~(p)T(E(A, ±,O)) is compact. (7.3) 

Let for q in G A q , aq be as in Lemma 6.4. A is compact. 
SoA can be covered by finitely many A/s; call themA I , ... , 

Am· Let O<b..;Ha l , ... , am J. Choose TofSec. 2 with 
supp ~C {k: Ik I..;~b }. Then for this Tby Step 1 we have for 
j= 1, ... , m 

lim 1I(I-il±n!:)tf;2(p)T(E(Aj' ±,r))II=O. (7.4) 
'-00 

By Lemma 2.2(ii), (iv) we get 

lim 11(1 - il ± n!: )~(P)T(E(A, ±, r))11 = O. (7.5) 
'_00 

By (7.5) and Lemma 2. 1 (iii) we get (7.3). 

Step 3: LetA be compact in G. Choose e > 0 such thatA. 
= I p: dist( p, A )..;e J C G. By the proof of Step 2, there is 

some number a> 0 such that for all b with 0 < b";a the opera

tor (1 - n ± il !: )~(P) T (E(A" ±, 0)) is compact for all T 
with supp ~ C I k: Ik I..;Ab J. Now choose 0 < b..;min I e, a J. 

Let 1;EC O'(G) be with supp 1;CA. Then 

1; 2(P)T [x·h ~(k )~OJ 

= 1; 2(P)T(E(Ao ±, 0)) 

+1;2(P)T(E(Rn\Ao ±,O)) 

=1;2(p)T(E(Ao ±,O)) by Lemma2.2(v). (7.6) 

Now the result follows from (7.6) and the compactness of 

(1 - il ± il!: )1; 2(p )T(E (A" ±, 0)). This proves (i). 

(ii) The proof uses techniques similar to the proof of (i). 
As in Step 2 of (i), using Lemma 2.2(i), (iii), we get for A 

compact in G, 1; in CO' (G ), fin Yrc (H), 

;~ S-Il
s 

dt IIT(A, +, 0)1;2(p)V ±rlil =0. 

Now the argument is similar to Step 3 ofproofof(i). Q.E.D. 

Theorem 7.2: 

Yrc(H) 
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= I 'EKc!H): lim S -I IS dt 111,6 (P)V ±JII = 0 for each t" s-.oo Jo 

1,6 in C D(G)} $ Range 11 ±. 

Proof We prove only for the + sign; for the - sign the 
proof is similar. Let us remark that ED stands for sum of two 
closed orthogonal subspaces. Let 

M+ = I'EKe(H): lim S-I IS dt 111,6 (P)vJII Y' s-.oo Jo 

= 0 for each 1,6 in CD (G )} . 

It is clear that M + is a closed linear subspace of Ke (H ). 
Since il+ is an isometry, Range 11+ is closed. 

Step 1: to show the orthogonality of M + and 
Range il+: Let/EM+,geRangeil+. Chooseh inL 2(R n) so 
thatg=l1+h,i.e., IIV,g-Z,hll-oast~oo withZ, as in 
Theorem 5.2. From the identity 

(f,g) = (V,f, V,g - Z,h) + (jJ(P)V,f, Z,h) 

+ (V, f, Z, [1 - 1,6 (P)]h ) 
we easily get 

1 (f, g) 1 <11[1 - 1,6 (P)]h II for each 1,6 in C D(G). 

Now we get (f, g) = 0 by condition (iv) of Sec. 3. 
It is clear from Theorem 5.2(iii) that 

M + ED Range il + eKe (H). Thus to prove the theorem it is 
enough to show: 

Step 2: Ke (H )eRange il + eM +: Let/EKe (H) 
eRange 11+ and l,6eC D(G) be real valued. Take A = supp 1,6 
in Theorem 7.1 to get an operator Tsuch that(I - il+11 "'r ) 
1,62(P)T{x.h o(k»OJ is compact. Now, applying RAGE 
theorem,4 we get 

lim S -liS dt 11(1 - il+11 "'r )1,6 2(P)T {x.h b(k»OJ 
s-.oo 0 

X 1,6 2(P)VJII = O. (7.7) 

Also 

(il+I1"'r 1,62(P)T{x.h o(k»OJI,62(p)V,f, VJ) =0 

since 11Range il + 

Clearly, 

111,6 2(P )vJ1I 2 

= «(I-il+il"'r )1,62(P)T{x.h o(k»OJ 

X 1,6 2(p)V"f, VJ) 

(7.8) 

+ (il+il"'r 1,62(P)T{x.h o(k»011,62(p)V,f, VJ) 

+ (T {x·h b(k )<OJ1,6 2(p)Vtf, 1,6 2(P)VJ). (7.9) 

By (7.7), (7.8), Theorem 7. I (ii), and (7.9), we have 

lim S -I rS 

dt 111,6 2(P)VtI1l 2 = 0 
S--a;, Jo 

for each real-valued 1,6 in CD (G). The proof of Step 2 is now 
obvious. Q.E.D. 

Theorem 7.3: Let Hand Ho be as in Sec. 6 and satisfying 
condition (xi) of Sec. 3. Then Theorem I(c), (d), (e), and (f) are 
true. 
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Proof 01 Theorem 1 (c): We prove for + sign; for - ve 
sign the proofis similar. We deduce the prooffrom Theorem 
7.2. 

Let Cv = closure {ho(5): h 0(5) = 0 or det h ~(5) = OJ. 
Then Cv is a countable closed subset of R. Let 1jJeC 00 (R \ Cv ) 

and define 1,6 (P) = tP(ho(P)) = t/J(H 0)' Then l,6eC 00 (G ) so that 
for/in M + of Theorem 7.2 (refer the proof) we get 
limS-.oo S -I Sgdt 1It/J(Ho)VJII = O. But by RAGE 
theorem4 and Lemma 3.4(vii), for/inM+, 
limS-.oo S -ISg dt 1I[t/J(H) - t/J(Ho)] V, III = O. So we have 
t/J(H)I = 0 for eachfin M + and for each t/J in C D(R \ Cv ) 

forcing M + = {O J . Theorem I (c) now follows from Theorem 
7.2. 

Proof of Theorem l(d) and (e): Theorem I(d) and (e) fol
low from (c), Theorem 5.2, and Remark 5.3. 

Proof of Theorem 1(1): Let E be the (orthogonal) projec
tion onto the point spectral subspace for H. The result will 
easily follow if ,p2(H )E is compact for each t/J in CD (R \ Cv )' 

Let 1jJeC D(R \Cvl. By (c) E = 1 - il ± il ~ so that by 
taking1,6 (P) = t/J(Ho) = t/J(ho(P))andapplyingTheorem7.I(i), 
we have that E,p2(Ho) is compact. Now, using Lemma 
3.4(vii), we get E,p2(H) is compact. Q.E.D. 

Remark 7.4: One can try to use the techniques devel
oped in this publication to prove similar results when (i) the 
potentials are time-dependent potentials as in Ref. 30 or (ii) 
ho of Sec. 3 is replaced by a vaguely elliptic function of Ref. 
11 and Ws is replaced by a regular perturbation of Ref. 11. 

8. BOUNDS ON THE DERIVATIVES OF sO. t/J OF SEC. 6. 
Lemma 8.1: LetM=M(n, R ),Ms =Ms(n,R), 

GL(n,R) bethesetofallnxn, n Xn symmetric, n Xn inver
tible matrices over the reals. If AoEMsnGL(n, R ), then there 
exists a C 00 map g defined in a neighborhood of (Ao, Ao) in Ms 
XMs~GL(n, R) such thatg(Ao,Ao) = 1 andg(A, B )*Ag(A, 
B) = B for all (A, B) in the domain of g. 

Proof We follow Lemma A.3 of Ref. 16. Define F: 
MXMs XMs~Ms byF(R,A,B) =R *AR -B. ThenFis 
Coo, F(I, Ao' Ao) = 0, and F'(I, Ao, Ao)(R, 0, 0) 
= R *Ao + AoR· For any matrix E in Ms' if we take 

R =!A o-IE, then F'(I,Ao' Ao)(R, 0, 0) = E. ThusF'(I,A o, 
Ao): M X 0 X ~Ms is onto. By the implicit function theorem 
the result follows. Q.E.D. 

Let q, x, 50 = 50{to, t, q, x) and C, c be as in Step 4 of the 
proof of Lemma 6.1 (vii). In what follows we shall keep on 
shrinking C; since we do the shrinking only finitely many 
times, we shall be left with a positive radius for C. 

Lemma 8.2: If Ce is sufficiently small, there exists a 
function Z = Z (to, t, q, x, 5) such that, for 

A = [2(t - toll --IX i(to, t, q, 50)' we get q'5 - X (to, t, x, 
5) = q50 - X (to, t, x, 50) + (t - lo)(AZ, Z) for all 5 in Ce' 
Further Z 15o(q, x)) = 0 and for every fixed q, x the map Z is a 
C 00 diffeomorphism in S-

Proof Let S * be the center of C and 
Ao = [2(t - to)] -IX i(to, t, x, 5 *). Let g be as in Lemma 8.1. 
Choose Ce small so that [2(t - to)]-IX ilto, t, x, 5o(q, x)) isin 
the domain of g which is possible since 
(t - to)-IV sX illo, t, x, 5) is uniformly bounded in to, t, x, 5. 
DefineZby 
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Z (to, t, q, x, s) = g(A, B (S ))(S - So(q, x)), 

B = B (S) = B (to, t, q, x, S ) 
(8.1) (iv) Follows from 8.3, IIVx Vs-X(to, t,x,S) - 1 II <For all 

x, S, to, t and that A varies over a compact subset ofGL(n, R ). 
(v) Follows from (iii) and the mean value theorem. 
(vi) By (iv) and the fundamental theorem of calculus, we 

get 
= (t - to)-If d() (1 - (})X;(to, t, x, So(q, x) 

+ () (s - So(q, x))). (8.2) (t - to)[So(q, XI) - So(q, x 2 )] = f(q, XI' X2 )(X I - x 2 ), 

Then from (8.1), (8.2), and Lemma 8.1 the result follows, as in 
Lemma A.3 of Ref. 16. Q.E.D. 

Lemma 8.3: Let IJ be an open subset of R m and U: 
IJ-R many Coo, one-one map. If U '(x) is nonsingular for 
every x, then U (IJ ) is open and the inverse map V: U (IJ )-IJ 
given U(V(y)) = y, V(U(x)) = xforyin U(IJ ),andxinIJisa 
Coo map. 

Suppose further sup { IDaU(x)l: xefl }<Ka < 00 for 
lal>1 and sup{ I[U'(x)]-II: xefl) <Kt < 00. Then 
sup{ I(DaV)(y)I:YEU(IJ)) <La < 00 for each lal>1. Further 
La depends only on K t and Kp for 1.81 <a. 

Proof Obvious. Q.E.D. 

Lemma 8.4: The map So = So(q, x), where q = X Wo, t, 
x, So(q, x)) is Coo in q, x. 

Proof Define U, Vby U (q, x, S) = (X ~ (to, t, x, s ), x, q) 
and V(q,x,y) = (y,x,So(q,x)). Then itis clear that U(V(q,x, 
y)) = (q,x,y). Uis clearly C 00 inq, x,y. Since X ; is nonsingu
lar, we get U' is nonsingular at every point. By Lemma 8.3 
the map V is Coo proving the result. Q.E.D. 

Lemma 8.5: (i) SUPq.x ID :(So(q, x)) I <Ka < 00, for each 
a, to, t. 

(ii) SUPq.x ID ~A (q, x) I + ID ~A -I(q, x) I <Ka < 00 for 
each a, to, t, where A is as in Lemma 8.2. 

(iii) SUPq,x ID~VxSo( q,x)I<Ka(t - to)-1 for each a, to, 
t. 

By shrinking Ce , if necessary: 
(iv) We can find a closed sphereSCGL(n, R) such that 

(t - to)V xSo(q, x) is in S for all q, x, to, t. 
(v) SUPq ID:{So(q, xIl- So(q, x 2 )) I<Ka IXI 

- x 2 1(t - to)-1 for each a. 
(vi) infq ISo(q, xIl- So(q, x2)I>Ktlx l - x 2 1(t - to)-1 

for some K t > O. 

Proof (i) For each fixed x the map Sohx) is the inverse of 
the mapXWo, t, x, .). Clearly, IDt(X~(to, t, x, S))I<Ka(t 
- to) for each lal> 1, q, S, t, to and II [X ; (to, t, x, s )]-111 
<K *(t - to) -I for all x, S. The result now follows from the 
proof of second part Lemma 8.3 for lal> 1. Since So is in Ce 

the result is trivially true for a = O. 

(ii) Follows from (i), ID tX (to, t, x, S ) I <Ka (t - to) for 
lal>2 and the smoothness of the mapE-E -I: GL(n, R) 
-GL(n,R). 

(iii) Differentiating the equation q = X Wo' t, x, So(q, x)) 
w.r.t. x and simplifying, we get 

2(t - to)V xSo(q, x) 

= - A -I(to, t, q, xlV x V s-X (to, t, x, So(q, x)). (8.3) 

The result now follows from (i), (ii), ID tV xV s-X I <Ka for all 
a, x, S, and induction on lal. 
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wherefis in Sso that Ilf-III<K<oo for all q, XI' x 2 • The 
result now easily follows. Q.E.D. 

By Lemma 8.2 let ¢ = ¢( y) = ¢(to, t, q, x; y) be the in
verse of Z = Z (S ) = Z (to, t, q, x, S) so that 

¢(Z (S)) = S for S in Ce 

and 

Z (¢( y)) = y for y near O. 
Lemma 8.6: For each fixed x the function ¢ is Coo in q 

andy. 
Proof For each fixed x define U, Vby the rule U(q, 

S) = (q,Z (q,x,S)), V(q,y) = (q, ¢(q,x,y)). Then it is clear that 
U, Vare inverses of each other. U is clearly Coo in q, S by 
(8.1), (8.2), and Lemmas 8.1 and 8.5. Further by (8.1) one gets 

a 
-1 +-Z(q,x,s) as 

= ~g(A (q, x), B(q, x, S)) ~B(q, x, S) 
aB as 
x (s - So(q, x)) + g(A (q, x), B (q, x, s)) - 1, (8.4) 

where 1 is the identity matrix. Now g(Ao' Ao) = 1. So we can 
assume, by shrinking domain of g, if necessary (this will 
shrink Ce if done), that 

Ilg(A, jj) - 1 II <! for all (A, jj) in domain of g. (8.5) 

By (8.2) we have lIaB (q, x, s )las II <K for all q, x, Sunder 
consideration. Since g is Coo, we can have, by shrinking Ce if 
necessary. 

llfirst term of rhs of (8.4)11 <i. (8.6) 

From (8.4)-(8.6) we have 

11-1 + ~ Z (q, x, s) II < !, (8.7) 

so that az (q, x, s )las is nonsingular which in turn implies 
U '(q, S) is nonsingular. 

By Lemma 8.3 the map Vis C 00 and so the function ¢is 
Coo~~~ QRU 

Lemma 8. 7: ID ~D ~¢(to, t, q, x; y) I at y = O<Kap for all 
a, .8, to, t, q, x. 

Proof Since ¢(to, t, q, x; 0) = So, the result is obvious 
when a + .8 = O. Let U, Vbe as in the proof of Lemma 8.6. It 
is easily seen that 

[U'(q,S)]-1 

Note that, by (8.7), V s-Z (q, x, S) is invertible and that the 
inverse is uniformly bounded in to, t, q, x, S. By (8.1), (8.2), 
and Lemma 8.5 it is verified that V q Z (q, x, s ) is uniformly 
bounded in q, x, S, to, t. Then [U '(q, s )) -I is uniformly 
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bounded. Again by (8.1), (8.2), and Lemma 8.5 it is clear that 
ID ~.s U(q, s)1 <;Xa for lal > 1 for all q, x, S, to, t. By applying 
Lemma 8.3 we get the result. Q.E.D. 
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Inverse scattering for optical couplers. Exact solution 
of Marchenko equations 
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An exact solution of Marchenko equations for rational scattering data of arbitrary order is 
developed, with reference to the case of two coupled waves propagating in a lossless (optical) 
waveguide. Some numerical examples are presented for the synthesis of coupling structures 
having a prescribed frequency response. 

PACS numbers: 03.80. + r, 02.30.Rz, 42.80.Lt, 42.80.Sa 

I. INTRODUCTION 

The evolution of two propagating modes, coupled 
through some kind of nonuniform interaction, is very often 
described in terms of the Zakharov-Shabat (ZS) scattering 
problem, in the generalized form examined by Ablowitz et 
al. 1,2 In these cases, the existence of a suitable inversion tech
nique allows us to synthesize the interaction parameters, so 
that some desired response is achieved. In the present paper 
such a synthesis procedure will be examined, with reference 
to the design of optical couplers. 

The coupling between two electromagnetic modes 
propagating in an optical waveguide will be assumed to ad
mit the following description. 3

.4 Let ai (i = 1,2) be the com
plex amplitudes of the modes having propagation constants 
Pi and let x be the axis of the guiding structure; we can write 

da l ,/1 'h h - + Ipla l = I l1al + 12a2' 
dx 

(la) 

da2 ;/1 'h h - + Ip2a 2 = I 22a2 + 21al' 
dx 

(lb) 

where hi; are the self-coupling coefficients and hi} (i=/=j) are 
the coupling coefficients. The coupling phenomenon is 
caused by some kind of waveguide perturbation, such as de
formation of the boundaries, electro-optic effects, and so 
forth. Without loss of generality, it is convenient to assume 
the length x, the propagation constants, and the coupling 
coefficients to be dimensionless quantities; the correspond
ing actual parameters are xL, P;lL, hijlL, respectively, 
where L is some typical length related to the problem (e.g., 
the center-band wavelength). 

As it is well known from the coupled mode theory, Eqs. 
(1) give a satisfactory picture of the interaction if the two 
modes considered are near the phase-matching condition in 
the wavelength range of interest. Such a synchronous condi
tion can be achieved, even when PI =/=P2' by means of a peri
odic modulation of the coupling, which can be explicitly 
shown by means of the substitution: 

h k ( ) -i{3,,x ('-J..') ij = ij X e 'T]' (2) 

The x-dependence of kij in (2) is included to account for slow 
phase or amplitude variations of the coupling coefficient. 
Thus, with 2k = PI - P2 - Po (synchronism parameter) and 

cj = aj exp(i{ (- l)j kx +Pjx - i\; dX'}), (3) 

Eqs. (1) can be rewritten as 

(4) 

that is, in the ZS form, with 

Q = kl2 exp{if(h22 - h l1 )dX'}, (Sa) 

R = k21 exp{if(hl1 - hzzldxl (Sb) 

It can be shown that for lossless, passive structures the rela
tion R = + Q * holds, where * means complex conjugate 
and the upper (lower) sign applies when modes 1 and 2 carry 
power in the same direction (in opposite directions). From 
now on, the analysis will be confined to this case. 

The inversion procedure for the ZS problem, via the 
solution ofMarchenko integral equations, allows us to estab
lish the characteristics of the coupling region (Q and R as 
functions of x) for a given set of scattering data (scattering 
parameters, to be discussed later on), thereby synthesizing a 
nonuniform coupler between two propagating modes. The 
design procedure based upon the inverse scattering tech
nique is exact in principle, whereas the synthesis methods 
presented so far in the literature are either approximate or 
heavily relying on data obtained through analysis.5

-
7 

In this paper, we discuss in detail the inversion problem; 
in particular, an exact procedure for the solution of Mar
chenko equations will be presented. This method is a gener
alization of the technique developed in Ref. 8, which applies 
to the simpler problem of a nonuniform lossless transmission 
line. We will not report details of the general ZS problem, 
since they can be found in the literature (see for instance Ref. 
9). 

II. INVERSE SCATTERING FOR OPTICAL COUPLERS 

A. Interpretation of scattering data 

The definition of the scattering data9 and their connec
tion with the physical problem under examination are more 
simply obtained by introducing the Jost solutions r/J, ¢, ¢, ¢. 
As it is well known, these are solutions of (4) having the 
asymptotic behaviors 
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The Jost solutions are linearly related9 as 

with 

~ = at/J - b¢, 
¢ = a¢ - bt/J, 

aa - bb = 1 

(6a) 

(6b) 

(7a) 

(7b) 

(7c) 

in a proper range of definition. If the structure is lossless, it 
can be shown that 

a(k ) = a*(k *), b (k ) = + b *(k *). (8) 

Now, two different cases can be considered according to 
whether the two interacting modes flow in opposite direc
tions (A) or in the same direction (B). It is worth remarking 
that the physical direction ofthe power flow depends on the 
group velocity of the mode and has therefore no relation 
with the (apparent) propagation direction as it would be sug
gested by the asymptotic behavior (6) (cf. the definition of k). 

Case A. In this case, we assume that the two modes 
travel as it is shown in Fig. l(a). Equation (7a) suggests the 
scattering process depicted in Fig. l(b): mode 1, traveling 
from the left, interacts with the coupling region, giving rise 
to a reflected wave (mode 2) with reflection coefficient 
r = - bra, and is transmitted to the right with transmission 
coefficient t = l/a. 

Case B. In this case, we assume that the two modes 
travel in the same direction [Fig. 2(a)). Again Eq. (7a) sug
gests the scattering process which is depicted in Fig. 2(b): 
mode 1 impinges from the right on the interaction region and 
is transmitted partly as mode 1, with transmission coeffi
cient t' = a, and partly as mode 2, with transmission coeffi
cient t" = - b; in this case r = - bra is the partition coeffi
cient. 

For real k, (7c) and (8) yield, in case A 

Irl2 + It 12 = 1, 

while, in case B 

1_ 

-2 X _1p 

(aJ 

<1>------<;------ tiii . 
riP--------.1 x 

(oj 

(9) 

FIG. 1. Wave propagation for case A (a); scattering scheme and definition of 
rand t (b). 
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(10) 

Equations (9) and (10) are statements of energy conservation. 
The inverse scattering procedure for the ZS problem, 

given r = - b /a as a function of k (that is, the reflection 
coefficient for case A and the partition coefficient for case B), 
and assuming that the structure does not admit any bound 
states, leads9 to the construction of the coupling coefficient 
kdx) (through R). We must assume that, in the frequency 
range of interest, k 12 does not depend on wavelength; this 
assumption represents a satisfactory approximation when
ever narrow-band couplers are considered. 

B. Inversion procedure: Marchenko equations 

The inversion procedure is carried out according to the 
following steps9: 

1. Given r(k) = - b (k )/a(k) = ± b *(k *)/ 
a*(k *) = + r*(k *), compute 

F(x) = _(_1 )fb(k)e-ikxdk, (11) 
211" r a(k) 

where the contour r follows the real k axis apart from infini
tesimal deformations encircling clockwise the real zeros of a 
(if any) in the upper k half-plane. r (k ) must be defined in a 
proper neighborhood of the reak k axis. 

2. Solve the coupled Marchenko integral equations in 
the simplified form which holds when R = + Q *: 

E (x, y) +F*(x + y) 

+ f: 00 G(x,s) F*(s + y) ds = 0 (12a) 
y,s';;;;x 

G (x,s) + f: 00 E (x,u) F(u + s) du = 0 (12b) 

in the unknowns E (x,y) and G (x,s). 
3. The coupling coefficient in the interaction region can 

now be obtained as 

R (x) = 2E (x,x). (13) 

In Ref. 9 the conditions to be satisfied in order to achieve a 
solution to the inverse problem are thoroughly discussed. 
Here we mention the condition, thatr(k) = 0 [l/Ik I] atleast, 
Ik 1-+00. Moreover, in case A (discussed in the last section), 
we must have lr(k)l.;;;; 1 for real k. In case B, r(k) is permitted 
to have real poles; in fact, according to (10), r(k ) = a implies 
t" = 0 (complete direct transmission), whileata poleofr(k), 
we have t' = 0 (complete cross transmission). Finally, in case 
A, r(k ) is not allowed to have poles in the (open) lower k half-

_1 -iii 
-2 X_1p 

(a) 

t'<1>- --- ---,.- - -_iii . .. 

(bJ 

FIG. 2. Wave propagation for case B (a); scattering scheme and definition of 
t' and t' (b). 
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plane [and, conversely, F (k ) must not have poles in the (open) 
upper k half-plane]. 

In the next section, a procedure is developed for solving 
Eqs. (12) exactly for the case, wherein the scattering data are 
represented by (or approximated with) a rational function. 

III. SOLUTION OF THE PROBLEM 

A. Exact solution of Marchenko equations 

Let us approximate the desiredF (k ) by [or let us assume 
that F(k) is] a rational function of k,8 

F(k) = N(k)lD (k), 

where 
n 

D(k) = rr (k - k m), Im(km)';:;O 
m= 1 

and 
M 

N(k) = crr (k -Kp), M <no 
p~l 

(14) 

(15a) 

(I5b) 

We assume that F (k ) has simple poles k m • Then, if u(x) is the 
step function (u = 0 for x < 0, u = 1 otherwise) we have from 
(11 ) 

F(x) = F'(x)u(x), 

F'(x) = - iICp exp( - ikpx), 
p 

1 
Cp = N(kp ) rr . 

m#p kp - k m 

(16a) 

(16b) 

(16c) 

By using this expression for F(x) in (12), it turns out that E 
and G must take the form 

E (x,y) = E '(x,y)u(x + y), 

G (x,s) = G '(x,s)u(x + s). 
Thus, system (12) can be rewritten as follows: 

E '(x,y) + F '*(x + y) + f y G 'lx,s) F '*(s + y)ds = 0, 

G 'lx,s) + f: sE '(x,u) F'(u + s)du = O. 

(I7a) 

(I7b) 

(I8a) 

(18b) 

By a generalization of the items of Ref. 8, we shall assume 
that the solutions to (18) can be expanded in the form 

E '(x,y) = I/a (x)exp(aaY)' (I9a) 
a 

G'(x,s) = Iga(x)exp(bas), (19b) 
a 

where/a ,ga , aa' ba, and the range of a are unknowns to be 
determined. 

Substituting expressions (19) and (16) into (18) and car
rying out the integrations we find that, iffor every aa a corre
sponding ba = - aa is defined, the system can be decom
posed into two subsystems: 

C* 
/a(x)±iI p 'k*ga(x) 

p - aa + 1 p 

i I C
p 

falx) +ga(X) 
p aa + ikp 

= O)va 

=0 

(20a) 

(20b) 
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- I)vp . 

=0 (2Ib) 

(2Ia) 

The homogeneous system (20) admits a nontrivial solution 
only if the corresponding determinant vanishes, i.e., 

" C. :*C
q 

• L ------''--"----- = ± 1. 
P.q ( - aa + lk p )(aa - lkq ) 

(22a) 

This equation can be rewritten in a more compact form via 
the theorem of residues; one finds 

(22b) 

which is an algebraic equation of order 2n in aa giving 2n 
complex solutions for a = 1,2, ... , 2n. By taking the complex 
conjugate of(22b) it can be shown that, if aa is a solution, also 
- a: satisfies (22a). Then, the functions/a (x) and ga (x) are 

obtained by solving the linear system (21). Elimination of 
ga (x) leads to the form 

= + 1) 
Vp. 

=0 (23b) 

(23a) 

Equations (22) and (23) give a complete solution to our prob
lem; the coupling coefficient can now be written as 

R (x) = 2E(x,x) = 2u(x)I/a(x)exp(aax). (24) 
a 

Although this expression for R (x) has been obtained under 
seemingly restrictive assumptions upon the structure of 
E (x,y) and G (x,y), a theorem of existence and uniqueness for 
the solution of Marchenko equations,9 holding for scattering 
data ofthe form assumed here, ensures that (24) is the unique 
solution to the inverse scattering problem under examina
tion. 

B. Some properties 

We summarize here some characteristics of system (4) 
and properties of the solutions of (22) and (23), which are 
relevant to the physical interpretation of the problem at 
hand. 

1. If the condition r( - k *) = r*(k ) holds (that is, if r is 
real on the imaginary k axis) Eq. (22b) takes the form 

r( - iaa )r(ia",) = + 1. (25) 
Therefore, if aa is a solution, - aa is also a solution. But it 
has already been shown that, if a{3 is a solution, also - at is a 
root of(22); it follows that, under the aforementioned condi
tion, (25) admits solutions which are imaginary (± ilaa I) 

and/or quadrantally symmetrical ( ± a"" ± a:). Moreover, 
if the reality condition r( - k *) = r*(k) is satisfied, inspec
tion of system (23) reveals that/a corresponding to pairs of 
complex conjugate roots are complex conjugate; therefore, it 
follows from (24) that the coupling coefficient R (x) is real. It 
is worth noticing that the converse of this property is also 
true, as it can be easily deduced from some general properties 
of Jost solutions (cf., e.g., Ref. 9, Sec. 6.1). 

2. If the degree of D (k ) exceeds the degree of N (k ) by 
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FIG. 3. Single-pole response (a) and corresponding IR I (b) for case A: 
C=0.95;1/=1. 

more than one, R (x) [given by (24)] is continuous inx = O. In 
fact, R (x) is continuous in x = 0 only if E '(0,0) = 0, which 
implies in turn [from (18)] that F '(0) = O. From (16), this can 
be shown to require that the sum of the residues of all the 
poles of r(k ) must vanish. This amounts to the property stat
ed above. 

3. If the assigned scattering data r(k) are related to the 
coupling coefficient R (x), then r(k - ko) leads to 
R (x)exp(ikoX). Hence, the scattering data for an optical 
coupler can always be assumed to be assigned on a wave
length band centered around the origin k = O. A shift of the 
central wavelength can be achieved with a different choice of 
the waveguiding structure (that is, with a different /31 - /32) 

300. 
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K 
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Ib) 

FIG. 4. Three-pole response (a) and corresponding IR I (b) for case A. Poles 
of r(k): k, = i, k2 = l.1i, k3 = l.1li; C = i. 

1903 J. Math. Phys., Vol. 25, No.6, June 1984 

0.3 

:00:: 0.2 

!:. 
0.1 

0.0 
-6. -4. -2. 0.0 2. 4. 6. 

K 
(al 

0.04 

a: 

0.02 

0.0 

0.0 1. 2. 3. 4. 5. 6. 

X 
(bl 
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or by introducing a proper periodicity in the coupling mech
anism (that is, by changing /30)' 

IV. EXAMPLES 

A. Single-pole scattering data 

Owing to the impossibility of solving analytically alge
braic equations of order higher than four, a fully analytical 
treatment of the inversion technique previously developed is 
fraught with difficulties, unless the degree of the rational 
function representing the scattering data is one or two. In 
particular, the case wherein r(k ) has a single pole can be easi-
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FIG. 6. Direct (It 'I) and cross (It ")1 transmission coefficients (a) and corre
sponding IR I (b) for case B. Poles of r(k): k, = 0, k2 = 0.5, k3 = 0.75, 
k, = - 0.5, ks = - 0.75; C= i. 
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ly handled without having to resort to numerical treatment 
ofEqs. (22) and (23). We assume 

r{k) = C I(k - kIl, Im(k))>O, (26) 

where we can always assume Re kl = 0 (cf. Sec. IIIB, prop
erty 3). Therefore 

Irl2 = IC 12 , k real, k) = iT] (27) 
k 2 + T]2 

has a Lorentzian shape centered around the origin. In case 
A, we must have Irl< 1, which leads to the condition IC I 
T]I < 1. The roots ofEq. (22) are 

( IC 12 2)1/2 -a l = ± + T] ,a2 - - ai' (28) 

where the upper and the lower sign refer to the cases Band 
A, respectively; both roots are always real. From (23) and 
(24) we obtain 

R (x) = + 2iC*u(x) a) exp(2a)x) (29) 
- a)cosh 2a lx - T] sinh 2a lx 
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A typical behavior of r(k) and the corresponding R (x) are 
shown in Fig. 3 for case A. 

B. Higher-order scattering data 

When scattering data (14) are considered of order high
er than two, a numerical treatment of(22) becomes indispen
sable, and it is also convenient to solve system (23) numeri
cally. 

In Fig. 4, an example concerning a reflection coefficient 
r(k) (case A) having three poles on the imaginary k-axis is 
reported. As expected, the related coupling coefficient is 
continuous at the origin. A more complex example of scat
tering data (reflection coefficient) and of the corresponding 
R (x) is given in Fig. 5. Owing to the symmetry of r(k) the 
resulting R (x) is real (positive or negative) in both cases. 

Figure 6 shows the amplitudes of the direct and cross 
transmission coefficients t' and t" (case B) and the related 
coupling coefficient, for a symmetrical equiripple stopband
passband coupler. Again, the symmetry of the characteris
tics leads to real R (x). Conversely, in Fig. 7 an example is 
reported, wherein asymmetrical assigned t' and t " lead to a 
complex coupling coefficient, whose amplitude and phase 
are shown in Fig. 7b. 

V. CONCLUSIONS 

In the present paper an exact technique for the solution 
of Marchenko equations has been presented, with the aim of 
obtaining a suitable procedure for the design of narrow-band 
optical couplers. Some preliminary examples of application 
for the inversion technique are presented, also starting from 
scattering data of realistic shape and practical interest. How
ever, further considerations are needed in order to analyze 
the feasibility of the implementation of the coupling coeffi
cients thereby obtained in real structures. 
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The time-dependent inverse source problem for the acoustic and 
electromagnetic equations in the one- and three-dimensional cases8
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The object of the time-dependent inverse source problem of electromagnetic theory and acoustics 
is to find time-dependent sources and currents, which are turned on at a given time and then off to 
give rise to prescribed radiation fields. In an early paper for the three-dimensional 
electromagnetic case, the present writer showed that the sources and currents are not unique and 
gave conditions which make them so. The ideas of that paper are reformulated for the three
dimensional electromagnetic case and extended to the acoustical three-dimensional case and the 
one-dimensional electromagnetic and acoustic cases. The one-dimensional cases show very 
explicitly the nature of the ambiguity of the choice of sources and currents. This ambiguity is 
closely related to one which occurs in inverse scattering theory. The ambiguity in inverse 
scattering theory arises when one wishes to obtain the off-shell elements of the T matrix from 
some of the on-shell elements (i.e., from the corresponding elements of the scattering operator). In 
inverse scattering theory prescribing of the representation in which the potential is to be diagonal 
removes the ambiguity. For the inverse source problem a partial prescription of the time 
dependence of the sources and currents removes the ambiguity. The inverse source problem is 
then solved explicitly for this prescribed time dependence. The direct source problems for the one
and three-dimensional acoustic and electromagnetic cases are also given to provide a contrast 
with the inverse source problem and for use in later papers. Moreover, the present author's earlier 
work on the eigenfunctions of the curl operator is reviewed and used to simplify drastically the 
three-dimensional direct and inverse source problems for electromagnetic theory by splitting off 
the radiation field and its currents from the longitudinal field and its sources and currents. 
Finally, for a prescribed time dependence, the inverse source problem is solved explicitly in closed 
form. Using methods developed for the inverse source problem for three-dimensional 
electromagnetic theory, we solve the following important direct problem. Consider a sphere of 
finite radius and uniform charge density rotating about a fixed axis. Assume that the angular 
velocity is zero before a certain time, varies in an arbitrary fashion, and then becomes zero again. 
What is the final electromagnetic field? 

PACS numbers: 03.80. + r 

1. INTRODUCTION 

Weare concerned with the time-dependent acoustic 
and electromagnetic equations in one and three dimensions. 
In one dimension the equation is (taking the velocity c = 1 
for simplicity) 

[ a2 a2] 

respectively, using obvious notation for the various physical 
quantities. The direct and inverse source problems can be 
treated in two distinct but obviously related approaches. 
They are the time-dependent and the time-independent ap
proaches. We shall discuss the time-independent approach 
first. 

--2 +-2 f(x;t) =p(x;t) , ax at (1.1) 

wheref(x;t ) is the overpressure or electric field in the acoustic 
and electromagnetic cases, respectively, andp(x;t ) is the cor
responding source. The three-dimensional acoustic and elec
tromagnetic equations are 

and 

[_V2+ :t:]f(X;t) = 41Tp(X;t) (1.2) 

VXH(x;t) = 41T j(x;t) + ~ E(x;t) , at 
a 

VXE(x;t) = - - H(x;t) , at 
v . E(x;t) = 41Tp(X;t ) , 

v . H(x;t ) = 0 , (1.3) 

-I The work in this paper was done under the National Science Foundation 
Grant MCS-8024640. 

A. Time-independent approach 

In the time-independent approach, in which the inverse 
source problem has been treated most extensively, a Fourier 
transform with respect to time is taken for all physical quan
tities and the resultant time-independent equations are stud
ied for a fixed frequency. For example, let us consider the 
acoustic equation (1.2) and write 

1 f+oo 
f(x;t) = -- F(x,k )eikt dk , 

.[iii - 00 

(1.4) 
1 f+oo 

p(x;t) = - S (x,k )eikt dk , 
.[iii - 00 

and thereby obtain the time-independent version ofEq. (1.2) 
as 

[V2 + k 2]F(x;k) = 41TS (x,k) . (1.5) 
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The direct problem is concerned with finding the solu
tion ofEq. (1.5) under certain boundary conditions, often 
taken to be 

eikr 

lim F(x,k) = -A (8,cp), (1.5') 
r---....oo r 

where r,8,cp are the spherical polar coordinates of x, if the 
space in which Eq. (1.5) holds extends to infinity. If one has 
the solution, then, in particular, the amplitude of the outgo
ing spherical waveA (8,cp ) would be known. Thus in the time
independent direct problem, one gives the sourcesS (x,k ) and 
seeks the radiation pattern given by A (8,cp). 

In the inverse problem the radiation pattern A (8,cp ) is 
prescribed and one wishes to find the sourceS (x,k ). In Ref. 1, 
for example, the inverse problem is treated in Some detail. 
The solution is shown to be nonunique, but additional condi
tions can be given to make them so and a procedure for con
structing the source S (x,t ) in terms of spherical harmonics is 
given. In Ref. 2 the same author discusses the electromagnet
ic analog. Reference 3 summarizes the work of others for the 
three-dimensional acoustic and electromagnetic theories, 
mostly in terms of the time-independent approach. The non
uniqueness of the inverse problem is stressed, and some ways 
of adding conditions which lead to unique solutions are dis
cussed. 

An important element of the time-independent ap
proach is that one can prescribe the condition, one which is 
useful for practical realizations, that the source function 
S (x,k ) vanish outside a sphere r = a. 

We shall now consider the time-dependent approach to 
the direct and inverse problems with sources. 

B. Time-dependent approach 

The time-dependent approach to the direct and inverse 
source problems is complementary to that for the time-inde
pendent approach. As we have discussed above, the time
independent approach relates the radiation pattern to the 
sources for a fixed frequency. The time-dependent approach, 
as we formulate it for this paper, is concerned with pulses. 
We assume that the sources are nonzero only for a finite 
interval of time to < t < t I' In the direct problem we are con
cerned with the initial value problem in which the field is 
prescribed as a solution of the homogeneous equation before 
the sources are turned on. One then solves the equation for 
times after the sources are turned on, using appropriate Rie
mann functions. After the sources are turned off, one again 
has a solution of the homogeneous equation which is deter
mined by the initial solution for t < to and by the known time
dependent sources. 

The inverse problem, as we formulate it, is the follow
ing: Let us prescribe to and t I and the solutions of the homo
geneous equations for t < to and t> t I' We want to find the 
sources as functions oftime and space which will lead us to 
the prescribed solution for t> t 1 from the initial solution for 
t < to' It is by no means clear a priori that any sources can be 
found for arbitrary initial and final solutions of the homo
geneous equation. However, we shall show below that there 
are actually an infinite number of sources which satisfy our 
conditions. Moreover, we shall give conditions on the time 
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dependence which will lead to unique SOurces as far as the 
space dependence is concerned. Using a particular form for 
the time dependence will lead to closed-form expressions for 
the source and currents. 

The problem of finding the sources from initial and final 
fields and a description of the time dependence of the sources 
is closely analogous to the problem of finding the potential 
from appropriate elements of the scattering operator in in
verse scattering theory in one and three dimensions (Ref. 4). 
The portion of the scattering operator used in inverse scat
tering gives some of the on-shell elements of the T matrix. 
One is required to find all of the off-shell elements, since the 
potential can then be found from them. The process of find
ing the off-shell elements is not unique. To make them 
unique, we must impose conditions on the potential which 
give the representation in which it is diagonal. In practice we 
require the potential to be diagonal in the x representation. 
In the case of the inverse source problem, that part of the 
source or current which is given by the initial and final solu
tions of the homogeneous equation is analogous to the on
shell components of the Tmatrix which one prescribes. Giv
ing a partial descri ption of the time dependence ofthe source 
is analogous to prescribing the representation in which the 
potential is to be diagonal. 

As far as he can determine, the author of the present 
paper is the first and apparently still the only one who has 
worked in the time-dependent context described above. In 
Ref. 5, he solved the inverse source problem for Maxwell's 
equations (1.3), which are the most complicated equations of 
Eqs. (1.1 H 1. 3). The methods found to work for that case can 
be adapted to Eqs. (1.1) and (1.2). In Ref. 5, when we discov
ered that the sources for the inverse problem were not 
unique, it occurred to us to assume that the sources were 
separable functions of space and time, i.e., 

j(x;t) = j(x)h (t ) . (1.6) 

This way of specifying the time dependence turned out 
to be not suitable if one imposed the condition that the 
sources be real. (This condition is analogous to requiring the 
potential to be real in the corresponding inverse scattering 
problem, as discussed in Ref. 4.) Thus one cannot impose the 
time dependence arbitrarily. A time-dependence condition 
which was satisfactory was to require 

j(Xjt) = je (x)he (t ) + jo (x)ho (t ) , (1.7) 

where he (t) was a real, essentially arbitrary, function of t 
which was symmetric about the midpoint of the interval 
[to,tll and ho(t) was similarly a real odd function about the 
midpoint. (The subscripts e and 0 stand for "even" and 
"odd," respectively.) We then showed that the inverse source 
problem gave je (x) and jo (x) uniquely. 

It should be mentioned that Bleistein and Cohen (Ref. 
6) recently independently discovered the nonuniqueness of 
the solution by combining time-dependent and time-inde
pendent approaches and proposed the time-dependence 
equation (1.6), which will generally, however, not yield real 
currents and sources, as we have noted above. 

H. E. Moses 1906 



                                                                                                                                    

C. Further discussion and synopsis of the paper 

We shall now outline the rest ofthe paper. We shall 
treat Eqs. (1.1 H 1.3) in order of difficulty, which is the same 
as the order of the equation numbers, though the most diffi
cult-Eq. (1.3), the electromagnetic case-was the first to be 
discussed by the author (Ref. 5). 

For each of the equations we shall treat the direct prob
lem first in order to clarify the notions for the inverse source 
problem. The importance of causality is evident from the 
direct problems. Because of causality it is possible to formu
late the inverse source problem even for finite (rather than 
infinite) domains for which Eqs. (1.1 H 1.3) are valid. If there 
are reflectors or changes of indices of refraction, it is only 
after the radiation fields reach them that they become effec
tive. For example, for some purposes one might want to 
shape an electromagnetic pulse within a wave guide before 
the pulse strikes the walls. This will be possible, provided the 
sources are also within the walls. 

The discussions of the direct source problem for Eqs. 
(1.1) and (1.2), the one-dimensional equation and the three
dimensional acoustic equation, will be recognized as being 
restatements of the classical Cauchy problem as discussed, 
for example, in Ref. 7. For Maxwell's equations (1.3), how
ever, our treatment will differ markedly from the usual treat
ments and also from our earlier treatment of Ref. 5. For Eq. 
(1.3) we are concerned with the transverse fields only and 
only in those portions of the currents which give rise to them. 
In our original treatment of Ref. 5, we rewrote Maxwell's 
equations in the form of Dirac's equations and used the ei
genfunctions of the Dirac-like Hamiltonian to split off the 
transverse parts of the field and the corresponding currents. 
By contrast, in the present paper we shall use the eigenfunc
tions of the curl operator for the separation of the fields and 
currents. 

We introduced the eigenfunctions of the curl operator 
in Ref. 8 as a means of treating electromagnetic theory, fluid 
dynamics, and other phenomena obeying vector field equa
tions in the infinite domain. In Ref. 8 we discussed the situa
tion for Maxwell's equations somewhat tersely and showed 
that the eigenfunctions separate the radiation from the longi
tudinal fields. In the present paper we shall review the prop
erties of the eigenfunctions of the curl operator in both Car
tesian and spherical polar coordinates and apply them first 
to the direct source problem and then the inverse source 
problem. It will be seen that the direct and inverse source 
problems for Eq. (1.3) differ little in difficulty from those of 
the one-dimensional problem. 

After showing the ambiguity in the inverse problem, we 
shall prove that the specification of the time dependence of 
the sources in the form analogous to Eq. (1.7) and the re
quirement that the sources be real lead to unique solutions of 
the inverse problem in the sense that jo (x) andje (x) or their 
analogs are unique. 

For all of the inverse source problems treated in the 
present paper we shall give concrete examples. The existence 
of such examples assures us that our procedure is usable and 
not empty formalism. 

In the time-independent version of the inverse source 
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problem the sources are required to be contained in a given 
finite volume, i.e., have compact support. Among our exam
ples are some in which the sources are contained in a finite 
volume but also some in which the sources go to infinity with 
various rates of decay. From the examples the extent oflo
calization of the sources will be seen to depend on the time 
functions ho (t ) and he (t). One of the objects offuture re
search will be to see what assumptions about time depen
dence, other than that given by Eq. (1.7), will prove useful 
and also give a prescribed localization of sources. 

D. Applications 

Before we leave the Introduction, it may be useful to 
discuss possible applications. There are obviously many of 
them, and we shall mention a few. The principal use of trans
mission lines is to propagate pulses of a particular shape. The 
inverse source problem tells us how to tum the sources on 
and off to achieve the desired pulse shape. The lack of uni
queness is now a positive asset, since engineering constraints 
can now be taken into account. For purposes of sounding in 
three dimensions, as, for example, the use of sonar to locate 
underwater objects or ionosondes to probe the ionosphere, it 
is useful to shape the incident pulses in a particular way. The 
present paper suggests methods by which this pulse shaping 
can be accomplished. 

The accurate control of pulse shape could also be used 
to construct pulse shapes for secure communications or to 
extend the amount of information contained in a pulse. More 
generally, a pulse can be modified or even deleted by appro
priate choices of the sources. 

A problem which can be treated by extensions of the 
present work is the source detection problem. Here one wish
es to characterize the source from the pulses which it emits. 
For example, one might want to obtain an estimate of the 
physical size or shape of the emitter. The additional informa
tion which is needed, besides the pulse shape, for an essen
tially unique determination of the source could be the subject 
of further research. Undoubtedly causality plays an essential 
role. On the other hand, if any pulsed source emits a radiat
ing wave, we shall show that from this radiating wave alone, 
one can always construct a pulsed source (indeed in many 
ways) which will reproduce this wave. Thus one could, for 
example, manufacture sounds, which would seem to come 
from a source, but actually come from a source much smaller 
or at a different position. In this manner one can make up 
decoys to simulate the presence of a supposed object. 

2. THE ONE-DIMENSIONAL PROBLEM 

A. The direct problem 

Here we are concerned with Eq. (1.1 ). We assume that 
the source p(x;t )=0 for t < to and t> t 1 and for simplicity 
without loss of generality let to = - T and t 1 = T. We shall 
now introduce notation, which for the present case may 
seem overly elaborate. However, since we wish to stress the 
similarity of the treatment of the one-dimensional problem 
with that of the acoustic and electromagnetic problem in 
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three dimensions, we find this notation very useful. Accord
ingly, we define 

x(xl p) = (lIfiii)eipX . (2.1) 

We also define 

y( p;t) = f-+ 0000 x*(xl p)P(x;t) dx , 

¢(p,}.;t) = e-iAv{t+ TI¢(p,}.; - T) 

(2.2) 

+~e-iAvrJr y(p;t')eiAvt ' dt', (2.3) 
2v -T 

where 

IL = ± 1, - 00 <p < 00 ,v = I pi . (2.3') 

The following is easily shown. Letf(x;t) be given by 

f(x;t) = ~ f-+",,"" x(xl p)¢(p,}.;t) dp. (2.4) 

The apparent divergence for p-o in Eq. (2.3) is eliminated in 
Eq. (2.4). Thenf(x;t) satisfies Eq. (1.1). 

Moreover, on definingf ± (x;t) by 

f(x;t) = f_(x;t) for t< - T, 

f(x;t ) = f + (x;t ) for t> T, (2.4a) 

we see thatf ± (x;t ) are solutions ofEq. (1.1) without sources. 
These solutions are given explicitly by 

f ± (x;t) = ~ J+ ",'" x(xl pIe - iAv{t 'F TI¢(p,}.; ± T) dp. 

(2.4b) 

We are now in a position to discuss the direct and inverse 
source problem. In the direct problem, one prescribesf _ (x;t ) 
and the sourcep(x;t ). One wishes to findf + (x;t ). It is seen that 
the problem reduces to a quadrature. 

In the inverse source problem, by contrast, one pre
scribes the initial functionf_(x;t) and the final function 
f + (x;t ). One then looks for sourcesp(x;t ) which, when used in 
the direct problem, would give the prescribedf+(x;t) when 
the initial wave functionf_(x;t) was used. 

The functionsf ± (x;t) can themselves be obtained in 
terms off ± (x; ± T) and (a lat If ± (x; ± T). This is, in fact, 
the usual statement of the initial and final value problems for 
the source-free equation. Then in the direct problem we pre
scribef_(x; - T) and the source functionp(x;t). We then 
seekf+(x;T) and (a lat If+(x;T). In the inverse problem we 
prescribef ± (x; ± T) and (a lat If ± (x; ± T) and want the 
source function p(x;t ). 

We shall now show how f + (x;t ) is obtained fromf + (x; T) 
and (a I at If + (x; T) through the use of suitable Riemann func
tions. Of course, the functionf_(x;t) can be treated analo
gously. From Eq. (2.4b) 

f+(x;T) = ~ f-+ ",,'" x(xl p)t/J(p,}.;T) dp, (2.5) 

a f+ "" - f+(x;T) = - i r IL x(xl p)v¢(p,}.;T) dp. 
at A - "" 

(2.5') 

Taking Fourier transforms leads to 
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J
+ ao 

¢(p, + l;T) + ¢(p, - l;T) = _ co x*(xl plf+(x;T) dx, 

(2.6) 
¢(p, + l;T) - t/J(p, - l;T) 

= ..!... x*(xl p) - f+(x;T) dx . 
. J+ co a 

v - co at 

From Eq. (2.6) we obtain ¢(p,}.;T) in terms off+(x;T) and 
(a lat If+(x;T): 

1 [f+ '" ¢(p,}.;T) = - x*(xl plf+(x;T) dx 
2 - 00 

ILf+OO a ] +i- x*(xlp)-f+(x;T)dx. 
v - 00 at 

(2.7) 

Thus from Eq. (2.4b) 

f
+ 00 a 

f+(x;t) = dx' Gt(x - x';t - T) - f+(x';T) 
-00 ~ 

J
+ 00 

+ _ 00 dx' G2(x - x';t - Tlf+(x';T) , (2.8) 

where 

1 f
+OO . 

_ SlOpt ipt d -- --e p. 
21T - 00 p 

(2.9) 

In Eq. (2.9) we have used the fact that (sin vt Iv) = (sin pt Ip). 
Likewise G2(x;t ) is given by 

1 f+CO a G2(x;t) = ..1_ r eipxe - iAvt dp = -a GJ(x;t). 
~II A - 00 t 

(2.10) 

We shall now evaluate the expressions Eq. (2.9) in detail 
to show how the usual Riemann function makes its appear
ance. This derivation serves as a prototype for the analogous 
derivations of the three-dimensional problems, which we 
shall not give in detail. 

The integrand of the second integral in Eq. (2.9) con
tains no singularities on the real axis. We deform the contour 
to consist of the entire real axis with a semicircular indenta
tion into the negative imaginary half-plane about the point 
p = O. Then 

1 [f + 00 eip(x + t I f + 00 eip(x - t I ] 
G1(x;t)=-. --dp- --dp. 

41Tl -00 P -00 P 
(2.11) 

The integrals are now readily evaluated by closing the con
tours at infinity. Thus 

(2.12) 

where 1J(x) is the Heaviside function defined by 1J(x) = 1 for 
x> 0 and 1J(x) = 0 for x < O. We shall now simplify the 
expression Eq. (2.12). Let t> 0 and x > O. Then since 
x + t> 0 and 1 -1J(x) = 1J( - x), we have 

GJ(x;t)=!1J(t-x)=!1J(ltl-lxl). (2.13) 

Similarly for t> 0 and x < 0, since x - t < 0 

GJ(x;t)=!1J(x+t)=!1J(ltl-lxl), (2.14) 

as before. From similar considerations for t < 0 
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GJ(x;t) = -! 1/(lt I-Ixl)· 

Then for all t and x 

GJ(x;t) =! sgn t 1/(lt I - Ixl)· 

(2.15) 

(2.16) 

If a is any number a > 0, 1/(ax) = 1/(x). Then since 

Ixl+ltl>O, 

GJ(x;t) =! sgn t 1/[(lt I + Ixl)(lt I - Ixl)] 

= ! sgn t 1/(t 2 - x 2
) • 

This is the usual invariant form. 
From Eqs. (2.10) and (2.17) 

G2(x;t) = It 18(t 2 - x 2
) • 

The analog ofEq. (2.8) forf_(x;t) is 

(2.17) 

(2.18) 

1
+ 00 a 

f_(x;t) = dx' GJ(x -x';t+ T)-f_(x'; - T) 
-00 ~ 

+ f_+ 0000 dx' G2(x - x';t + Tlf_(x'; - T). 

(2.8a) 

Similarly from Eq. (2.4) we obtainf(x;t ) in terms of the source 
p(x;t ) as follows: 

f(x;t) =f_(x;t) 

1+ 00 It + -00 dx' _Tdt'G)(x-x';t-t')p(x';t'). 

In particular, we have 

f+(x;t) =f_(x;t) 

(2.19) 

+ f-+ 0000 dx' f-+: G)(x - x';t - t') p(x';t') .(2.20) 

Equation (2.20) somewhat resembles the relationship in scat
tering theory in which the wave function for t-. + 00 is ob
tained from the wave function for t-. - 00 through the use 
of the scattering operator (see, e.g., Ref. 9). This analog be
comes even closer if we write Eq. (2.20) in terms of f/!( p,..i;T) 
and f/!(p,..i, - T), for this relationship becomes [see Eq. (2.3)] 

f/!(p,..i;T) = e- 2iJ.vTf/!(p,..i; - T) 

iA . f+T .. + _e- 1vT y(p;t')eiJ.vt dt'. 
2v - T 

(2.21) 

B. The inverse problem 

We are now in a position to discuss the inverse source 
problem for the one-dimensional case. In the inverse prob
lem we wish to specify f ± (x;t) and T and obtain the source 
functionp(x,t). We note that if we specify T, we would get the 
same results for T), if T) > T, since the interval 
- T < t < + T nests inside the interval - T) < t < + T) 

and, of course, the sources would vanish outside the larger 
time interval, also. Hence, specifying one time interval out
side of which the source vanishes we specify all the larger 
intervals also. 

Specification off ± (x;t) and Tis equivalent from Eq. 
(2.4b) and Eq. (2.6) to specifying Tand f/!(p,..i; ± T). We then 
wish to obtain y( p;t ) which would enable us to find p(x;t ). 

Let us define F (p;k ) by 
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F(p;k) = -l-f+ T y(p;t')eikt ' dt'. 
fi1i - T 

(2.22) 

If we knew F (p;k ), we would know p(x;t ) through 

1 f+oo f+oo . p(x;t) =- dp dkx(xlp)e-,ktF(p;k). 
fi1i - 00 - 00 

(2.23) 

But from our assumptions we do not know F (p,k ) for all p 
and k. We only know F(p;k) for k = AV: from Eq. (2.21) 

G(p,..i )=F(p;A.v) = _ 2iAv [e-i,(vT¢(p,..i;T) 
fi1i 

- e-i,(vT¢(p,..i; - T)] . (2.24) 

Knowing F (p;k ) only on the shell k = A v is analogous to 
knowing the Tmatrix of scattering theory only on the energy 
shell. In the present case, as in scattering theory, the on-shell 
information leads to non unique sources p(x;t ), since any 
function F(p;k) which has values on the shell given by Eq. 
(2.24) will yield suitable functions for the sources. In scatter
ing theory the ambiguity is removed by prescribing the re
presentation in which the potential is diagonal. We shall 
show that by giving the time dependence of p(x;t ) we obtain 
unique answers for the sources. 

But first we must examine consequences of the condi
tions thatf(x;t ) and p(x;t ) shall be real for all t and x. These 
conditions limit the kind of time dependence which one can 
have. 

The reality condition forf(x;t ) leads to the requirement 
that 

¢*( p,..i;t ) = ¢( - p, - A;t) . (2.25) 

The reality of p(x;t ) is equivalent to the condition 

F*(p;k) = F( - p; - k). (2.26) 

Equations (2.25) and (2.26) are necessary and sufficient con
ditions. Both of these equations lead to the following condi
tion on G (p,..i ): 

G *( p,..i ) = G ( - p, - A ) . (2.27) 

To get unique results for p(x;t ), one is tempted to use 
separation of variables in the form 

p(x;t) = p(x)h (t ) , (2.28) 

where pIx) and h (t ) are real functions of their arguments. 
Indeed, we made an analogous assumption in our three-di
mensional electromagnetic inverse source problem of Ref. 5. 
However, we soon saw that the reality conditions were vio
lated. Our next assumption, one that worked, would in the 
present context be 

(2.29) 

where he (t ) is a real even function of t and ho (t ) is a real odd 
function of t. The functions p e (x) and Po (x) are real functions. 
We prescribe he(t) and ho(t) and obtainpe(x) andpo(x) from 
our known function G (p,..i ), which is obtained from Eq. 
(2.24). We require, of course, that he,o (t)==0 when t < - Tor 
t> + T. 

We shall see shortly that neither he(t) nor ho(t) can be 
assumed to be identically zero. However, it can happen that 
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either P 0 (x) or P e (x) can be identically zero. Another interest
ing and important aspect of the assumption ofEq. (2.29) is 
that if he (t ) and ho (t ) are replaced, respectively, by Ahe (t) 
and Bho (t ), where A and B are arbitrary, nonzero constants, 
p(x,t) will be independent of A and B, sincepe(x) and Po (x) 
will be replaced by Pe(x)/A and Po (x)lB, respectively. Thus 
(roughly speaking) the shapes, not the sizes of the time-de
pendent functions are the important quantities. 

Let us define 

1 f+T ge(k) = -- he(t )eikt dt, 
fiii - T 

go(k) = _1_ f + T holt )eikt dt . 
fiii - T 

(2.30) 

The ge (k ) is a real, even function of k and go (k ) is an imagi
nary, odd function of k. It follows that 

ge(AV) =ge(V) , go (AV) = Ago (v) . (2.31) 

From Eq. (2.22) 

G (p,A. )=F(p;A.v) = Fe(p)ge(v) + AFo(p)go(v) , (2.32) 

where Fe ( p) and Fo (p) are the Fourier transforms of P e (x) 
and Po (x), respectively, i.e., 

Pe(x) = L+ ",00 x(xi p)Fe(P) dp, 

Po(x) = f-+ 0000 x(xi p)Fo(p) dp. 

For realpe(x) and Po (x) we shall need 

F:'o(p) = Fe.o( - p) . 

(2.33) 

(2.34) 

We can now state our objective explicitly: from ¢( p,A., ± T), 
he.o(t), find Fe.o(p) which satisfy Eq. (2.34) and thus real 
Pe.o(x). From Eq. (2.32) we obtain unique solutions for 
Fe.o(p)· 

1 1 
Fe(P) = 2ge(v) ~G(p,A.), Fo(p) = 2go(v) ~AG(P,A.). 

(2.35) 

Our procedure for solving the inverse problem is thus to 
obtain G (p,A. ) in termsof¢(p,A.; ± T)through theuseofEq. 
(2.24), then obtain Fe.o(p) from Eq. (2.35) and finally Pe.o(x) 
from Eq. (2.33). By having carefully taken care of the reality 
conditions, our results for Pe.o(x) are real and unique. 

Most of the present discussion including uniqueness is 
close to that for the three-dimensional acoustic and electro
magnetic cases. When these cases are considered, some 
abridgement of the discussion for these latter cases will be 
made. We see, as mentioned previously, that we may not 
take either he (t ) or ho (t ) to be zero, for then ge (k ) or go (k ) 
would be zero. Nevertheless, Fe or Fo (and hence Pe or Po) 
can be identically zero. We shall give examples of this situa
tion shortly. 

It is possible that ge (k ) or go (k ) may have real zeros. 
This case can be treated as a generalization of the following 
example. 

Assume ge (k 1 has a simple zero at k = a > O. We multi
ply and divide the right-hand side of the first ofEq. (2.35) by 
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p2 _ a2. Then P e (x) will then be represented as a convolution 
of the Fourier transforms of (p2 - a2)Fe (p) and (p2 _ a2)-1 
defined as a principal value at the singularity. The Fourier 
transform of (p2 - a2) -I is a distribution with well-known 
properties. The matter of zeros in ge.o(k) as well as conse
quences on the analytic properties of these functions arising 
from the Wiener-Paley theorem as applied to functions 
he.o(t) will be explored in later papers. 

C. An example 

use 
For most of the examples of the present paper we shall 

he (t)=8(t) or he (t)=8"(t) and ho (t)=8'(t). 
(2.36) 

Thus from Eq. (2.30) 

ge(k) = lIfiii or ge(k) = - k 2/fiii 

and go(k) = ik lfiii . (2.36') 

These functions have the appropriate dependence on k and 
also satisfy the requirements thatge be real and go be imagi
nary. Moreover, though T can be any positive number, for 
simplicity in the expressions we shall let T~. 

We shall assume for the present purpose that 
f_(x,t )=0. Hence 

¢(p,A.;O_) O. (2.37) 

Thus we need only specify f+(x,t) or, equivalently, 
¢( p,A.;O +). For our example, let us consider the function F (x) 
given by 

F(x) = sin KX for - a <x <a, 

_0 elsewhere (Ka = mr, n any positive integer) . 
(2.38) 

Then we choose 

f+(x;t) =F(x - t). (2.39) 

Our example is thus a pulse of finite length, containing an 
integer number of wavelength L = (21TIK) moving in the 
positive x direction. [The restriction that n be a positive in
teger can be removed. One gets slightly more complicated 
expressions for the source p(x;t ).] This pulse shape is one of 
those most often used in transmission line theory. We can 
now give the pulsed source which can give rise to this pulsed 
wave. 

We have 

f+(x;O+) = sin KX for - a <x<a 

_0 elsewhere, 

a 
at f(x;O +) = - K cos KX for - a < x < a , 

-0 elsewhere. (2.40) 

From Eq. (2.7) 

¢(p,A.;O+) = _ _ 1_' _1_ [(KA + v) sin(p - K)a 
2v fiii (p - K) 

+ (KA _ v) sin(p + K)a] . (2.41) 
(P+K) 
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We see that ,p(p),;O+) satisfies condition Eq. (2.25), 
which is necessary and sufficient for f + (x;t ) to be real for all 
time t. 

On using he(t) = 8(t), ho(t) = 8'(t), Eq. (2.24) for 
G (p), ), the appropriate expressions for ge,o (k ) from Eq. 
(2.36'), we obtain finally from Eq. (2.35) 

F(p)= _~_1_[sin(p-K)a + Sin(p+K)a] , 
e 2 ffii (p - K) (p + K) 

(2.42) 

F (p) = ~_1_ [sin(p - K)a _ sin(p + K)a] . 
o 2 ffii (p - K) (p + K) 

Then p(x;t) is given by Eqs. (2.29) and (2.33): 

p(x;t) = -HK8(t)cosKx+8'(t)sinKx] for -a<x<a, 

=0 elsewhere. (2.43) 

In this example, the source is contained in a finite region 
of x space-in fact the same region for whichf + (x;O +) is not 
identically zero. The finiteness of the support upon which 
the source function is not zero is important if one wishes to 
construct the source physically. Moreover, the fact that the 
size of the support is the same as that forf+(x;O+) means that 
the dimensions of the source are reasonable. In higher di
mensions it will be shown in a specific example that the 
choices of he(t) and ho(t) are crucial in determining whether 
the support of the source is finite. 

Equation (2.43) can be generalized considerably. As
sume 

a 
f+(x;O+) =A (x), -f+(x;O+) =B(x). (2.44) 

at 

Then, as can be shown using the previous analysis 

p(x;t) = B (x)8(t ) - A (x)8'(t ) . (2.45) 

The consequences for the compactness of the support of 
the density in space can now be read off in an obvious man
ner from the initial conditions (2.44). 

3. THE THREE-DIMENSIONAL ACOUSTIC PROBLEM 

The inverse source problem for the three-dimensional 
acoustic equation (1.2) is not essentially more difficult than 
the one-dimensional problem. However, the functions 
which satisfy the homogeneous equation, i.e., when the 
source is turned off, form a much richer class than those of 
the one-dimensional problem. Thus we can set up the inverse 
problem in two ways, corresponding to the use of a coordi
nate-independent formalism or of spherical polar coordi
nates. But first it behooves us to discuss the direct problem. 

A. The direct problem 

Let X (xlp) and ,p(p),;t) be defined by 

( I ) 1 ip· x (3 1) X x p = (21T)3/2 e , . 

tP(p),;t) = e - iApI,t+ TltP(p),; - T) + 2U e - iApt ft y(p;t') 
P -T 

X e - iApt' dt' , (3.2) 

where 
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and 

p = Ipl, A = ± 1 

41Tp(X;t) = J x(xlP)r(p;t) dp , 

y(p;t) = 41T J x*(xlp)P(x;t) dx . 

Then on definingf(x;t ) by 

f(x;t) = ~ f x(xlp),p(p),;t) dp , 

it is seen thatf(x;t) satisfies Eq. (1.2) with 

f(x;t) =f_(x;t) for t<, - T, 

f(x;t) =f+(x;t) for t> T, 

where 

(3.2') 

(3.3) 

(3.4) 

(3.5) 

f± (x;t) = ~ J x(xlp)e- i2Pit +T),p(p),; ± T)dp (3.6) 

and, of course, are solutions of the homogeneous equation 
corresponding to Eq. (1.2). 

The quantities ,p(p),; ± T) can be obtained from 
f± (x; ± T) fix; ± T) and (a lat If± (x; ± T) from thefol
lowing expressions [cf. Eq. (2.7) and its derivation]: 

,p(p),; ± T) = ~ [f x*(xlplf± (x; ± T)dx 

+ i ~ JX*(X1P)!..-f ± (x; ± T) dX] . 
p at 

(3.7) 

The functionsf ± (x;t) can be found fromf ± (x; ± T) 
using influence functions as in Eq. (2.8). One has 

f± (x;t) = f dx' GJ(x - X';! + T) :t f ± (x'; ± T) 

+ f dx' G2(x - x';t + Tlf ± (x; ± T) , (3.8) 

where GJ(x;t) and G2(x;t) are given by 

GJ(x;t) = - _1_ [8(t + r) - 8(t - r)] 
41Tr 

=_1_ sgn t 8(t 2 - r) , 
21T 

G2(x;t) =!..- GJ(x;t) = ~ It 18'(t 2 
- r). 

at 1T 

In Eq. (3.9), r==lxl. 

(3.9) 

In complete analogy to the one-dimensional equation 
(2.19), we can expressf(x;t ) in terms off_ (x;t ) andp(x;t ) and 
influence functions as 

f(x;t) = f_(x;t) 

+ 41T f dx' f~ T dt' GJ(x - x';t - t ')P(x';t') . 

(3.10) 

Thus for t> T 
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/+(x;t) =/_(x;t) 

+ 41T f dx' f-+: dt' G1(x - x';t - t ')P(x',t ') . 

(3.11) 

As for the one-dimensional situation, the direct source 
problem is concerned with obtaining/+(x;t) from the initial 
conditions as given by/ _ (x;t ), or equivalently by/ _ (x; - T) 
and (a fat If-(x; - T), and the sourcep(x;l). In the inverse 
problem, one prescribes / ± (x;t) and seeks to find p(x;t ). 

B. The Inverse problem. Coordinate-independent 
version 

As in the direct problem for the three-dimensional case, 
the inverse problem uses its one-dimensional analog as its 
prototype. 

Let us define F (p;k ) by 

I f+T F(p;k)=- y(p;t')eikt ' dt'. 
-!iii - T 

(3.12) 

Of course, if we knew F(p;k), we should know p(x;t), 
since 

I f f+oo . 41Tp(X;t) =- dp dkx(xlp)e-·ktF(p;k). 
-!iii - 00 

(3.13) 

From the information given in the inverse scattering 
problem we know rp(P,A; ± T) and hence G (P,A ) defined by 

2iA G(p,A )=F(P;AP) = - -1!... [eiAPTrp(p,A;T) 
-!iii 

_e-iAPTrp(p,A; - T)]. (3.14) 

The requirement that the functions/(x;t) andp(x;t) be 
real lead to necessary and sufficient conditions on rp(p,A;t ) 
and F(p;k), namely, 

tion 

rp*(P,A;t) = rp( - p, - A;t ) , 

F*(p;k) =F( - p; - k). 

Both conditions lead to the requirement that 

G *(P,A ) = G ( - p, - A ) . 

(3.15) 

(3.16) 

As in the one-dimensional case we make the assump-

(3.17) 

where the properties of the given functions he•o (t ) and their 
Fourier transforms ge.o (k ) are the same as those for the one
dimensional problem. 

If we now define Fe,o (p) by 

Fe,o(p) = f x*(xIP)Pe.o(x) dx 

or (3.18) 

Pe,o(x) = f X (xlp)Fe.o(p) dp, 

we have as the equation analogous to Eq. (2.35) 
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I I 
Fe(P) = 2ge(P) ~G(p,A), Fo(p) = 2go(p) ~AG(P,A). 

(3.19) 

Thus to findpe,o(x), one specifies rp(P,A; ± T), or equiv
alently/(x; ± T) and (a fat If(x; ± T), calculatesG (P,A )ob
tains Fe,o (p) from Eq. (3.19) and finally Pe,o(x) through the use 
of the second ofEq. (3.18). 

C. An example 

As an example we take/_(x;t )=0, which is equivalent 
to taking rp(P,A; - T)=O. Moreover, we use he(l) = o(t), 
ho(t) = o'(t). As before, T -0. We specify /+(x,t) by giving 
the Cauchy data as 

a 
/+(x,O+) 0, - /+(x,O+) = Ao(x) . (3.20) 

at 

We obtain for rp(P,A;O+) 

1 iA 
rp(P,A;O+) = (21T)3/2 P (3.21) 

on using Eq. (3.7). The function/+(x;t) can now be found 
from Eq. (3.6). 

(3.22) 

where G1(x;t) is given by the first of Eqs. (3.9). We find from 
Eq. (3.14) 

G( ,A) __ I ___ A_ 
P - -!iii (21T)3/2 . 

(3.23) 

Thus from Eq. (3.19) for all go(k) and hence all ho(t) 

Fo(p) ° and hence Po (x)=O . (3.24) 

Therefore, the present example illustrates the fact that 
while neither he (t ) or ho (t ) can be, in general, taken to be 
identically zero, nevertheless, the choice of/ ± (x;t) may lead 
to either Pe(x) or Po(x) being identically zero, in which case, 
of course, one does not have to specify he(t) or ho(t). To 
complete the example, we shall now computepe(x) which 
from Eq. (3.19) depends on the choice of he (t). Let us first 
take he(t) = o(t). Then 

41TPe(X) = Ao(x) . (3.25) 

Thus 

41Tp(X;t) = Ao(x)o(t) . (3.26) 

We could have anticipated the result Eqs. (3.25) and (3.26) 
for our choice of he (t ) because our function/(x;t ) is just the 
influence function with the initial condition (3.20) which 
must satisfy the three-dimensional wave equation (1.2) with 
the source given by Eq. (3.26). Nevertheless, the example is 
important in showing the inner consistency of the inverse 
method and in illustrating a case in which one of the func
tionsPe(x) or Po(x) are identically zero. 

This example can also be used to illustrate the effect of 
the choices of he(t) and ho(t) on the localization of the source 
for given functions/ ± (x;t). 

The source given in Eqs. (3.25) and (3.26) is strongly 
localized. Instead of choosing he(l) to be 0 (t), let us take 
he!t) = o"(t). 

In this case 
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41Tp(X;t) = - ~8"(t), 
41Tr 

(3.27) 

and the source, while still concentrated at r = 0, now ex
tends to infinity. 

The example leading to Eq. (3.26) can be generalized to 
arbitrary final wave forms for he(t) = 8(t), ho(t) = 8'(t). 

Let 

Then 

41Tp(X;t) = B (x)8(t ) - A (x)8'(t) . (3.29) 

Equations (3.28) and (3.29) are, of course, analogous to Eqs. 
(2.44) and (2.45). 

D. The inverse method In terms of spherical polar 
coordinates 

Up to now we have discussed the direct and inverse 
source problems in what is a coordinate-independent for
malism. For many purposes, however, spherical polar co
ordinates are very useful, especially when one wishes to 
study the radiated pulse at some distance from the source. 
We shall approach the problem by introducing spherical co
ordinates in p-space. For this purpose we use spherical har
monics YJM(O,r/J) in the notation of Ref. 10, for example. 

The completeness and orthonormality relations of these 
functions are 

co J 

I I YJM(O,r/J )YJM(O ',r/J') sin ° 
J=O M= -J 

= 8(0 - 0')8(r/J - r/J'). (3.31) 

The following relation will also prove useful: 

YJM(O,r/J) = ( - I)MYJ, _M(O,r/J). (3.32) 

Let us now consider the functions t/J(p,J,M,).;t), 
F (p,J,M;k ), G (p,J,M,). ), y( p,J,M;t ),Fe,o (p,J,M ) defined by 

(21T (1T 
t/J(p,J,M,).;t) = Jo dr/J Jo dO sin ° YJM(O,r/J )t/J(p,).;t) , 

(3.33) 

and so on, where p,O,r/J are the usual spherical polar coordi
nates ofp. 

One can invert Eq, (3.33) as 
co J 

t/J(p,).;t) = I I YJM(O,r/J )t/J(p,J,M,).;t) (3.33') 
J=O M= -J 

and so on. 
To get the relation betweenf(x;t ) and t/J( p,J,M ,).;t ), we 

have from Eqs. (2.4) and (3.33') 

f(x;t) = JtoMt_JLco p
2

dPX(xlp,J,M)t/J(p,J,M')';t) , 

where 
(3.34) 

X (xl p,J,M) = f1T dr/J [ sin ° dO X(Xlp)YJM(O,r/J). (3.35) 
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The integral on the right ofEq. (3.33) is evaluated in many 
places. One obtains the result 

x(xl p,J,M) = (2/1T)1/2(i)]J(pr)YJM(0,r/J) . (3.36) 

In Eq. (3.36), r,O,r/J are the spherical polar coordinates ofx 
(since the spherical coordinate angles ofp do not appear, 
there should be no confusion about which vector the angles 
belong to), andjJ(x) are the usual spherical Bessel functions 
oforderJ. 

The functions X (x I p,J,M) satisfy the orthogonality and 
completeness relations 

f x*(xl p,J,M)x(xl p',J',M') dx = 8(Pp-; p') 8JJ .8MM . , 

(3.37) 

Jto Mt_Ji
co 

x*(xl p,J,M)x(x'l p,J,M)p2 dp 

=8(x-x'). 

Equation (3.37) can be proved in several ways. Perhaps 
the most straightforward is to use the explicit expressions for 
X (xl p,J,M)ofEq.(3.36), the orthogonality and completeness 
relations (3.30) and (3.31) for the spherical harmonics, and 
the Fourier-Bessel transformation for spherical Bessel func
tions which takes the form 

2. (CO jJ(tx')jJ(tx')t 2X2 dt = 8(x - x') . 
1T Jo 
Thus Eq. (3.34) can be inverted to give 

t/J( p,J,M ,).;t) = f X*(x I p,J,M if(x;t ) dx . 

Likewise, 

Fe,o(p,J,M) = 41T f x*(xl p,J,M)pe,o(x) dx, 

y( p,J,M;t ) = 41T f X*(x I p,J,M )P(x;t ) dx , 

00 J Loo 1 
41Tp(X;t) = I I p2dpx(xlp,J,M)-

J=OM= -J 0 .J2ii 

J
+ co 

X _ 00 dk e - iktF(p,J,M;k) , 

F(p,J,M;k) = 41Tfx*(X
I 
p,J,M) dx _1_ 

.J2ii 

f
+T 

X _ T eikt dt p(x;t ) , 

1 f+T F (p,J,M;k ) = -- eikty( p,J,M;t ) dt , 
.J2ii - T 

1 f+co y(p,J,M;t) = - e - iktF( p,J,M;k) dk . 
.J2ii - co 

H. E. Moses 

(3.38) 

(3.34') 

(3.41) 

(3.42) 
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The functions t/J( p,J,M,J.,; ± T) are given in terms of 
fIx; ± T) and (a fat }fIx; ± T) as follows [cf. Eq. (3.7)]: 

t/J(p,J,M,J.,; ± T) = ~ [J X*(xlp,J,M}f± (x; ± T)dx 

+ i ~ JX*(X 1 p,J,M) ~ 
P at 

xf ± (x; ± T) dX] . 

Finally, 

G(p,J,M,J., )=F(p,J,M).p) 

and 

= _ 2~ [eiApTt/J(p,J,M,J.,;T) 
v21T 

- e-iApTt/J(p,J,M,J.,; - T)] 

1 
Fe(p,J,M) = --L G (p,J,M,J.,) , 

2ge(P) A 

1 
Fo(p,J,M) = 2go(p) ~ liG (p,J,M,J.,). 

(3.43) 

(3.44) 

(3.45) 

The requirement thatf(x;t ) andp(x;t ) be real leads to [on 
using Eqs. (3.32) and (3.36)] requirements on t/J( p,J,M,J.,;t) 
andF(p,J,M;k), namely, 

t/J*( p,J,M ,J.,;t) = ( - I)J + Mt/J( p,J, - M, - Ii;t ) , 
(3.46) 

F*(p,J,M;k) = (- W+MF(p,J, - M; - k). 

Both of these conditions lead to [see Eq. (3.44)] 

G*(p,J,M,J.,)=(-I)J+MG(p,J,-M,-li) (3.47) 

and hence from Eq. (3.5) 

F:(p,J,M) = (- W+MFe(p,J, -M), 
(3.48) 

To summarize: knowledge off ± (x;t) is equivalent, 
through Eq. (3.43), to knowing t/J(p,J,M,J.,; ± T), from 
which, in turn G (p,J,M,J., ) can be obtained from Eq. (3.44) 
and Fe,o (p,J,M) from Eq. (3.45). Finally Pe,o (x) are obtained 
through the use ofEq, (3.39). The reality conditions assure us 
that Pe,o (x) will be real. 

Let us consider the special case in which 
t/J(p,J,M,J.,; - T)=O, and hence, equivalently,J_(x;t)==O, 
and in which the wave function at t = T is to consist of a 
single multipole, i.e., 

f+(x;T) = RLN(r)YLN((},t/J) + RL, - N(r)YL, - N((},t/J) , 
(3.49) 

a 
- f+(x,T) = SLN(r)YLN((},t/J) + SL _ N(r)YL - N((},t/J) . at ' , 

The requirement thatf+(x,t) be real leads to 

R!N = ( - ItRL, _ N(r), S!N(r) = ( - ItSL, _ N(r). 
(3.50) 

In fact, it is to satisfy the reality requirement that, for a given 
L, one must have a term for - N as well as for N. We assume 
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Eq. (3.49) even for cases in which N = 0, in order to unify the 
notation. 

In the particular case he(t) = c5(t), ho(t) = c5'(t), and 
T ->-0 we can find p(x;t ) immediately from Eqs. (3.28) and 
(3.29). We see that the source density consists of the same 
multipoles as appear inf+(x;T). 

For the general form of he(t) and ho(t) we have 

41TPe(X) = FLN(r)YLN((},t/J) + FL, _ N YL. _ N((},t/J ) ,(3.51) 

where 

with 

(3.51b) 

8LN(P) = (! )112 I''' SLN(r)jL(pr)"z dr. 

Similarly, 

41TPo(X) = GLN(r)YLN((},t/J) + GL, _ N YL, - N((},t/J) , 
(3.52) 

where 

GL, ± N(r) = - ~ (00 [8L. ± N(P) sinpT 
1T Jo 

A p2 
-pRL,±N(P) cospT] --jL(pr) dp. (3,52') 

gorp) 

As a particularly simple example, let us take 

_ 2R (r) a _ 
f+(x,T) - --, - f+(x,T)=O, 

.J41T at 

where R (r) is a real function of the radius. Then 

Roo(r) = R (r), RLN(r)=O for L #0, 

SLN==O for all L,N. 

If now, in addition, we take R (r) to be given by 

R (r) =A1/(a - r), 

(3.53) 

(3.54) 

(3.55) 

where A is any real constant and 1/(x) is the Heaviside func
tion 1/(x) = 1 for x> 1, 1/(x) = ° for x <0, we can findf+(x,t) 
for all time t. One obtains 

f+(x,t) 

a 
= -- [ - (r + 1')1/(1' - r - a) + (r - 1')1/(a - r - 1') 

.J41Tr 
+ (r + 1')1/(a - r + 1')], (1' = t - T); (3.56) 

Eq. (3.56) represents the solution of the homogeneous three
dimensional wave equation when the function is initially 
constant in a sphere of radius a and such that the time deriva
tive of the function is zero initially. 

If we take h 0 (t ) = c5' (t ) and T ->-0, then the source which 
gives rise to this wave would be [from Eq. (3.28)] 
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41Tp(X;t) = - [2A1](a - r)l~]o'(t). (3.57) 

We have thereby solved in a completely explicit manner an 
acoustic inverse source problem in three dimensions. 

4. THE THREE-DIMENSIONAL ELECTROMAGNETIC 
INVERSE SOURCE PROBLEM 

A culmination of sorts is the treatment of the direct and 
inverse source problems for Maxwell's equations (1.3). These 
equations are obviously much more complicated than that 
for the one-dimensional transmission line (1.1) or the three
dimensional acoustic equation (1.2). Historically, however, 
the present author treated the three-dimensional electro
magnetic problem earlier in Ref. 5. 

The vector character of Maxwell's equations would 
seem to require a much more complicated treatment than 
the scalar cases which we have thus far discussed. However, 
in Ref. 5 we showed that modes could be introduced which 
separated the transverse electromagnetic field and currents 
from the longitudinal components and that the transverse 
components themselves separated into two modes corre
sponding to the two possible circular polarizations of the 
field. These two transverse modes satisfied time-dependent 
equations no more complicated than that which appears in 
the expression of t/J( p,4;t ) for the one-dimensional transmis
sion line in Eq. (2.3). Thus the three-dimensional electro
magnetic inverse problem can be treated in a way which is 
close to that for the much simpler one-dimensional equation. 

In Ref. 5 we cast Maxwell's equations (1.3) into a form 
which resembled Dirac's equation for an electron. We used 
the eigenfunctions of the Dirac-like Hamiltonian to carry 
out the separation of the vector electromagnetic field into the 
longitudinal and transverse modes discussed above. In the 
present paper, however, we shall carry out the separation 
through the use of eigenfunctions of the curl operator which 
we introduced in Ref. 8. 

We shall first review the properties of the eigenfunc
tions of the curl operator and then apply them to the direct 
and inverse source problems. 

A. Eigenfunctions of the curl operator 

The eigenfunctions of the curl operator were intro
duced in Ref. 8 to bring about a generalization of the Helm
holtz decomposition theorem for vector fields. The Helm
holtz theorem says that vectors can be expressed as the sum 
of a longitudinal and a transverse component such that the 
longitudinal component can be expressed as the gradient of a 
scalar potential and the transverse component can be ob
tained as the curl of a vector potential. The usual Helmholtz 
decomposition has proved particularly useful for fluid dy
namics and electromagnetic theory. In the application to 
electromagnetic theory, however (also in a different way in 
fluid dynamics), this decomposition is seriously flawed. This 
flaw shows up in the need for rather complicated geometri
cal and algebraic arguments needed to solve the direct source 
problem, for example. Typically, one takes Fourier trans
forms of vector wave functions V(x). IfG(p) and H(p) are the 
Fourier transforms of the longitudinal and transverse parts 
ofV(x), they are characterized by the requirement that they 
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satisfy the algebraic restrictions PXG(p) = 0 and 
p • H(p) = 0 which is the Fourier transform equivalent ~o 
requiring that the curl of the longitudinal part and the diver
gence of the transverse part V(x) vanish, respectively. The 
transform of Maxwell's equations lead to equations for H(p) 
and G(p) which are coupled in the same way as the vectors of 
the original untransformed equations. The sole benefit is to 
replace differentiation by multiplication. One then struggles 
with these equations in various ways to uncouple them. One 
way to uncouple the equations is to introduce vector and 
scalar potentials. However, though each component of the 
vector potential satisfies the usual second-order wave equa
tion of the form (1.2), the components must satisfy a gauge 
condition. Moreover, some problems arise with setting the 
gauge. 

All these complications are avoided by using the eigen
functions of the curl operator. The curl operator V X is treat
ed as being an operator in a complex vector space with the 
obvious inner product. One finds the eigenfunctions of this 
operator and expands all vectors in terms of these eigenfunc
tions. The expansion is a generalization of the Fourier trans
form. Scalars, such as the charge density, are simply Four
ier-transformed. The transformed Maxwell's equations 
appear as three uncoupled first-order differential equations 
in time, each of which is rotationally invariant and each of 
which is readily integrated. One of the equations is for the 
longitudinal component of the field in terms of the charge 
density, and the other two equations are for two transverse 
components corresponding to two circularly polarized 
fields. The direct and inverse source problems for the trans
verse components are very close to those of the one-dimen
sional problem. Vector and scalar potentials play no role 
whatever, though they can be introduced. (It might be men
tioned that a further generalization of the Helmholtz 
theorem for tensor fields of arbitrary rank is given in Ref. 
11. } 

We now proceed to discuss the eigenfunctions of the 
curl operator. We got to them through a careful study of the 
properties of the rotation group. We shall simply summarize 
their properties. For more details we refer to Ref. 8. 

There are two forms for the eigenfunctions of the curl 
operator. The first corresponds to the use of Cartesian co
ordinates and bears a close resemblance to the use of ordi
nary Fourier transformations in three dimensions, and the 
second is useful for treating problems in terms of spherical 
polar coordinates and uses vector spherical harmonics. The 
first form of the eigenfunctions will be treated now. The sec
ond will be treated in Sec. 4D of the present paper. 

Let us consider an arbitrary unit vector" and a discrete 
variable A = ± 1,0. For each value of" we define a vector 
QA(") by 

Qo( ,,) = -", 
Q ( ) = _ ~[1]I( 1]1 + i,11]2) _ 1 , 

A " v2 1 + T)3 

T)2( 1]1 + UT)2) _ U, T)I + i,1T)2] 
1 + 1]3 

(A = ± 1). (4.1) 
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It is readily seen that the vectors Q" ( 1]) satisfy the fol
lowing orthogonality and completeness relations: 

Also 

1]' Q,;( 1]) = - 0,,0' 1]xQ,,( 1]) = - iA, Q,,( 1]). 
(4.3) 

We now introduce the eigenfunctions ofthe curl operator 
x(xlp,A) by 

x(xlp,A ) = [1/(21T)3/2]e iP ' XQ" (pip), p = Ipl. (4.4) 

The eigenfunctions satisfy the following orthogonality and 
completeness relations: 

J x*(xlp,A), x(xlp',A ') dx = o(p - p')o ",,,' , 

~ J xr(xlp,A )Xj(x'lp,A) dp = o(x - x')oij . (4.5) 

Moreover, the eigenfunctions are eigenfunctions of the curl 
operator with eigenvalue A,p, since 

Vxx(xlp,A) = A,px(x I p,A ) . (4.6) 

Another important property of the eigenfunctions is 
ip·x 

V (I 1) -1'P' _e __ o ' X x p". = (217l/2 ".0' (4.7) 

Using these properties of the eigenfunctions, we can 
now generalize the Helmholtz theorem as follows. 

Any vector v(x) can be written in the form 

v(x) = ~ v,,(x) , where v,,(x) = J x(xlp,A )v(p,A) dp, 

(4.8) 

where 

V(p,A) = J x*(xlp,A), v(x) dx. 

In this decomposition 

(4.9) 

V, v,,(x) = 0 for A, = ± 1, VXvo(x) = O. (4.10) 

We have thereby sharpened the Helmholtz theorem by 
showing that there are two, rather than one, transverse com
ponents of a vector. 

This decomposition is rotationally invariant in the fol
lowing sense: 

Let v' (x) be the vector obtained from v(x) by a rotation R 
of the coordinate system. That is, the components of the 
vector v(x) in the new coordinate system are v;(x) so that 

(4.11) 
j 

where Rij are the components of the rotation matrix R. Then 

V' (x) = L VA (x) . (4.12) 

" 
In words: the decomposition of the vector in the new frame 
of reference can be performed by first carrying out the de
composition in the old frame and then transforming each v" 
separately. The modes described by A, do not mix in the rotat-
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ed frame. In a certain sense our decomposition is irreducible. 
This result follows from the relation 

L RijXj(R -lxlp,A) = exp[2iA<P(0, 1])]xi(xlp,A), 
j 

(4.13) 

where <P (0,1]) is defined as the principal branch of 

t Ao. (0 ) _ (0 '1] + 03)tan(O 12) an "¥ '11, 1] - , 
0(1 + 1/3) + (OX1]h tantO 12) 

(4.13') 

where 1] = (pip) and the unit vector along 0 specifies the 
direction of the axis of rotation and 0 = 101 is the angle of 
rotation in the axis-angle description of the rotation associat
ed with the rotation matrix R. [The i in the exponential in 

Eq. (4.13) is the imaginary.[=T, not the subscript i.] Thus 
the eigenfunctions of the curl operator are also eigenfunc
tions of the rotation operator. 

We can now introduce vector potentials A" (x) defined 
by 

VxA,,(X) = v,,(x) , A, = ± 1, 

and a scalar potential V(x) defined by 

VV(x) = vo(x). 

(4.14) 

(4.14') 

Equations (4.12) and (4.14) constitute our sharpening of the 
Helmholtz theorem. 

We shall now give the general form of the vector poten
tials A" (x) and the scalar potential V (x) which we regard as 
solutions of Eqs. (4.14) and (4.14'), respectively. To find the 
vector potentials, we write the vector potentials in the form 
of an expansion in terms of the eigenfunctions of the curl 
operator, as in Eq. (4.9), 

A,,(x) = f. J x(xlp,A ')B (p,A') dp. (4.15) 

On substituting into Eq. (4.14) and using (4.6), the ex
pansion Eq. (4.8), and the linear independence of the eigen
functions, we obtain 

B (p,A) = A, V(p,A )Ip, B (p, - A,) = 0, 

B (p,O) arbitrary. 

Thus the vector potentials A" (x) can be written as 

A" (x) = J X(xlp,A)B (p,A ) dp + W(x) , 

W(x) = J X(xlp,O)B (p,O) dp . 

(4.16) 

(4.17) 

The first ofEq. (4.17) show us that each of the two vector 
potentials (one for A, = + I and one for A, = - 1) consists of 
the sum of an essential, minimal part which depends unique
ly on v" (x) and an arbitrary vector W(x) which can be written 
to have the form 

W(x) = VQ(x) , Q(x)=~JeiP'X B(p,O) dp. (4.17') 
(21T)3 P 

Thus W(x) is the gradient of an arbitrary function Q (x). 
We recognize W(x) is the gauge. Our procedure has iso

lated the essential parts of the vector potential and has re
moved the mystery of the gauge. 
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We now want to find the function V (x) from vo(x). From 
Eq. (4.8) and the form ofx(xlp,O) we have 

V( ) i f ip·x V(p,O) d x=---- e ---po 
(217y/2 P 

(4.18) 

Two other properties of the vector decomposition into 
sums of eigenfunctions of the curl operator are of particular 
interest. 

First we shall discuss the reality property. It is readily 
seen from the properties of the eigenfunctions that a neces
sary and sufficient condition for a vector v(x) to be real is that 
in the expansion equations (4.8) and (4.9) 

V(p".i) = - PI - ~AP2 V*( - p".i ) . (4.19) 
PI + iAp2 

The second property is an explicit formula by which the 
longitudinal portion of a vector can be removed from the 
vector, leaving thereby only a transverse part. Let vT(x) be 
the transverse part of a vector v(x) and let v L (x) be the longi
tudinal part. 

Then 

vL(x) = f x(xlp,O)V(p,O) dp = f DM(x - x')v(x') dx', 

(4.20) 

where DM(x) is a dyadic represented by a 3 X 3 matrix acting 
on the vector with elements 

DMij(x) = f xi(xlp,O)x;*(Olp,O) dp . (4.20a) 

By explicit calculation 

(4.20b) 

Thus 

vL(x) = - _1_ v[v. f v(x') dX'], 
41T Ix - x'i 

(4.21) 

The above result indicates that ifv(x) has compact support, 
its longitudinal component v L (x) and hence its transverse 
component v T(X) = v(x) - V L (x) will only exceptionally also 
have compact support. This result is of the greatest impor
tance for physical applications in both the direct and inverse 
problems. One would like to have the currents located in a 
finite portion of space, i.e., have compact support, for practi
cal realizations. However, as we shall soon see, only the 
transverse component of the current contributes to radiation 
fields, and thus, even when the total current has compact 
support, the transverse portion may not. 

Some of this difficulty can be overcome by working 
with spherical polar coordinates. Compactness can then be 
defined with respect to the radial variable alone and exam
ples of compact transverse vectors can easily be given. 

B. The direct problem for Maxwell's equations 

It is convenient to rewrite Maxwell's equations in the 
Bateman form. Thus we introduce the complex vector 

1/I(x;t) = E(x;t) - zH(x;t) . (4.22) 

Maxwell's equations (1.3) become 

1917 J. Math. Phys .. Vol. 25. No.6. June 1984 

vX1/I(x;t) = - i !.-. 1/I(x;t) - 41Tij(x;t) , 
at 

v • 1/I(x;t ) = 41Tp(X;t ) . 
(4.23) 

In contrast to the situation for the one-dimensional 
equation and the three-dimensional acoustic equation, the 
wave function 1/I(x;t ) is generally complex. However, the cur
rent j(x;t ) and charge density p(x;t ) are real. 

To solve Maxwell's equations, we expand vectors in 
terms of the eigenfunctions of the curl operator and Fourier 
expand the sole scalar of interest, the charge density. 

Thus we write 

1/I(x;t) = ~ f x(xlp".i )t/I(p".i;t) dp, 

41Tj(x;t) = ~ f x(xlp".i )y(p".i;t) dp, 

4 ( .) - 1 f iP'Xr( • ) d 1Tp x,t - ----"3i2 e p,t p . 
(21T) 

(4.24) 

(4.25) 

(4.26) 

On substituting into Eq. (4.23) and using the properties 
of the eigenfunctions (4.6) and (4.7), we have 

t/I(p,O;t) = (ilp)r(p;t) , 

a 
- at t/I(p,O;t) = y(p,O;t ) , 

(4.27) 

which relate the longitudinal components of the electromag
netic field to the charge distribution and the longitudinal 
component of the current. The transverse part of the electro
magnetic field is related to the transverse part of the current 
in the following way: 

:t t/I(p".i;t) - ipAt/I(p".i;t) = - y(p".i;t) (A = ± 1) . 

(4.28) 

Our use of the eigenfunctions of the curl operator has ena
bled us to split the equations into a longitudinal part and two 
uncoupled transverse parts. The equations are of the form of 
inhomogeneous first order differential equations in time 
which are easily solved for. 

Let us now complete the discussion for the longitudinal 
field. 

In the direct problem it is clear from the first of Eq. 
(4.27) that the longitudinal part of the electromagnetic field 
is completely determined by the charge density. For 

1/IL(X;t) = f x(xl p,O) ~ r(p;t) dp 

- 1 ( V) f ip· x ( ) dp 
- (21Jf/2 - e rp;t 7' (4.29) 

We now express r(p;t) in terms of 41Tp(X;t) by using the in
verse Fourier transform in Eq. (4.26). One obtains from Eq. 
(4.29) 

1/IL(X;t)= -V f G(X-X')41Tp(X';t)dx', (4.30) 

where 
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G(x) =-I-feiP'x dp =_1 __ 1_. 
(21T)3 p2 41T Ixl 

(4.31) 

Since the charge density is real and thus therefore t/lL (x;!) is 
also real, we have from Eqs. (4.22), (4.30), and (4.31) 

HL (x;! )=0, EL (x;!) = - V f p(x';!) dx', (4.32) 
Ix-x'i 

which are old results in a new context. 
In deriving Eq. (4.32) we have needed only the first of 

Eq. (4.27). ThesecondofEq. (4.27) may be regarded as giving 
the longitudinal part of the current in terms of the density. 
For, from Eq. (4.27) we have on eliminating I,b(p,O;t ) in an 
obvious manner 

i a 
y(p,O;! ) = - - - r(p;! ) . 

pat 
(4.33) 

WenowevaluatejL(x;t ) in terms of (a fat ~(x;t ) in much 
the same manner that was used to obtain Eq. (4.30). We find 

. ( ) I V f a (') dx' JL x;t = - - p x ;! , . 
41T at Ix - x I 

(4.34) 

Equation (4.34) is recognized as the integrated form of the 
equation of continuity. For 

V • jdx;t ) = _1_ f !.-p(x';t ) [V2 1 ] dx'. (4.35) 
41T at Ix - x'i 

But, since 

V2 1 
Ix-x'i 

we have, finally, 

- 4m5 (x - x') , 

V • jL (x;t) + .!!...- pix;! ) = 0 . 
at 

(4.36) 

(4.37) 

The more usual form for the equation of continuity can be 
obtained by noting that V • h(x;t ) = 0 and writing jL (x;t ) 
= j(x;t ) - h(x;t ). 

We have disposed completely of the direct problem for 
the longitudinal field. We can readily dispose of the inverse 
problem for the longitudinal field also, for, if the sources are 
off for t < - T and t> T, the longitudinal field is also identi
cally zero outside the time interval - T <J<" Tand thus plays 
no role in the inverse problem. 

We now go on to the direct problem for the transverse 
fields. 

The differential equation (4.28) for the transverse fields 
are readily integrated to give 

¢'(p);t) = ¢'(p); _ T)eiAp(t + T) 

- eiApt f~ T e - iApt' y(p);t ') dt' . (4.38) 

This result is an analog to Eq. (2.3) for the one-dimensional 
equation and to Eq. (3.2a) for the three-dimensional acoustic 
equation. The resemblance could be made closer by some 
changes in notation, but we forbear. It is the use of the eigen
functions of the curl operator that leads to the simple result 
(4.38) and enables us to treat the direct and inverse problems 
of Maxwell's equations with no more real difficulty than the 
corresponding problems for the one-dimensional equation. 
From Eq. (4.38) we have 
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t/I(x;!) = t/I_(x,t) for t < - T, 

t/I(x;t ) = t/I + (x,t ) for t> T, 

where 

(4.39) 

'" ± (x;t) = A ~± 1 f x(xlp) )eiAP{t ~ T)l,b(p); ± T) dp . 

(4.39') 
It is not difficult to obtain t/I ± (x;t) in terms of 

t/I ± (x; ± T). Using methods similar to those for the one
dimensional and three-dimensional acoustic cases, we intro
duce the matrix GM(x;t) by 

[ a2 a2 ] 
G;;(x;t)= --a 2 +-a 2 D(x;t), 

t Xi 

Gdx;t) = [ - i ~ + ~]D (x;t) and cyclically, 
ax3at aX1aX2 

Gij(x;t) = G ft(x;t) , 

where 

D (x;t) = (l/41Tr) ll(r - t 2), r = Ixl . 

Then 

(4.40) 

(4.40') 

t/I ± (x;t) = f GM(x - x';! + T)t/I ± (x'; ± T) dx' . 

(4.41) 

In Eq. (4.41) and later we shall use the notation GM(x;t) 
to be a dyadic as well as the matrix from whose elements the 
dyadic is constructed. 

In the derivation of Eq. (4.41), which we shall not give 
here, it is shown that 

f GM(x - x';t)v L (x') dx' = 0 , (4.42) 

where v L (x) is any longitudinal vector. 
In Eq. (4.41) the vectors t/I ± (x) are transverse vectors, 

from Eq. (4.39'). However, any longitudinal vector can be 
added to them because ofEq. (4.42). 

The solution for the transverse part of Maxwell's equa
tions can be written 

t/I(x;t) = f GM(x - x';t + T)t/I-(x'; - T) dx' 

- 41T LT dt' f GM(x - x';t - t ')j(x',t') dx' . 

(4.43) 

Because ofEq. (4.42), the current in Eq. (4.43) may be re
placed by its transverse part. 

We can now solve the direct problem by noting that 
when r;,T, 

t/I+(x;t) = t/I_(x;t) 

- 41T f_+;'dt' f GM(x - x';t - t')j(x';t') dx'. 

(4.44) 

Hence given t/I_(x;t) and the currentj(x;t) or its transverse 
part, we can find the final electromagnetic field t/I+(x;t). 

Before we leave the direct problem, it seems worthwhile 
to discuss the significance of the discrete variable A. for 
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A = ± 1. It is readily seen that the general solution of Max
well's equations without sources is of the form Eq. (4.39') in 
which ¢(P.A; ± T) is replaced by ¢(P.A ), where this latter 
function is an arbitrary function ofp.A. Moreover, it is con
venient to take T = O. Let us consider the case in which 

¢(p, 1) = 8 (PI)8( P2)8( P3 - k ); also ¢(p, - 1 )==:=0. 
(4.45) 

Then 

1 
EI(x;t) = H2(x;t) = --:;j2 cos k (X3 + t) , 

4(1T) 

E2(x;t) = -HI(x;t) = -~sink(x3+t), 
4(1T) 2 

E 3(x;t) = H3(x;t )=0 . 

(4.45') 

It is clear that this solution of Maxwell's equations is a 
positively polarized circularly polarized wave moving with 
wave number k in the negative z direction. Hence A = 1 cor
responds to positive circular polarization. 

Likewisethechoiceof¢(p, - 1) = 8 (pI)8( pz)8( P3 - k ), 
¢(p, + 1 )=0 gives rise to a negative circularly polarized 
wave of wave number k moving in the positive z direction. 
Then A = - 1 means negative circular polarization, and, 
therefore, decomposition of ",(x;t ) into eigenvectors of curl 
operator is equivalent to expressing the electromagnetic field 
as a sum of circularly polarized radiation of various frequen
cies moving in various directions. 

c. The inverse problem. First form 

We shall now treat the inverse source problem for Max
well's equations in a manner which parallels the coordinate
free treatment of the inverse source problem for the three
dimensional acoustic equation. Some differences are due to 
the fact that the time variable t appears differently in the 
acoustic and electromagnetic equations. 

We are given ",_(x;t) and "'+(x;t), and we are required 
to find a current j(x;t ) of the form 

j(x;t) = je(x)he(t) + Ux)ho(t) , (4.46) 

where he (t ) is a given real even function and ho (t ) is a given 
real odd function of t. We shall show how real transverse 
vectors je.o(x) can be obtained uniquely from the complex 
vectors'" ± (x;t ). 

Knowing", ± (x;t) is equivalent to knowing 
¢(p, ± 1; ± T) (all four of these amplitudes). Let us define 
F (p.A;k ) for A = ± 1 by 

1 f+T F(p.A;k) = - e - iktytp.A;t) dt 
fI1i - T 

= ~ e - ikt dt X*(x/p.A)· j(x;t) dx. 4 f+T f 
fI1i - T 

(4.47) 

Then we define 

G(p.A )==:=F(p.A;A. p) = - (lIfI1i)[e- iAPT¢(p.A;T) 

- eiApT¢(p.A; - T)] . (4.48) 

It is our intent to find je.o (x) of Eq. (4.46) from G (p.A ). 
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We define, in analogy to Eq. (3.19), 

Fe(p.A) = _1_ [G (p.A) - PI - ~AP2 G *( - P.A)] , 
2ge(P) PI + iAP2 

(4.49) 

Fo(p.A) = _A_ [G (P.A ) + PI - ~AP2 G *( - p.A )] , 
2go(p) PI +iAP2 

where 

ge,o(k) = _1_J+ T he,o(t)e- ikt dk. 
fI1i - T 

(4.50) 

Equation (4.50) differs from Eq. (2.30) in the sign of t, but, 
otherwise, the functions ge,o (k ) play the same role in the 
present calculation as previously. As before, ge(k) is a real, 
even function of k and go (k ) is an imaginary, odd function of 
k. 

Then 

41Tje(x) = ~ f x(xlp.A )Fe(P.A ) dp , 

(4.51) 

41TL(x) = ~ f x(xlp.A )Fo(P.A) dp. 

The fact that 

F (p.A) = - PI - iAPz F * (- p.A ) 
e,o PI + iAp2 e,O 

(4.52) 

assures us thatje,o(x) are real vectors [see Eq. (4.19)]. 
Let us consider the special case in which", _ (x;t )=0 and 

he(t) = 8(t), ho(t) = S(t) . (4.53) 

Moreover, we let T __ + 0 and define 

"'(x) = ¢+(x;O+)=",(x;O+). (4.54) 

That is, we prescribe the radiation fields immediately after 
the current is turned off. Of course, the given vector "'(x) 
must be a purely transverse field. We obtain, in complete 
analogy to Eqs. (2.45) and (3.39), 

41Tje(x) = - Re "'(x) , 

41Tjo(X) = _1_ 1m vxf 1 "'(x') dx' . (4.55) 
41T Ix - xii 

However, since 

Re "'(x) = E(x;O+), 1m "'(x) = - H(x;O+), (4.55a) 

Eq. (4.55) becomes 

41Tje (x) = - E(x;O +) , 

41Tjo(x) = - _1_ vxf I I I H(X';O+) dx' . 
41T X - x I (4.55b) 

From Eq. (4.55b) it is clear that the current is a transverse 
vector as indeed are all currents as constructed by our in
verse source method. 

From Eq. (4.55) it is seen that a final field generally 
leads to currents which do not have compact support or, 
equivalently, are not identically zero outside a finite domain 
in space. Later we shall give cases of final fields for which the 
currents do have compact support. They will be character
ized by final vectors E(x;O+), which have compact support 
and H(x;O+)=O. These examples will be given in the next 
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section when we consider the direct and inverse problems in 
terms of spherical polar coordinates. 

We shall now give a very simple example of the applica
tion of Eq. (4.55). 

Let "'(x) be the transverse part of aD (x), where the con
stant vector R is given by 

R=L+IM, (4.56) 

where Land M are real constant vectors. Then from Eq. 
(4.21) we have on subtracting the longitudinal part ofRD (x) 

"'(x) = aD (x) + _1 (R· V)V ~ . 
41T r 

We readily read off the result, 

41Tje(x) = U (x) + _1_ (L· V)V ~, 
41T r 

41Tjo(x) = _1_ (MXV) ~. 
41T r 

It also follows from Eqs. (4.41) and (4.42) that 

(4.57) 

(4.58) 

",+(x;t) = GM(x;t)R. (4.59) 

This last result then says that the Riemann dyadic is the 
solution of Maxwell's equations with the sources given by 
Eq. (4.58). 

D. The Inverse problem in terms of spherical polar 
coordinates 

We want to treat Maxwell's equations, both for the di
rect and inverse source problems, using spherical polar co
ordinates. Such coordinates are natural because we want to 
see how the radiating field behaves at large distances from 
the origin, and, to discuss this matter, one need consider only 
the radial variable. Moreover, vector multipoles of the kind 
used in antenna theory, which would be needed to construct 
the current distribution for the direct and inverse problems, 
appear in a very natural way. 

As a first and decisive step we want to introduce com
plete sets of eigenfunctions of the curl operator in spherical 
polar coordinates, and, since these involve vector spherical 
harmonics, we shall discuss them briefly. 

Vector spherical harmonics have been introduced in 
Ref. 12 for describing currents which lead to certain radi
ation patterns. Let Jbe a nonnegative integer (J = 0,1,2,. .. ). 
For each J we introduce a number M which takes on the 
values - J, - J + 1, ... , J - 1, J. For each Jwe also intro
duce the nonnegative integer L which, for J = 0, takes on 
only one value L = 1, but for all other values of J takes on the 
three values J - 1, J, J + 1. For the triplet of values J, L, M 
vector spherical harmonics are introduced which are de
noted by YJLM (8,cp), where 8 and cp are the usual polar an
gles. The properties of the vector spherical harmonics are 
discussed in Ref. 10 in a form to which we shall adhere. The 
vector spherical harmonics form a complete, orthogonal set 
in the 8,cp space. 

It is natural to describe the vector spherical harmonics 
by giving their components in terms of the triad of unit vec
tors in the radial, 8, and cp directions. The unit vectors are 
denoted by a r , ao, a4>' respectively. The components of the 
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vector spherical harmonics are given by Eqs. (109) - (111) of 
Ref. 8. 

We designate the eigenfunctions of the curl operator in 
spherical polar coordinates by x(xl p, J,M,)., ). The role of the 
discrete variable A = 0, ± 1 and the continuous variable 
P(O<p < 00) is the same as before, i.e., AP is the eigenvalue of 
the curl operator: 

VXX(xlp,J,M')") =APx(xip,J,M')"). (4.60) 

For A = ± 1, J takes on the values 1,2,··· and M takes 
on the values - J, - J + 1, ... , J - 1, J. For A = 0, J takes 
on the values 0,1,2, ... and M takes on the same values as 
before. 

We shall now give the functions x(xi p, J,M,)., ) explicit
ly: 

x(xl p,J,M,).,) = - (lIJ;)W { - A YJJM (8,cp }jJ(pr) 

+ i[J /(U + 1)] 1/2yJ,J+ I.M(8,cp}jJ+ I (pr) 

- i[(J + 1)/(U + 1)]1/2 

X YJ.J - l,M(8,cp }jJ _ I (pr) J 

for A = ± 1 , 

X(xlp,J,M,O) = [2!1T]1/2iJ+ I{ [J + 1)1(U + 1)]1/2 

XYJ,J+ I,M (8,cp }jj+ 1 (pr) 

+ [J /(U + 1)] I12YJ.J_I,M(8,cp) 

X)J_I (pr)J . (4.61) 

In Eq. (4.61), r,8,cp are the spherical polar coordinates ofx. 
On using identities for the vector spherical harmonics 

given in Ref. 10 and properties of the spherical Bessel func
tions given, for example, in Ref. 13, the eigenfunctions can 
also be put in the form 

x(xi p,J,M,).,) = (lIJ;)W /p)[Ap + VX ]YJJM (8,cp }jJ(pr) 

for A = ± 1 , 
(4.62) 

The first of Eqs. (4.62) can be used to split vectors into their 
poloidal and toroidal parts (see, e.g., Ref. 14). 

The eigenfunctions satisfy the orthogonality and com
pleteness relationships 

f x*(xl p,J,M')")· x(xl p',J',M',)., /) dx 

D(p-p') 
= DJJ'DMM,D).)., , p2 

L f xr(xl p,J,M,)., )Xj(x/I p,J,M,).,)p2 dp 
J.M.). 

= D(X - X/)Dij • 

(4.63) 

The decomposition (4.8) of a vector into its transverse 
and longitudinal components is now written 
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V(x) = L VA (X) , 
A 

VA (X) = L f X(x\p,J,M).)V(p,J,M).)p2dp, (4.64) 
J,M 

V(p,J,M)') = f X*(x\p,J,M).)ov(x)dx. 

The amplitudes V(p,J,M).) have particularly simple 
properties under rotation of coordinates. Let R (0) be a rota
tion parametrized according to the discussion ofEqs. (4.11)
(4.13'). Then if V'(p,J,M)') is the amplitude corresponding 
to VA (x), we have 

V'(p,J,M).) = L [exp(iO 0 S(JI)]M,M' V(p,J,M').) , 
M' 

(4.65) 

where [exp(iO 0 S(J I)] , is a matrix element of the matrix 
M,M 

ei9 • SIJ), in whichSV' are the spin operators in theJth irredu
cible representation of the rotation group in the form given 
in Ref. 10, for example. The explicit expression of the matrix 
elements of ei9 • SIJ) is given in Ref. 15. From the viewpoint of 
group theory, the use of this representation represents a 
further uncoupling of vectors. To put the matter succinctly, 
the curl operator leaves the helicity and irreducible represen
tations of the rotation group invariant. Though group theory 
has motivated much of the discussion, we shall not pursue 
the matter further in the present paper. 

A relation satisfied by the eigenfunctions which will 
prove useful for use in obtaining real currents is 

X*(x\ p,J,M).) = - (- W+MX(x\ p,J, - M).). 
(4.66) 

If the vector v(x) in the expansion Eq. (4.65) is to be real, 
then we must have 

V*(p,J,M).) = -(- W+MV(p,J,-M).). (4.67) 

We now expand 1\1(x;t ) and the current j(x;t ) in terms of 
the eigenfunctions X(x\ p,J,M). ), 

1\1(x;t) = L f X(x\ p,J,M). )t/J(p,J,M).;t)p2 dp, 
J.M.A 

f (4.68) 
41rj(x;t) = L X(x\ p,J,M)' )y(p,J,M).;t)p2 dp. 

J,M.A 

The reality of j(x;t ) leads to the condition Eq. (4.69) on 
y( p,J,M ).;t ). 

The analog ofEq. (4.38) is 

t/J(p,J,M).;t) = t/J(p,J,M).; - T)eiAP(t+ TI 

-eiAPtf' e-iApt'y(p,J,M).;t')dt', 
-T 

A = ± 1 . (4.69) 

We shall not consider the component for A = 0, since 
we have already disposed of the longitudinal components of 
the fields and currents. 

Let us define 

F(p,J,M).;k) = -l-f+ T y(p,J,M).;t )e- ikt dt 

/2ii - T (4.70) 
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as the analog ofEq. (4.47). Also we define [see Eqs. (4.47) and 
(4.49)] 

G(p,J,M). )==F(p,J,M)';A.p) = _1_ [e- iApTt/J(p,J,M).;T) 
~ 

- eiApTt/J(p,J,M),; - T)] , (4.71) 

Fe(p,J,M).) = _1_) [G(p,J,M).) 
2ge(p 

- (- W+MG *(p,J, - M).)] , 

Fo(p,J,M)') = _A - [G(p,J,M)') 
2go(p) 

+ (- W+MG*(p,J, - M).)] . 

(4.72) 

Both Fe (p,J,M). ) and Fo (p,J,M). ) satisfy the condition Eq. 
(4.69). 

One then sees that 

417je(x) = L f X(x\ p,J,M)' )Fe(p,J,M).)P2 dp, 
J,M,A 

(4.73) 

417jo (x) = J~A f xIx \ p,J,M). )Fo (p,J,M). )p2 dp . 

Let us now again consider the case that 1\1 _ (x;t )=0. One 
may consider simple modes for 1\1+(xit) by choosing 

t/J(p,J,M).,T) = W(p). )OJKOMN . (4.74) 

Then 

1\1(x;t ) = ~ f xIx \ p,K,N). ) W (p). )eiAp(t - Tlp2 dp 

=¢+(x;t) , 

(4.75) 

The currents will have the same transverse modes as 
1\1(x;t ): 

417je(x) = - _1_ Re L J p2
dp 

/2ii A ge(P) 

X xIx \ p,K,N). ) W (p). )e - iApT , 
(4.76) 

417jo (x) = _1_ 1m L f ~2dp 
~ A 19o(p) 

XX(X\ p,K,N). )W(p). )e- iAPT . 

Equations (4.75) and (4.76) assure us that the fields and cur
rents are transverse. 

We shall now consider a particularly simple case in 
which the current has compact support. Generalizations of 
this case will be obvious. Let he (t ) = O(t), ho (t ) = O'(t ), 
T= 0+. Aiso,K = 1,N = 0, W(p).) = AW(p),whereW(p) 
is real. Then on using the explicit form ofthe eigenfunctions 
Eq. (4.61) and noting that the resulting 1\1(x;O+) is real 

2i 
E(x;O+) = -YllO((J,¢ )r(r) , 

fii 
r(r)= LX> j)(pr)p2W(p) dp, (4.77) 

H(x;O+)=O. 
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From Eq. (4.55b) 

41T.ie(x) = - E(x;O+) = _.E. YllO(f),¢J )F(r) , jo(x)=O. 
.[ii 

(4.77a) 

Thus, if we pick r (r)=O for r> a > 0, the current will 
have compact support. Using the Fourier-Bessel theorem, it 
is always possible to find W (p) from r (r) and thus "'(x;t ) for 
t > O. Hence we have given a class of currents with compact 
support with an initial field which also has compact support 
for which the fields can be found at all later times. 

That Y llO(8,¢J ) is purely imaginary so that E(x,O +) and 
je(x) are real is seen by noting that 

(4.78) 
a-,6 • Y llo(f),¢» = (3/81T)1/2i sin f) . 

From (4.78) it is seen thatje(x) may be considered to be 
due to charged spheres moving about the z axis, where the 
sphere at radius r rotates with an angular velocity propor
tional to r (r)/r, and the charge density is t5 (t ). Alternatively, 
we may consider the charge density to be unity and consider 
the angular velocity of the spheres at time t and radius r to be 
given by 

fl (r,t) = (3/2)1!21T-1 [F(r)/r]t5(t) . (4.79) 

We shall adopt this latter interpretation. Denoting the vec
tor angular velocity by fl(r,t ) with fl (r,f ) = I fl(r,t ) I, the cur
rent which gives rise to the field 

E(x;O+) = - ro(r) , H(x;O+)=O, (4.80) 

where ro(r) is defined by 

fl(r;t) = ro(r)t5(t) (4.81) 

[i.e., is the coefficient of t5 (t) in Eq. (4.79)], is 

41Tj(X;t) = fl(r;t)xx. (4.82) 

[Of course, strictly speaking, the angular velocity from Eq. 
(4.82) is actually fl/41T, but there is some convenience in 
using our definition (4.79).] 

One could now find the fields E(x,t ) and H(x,t ) for t> 0 
by using Eq. (4.41), which gives the solution in terms of an 
influence function. In practice this is often hard to do be
cause the use ofEq. (4.41) requires a certain virtuosity in 
visualizing integrations in various domains of three-dimen
sional space. Actually it is sometimes easier to use Eq. (4.75) 
if the function W(p.A) is sufficiently simple. We shall now 
give an important case for which this is so. We shall consider 
the problem in which the current is due to the rotation of a 
sphere of radius a inside of which the charge density is unity 
and the time variation is essentially arbitrary. 

That is, the current is given by 

41Tj(x;t) = roXxF(t) for r<a 

=0 for r>a. (4.83) 

In Eq. (4.83), ro is a constant vector and F(t) is essentially an 
arbitrary function of time but may conveniently be thought 
to have finite support for the arguments below to be given in 
a simple way. 

Thus we shall now consider the direct source problem 
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for which the current is given by Eq. (4.83) and the initial 
field with 

lU(r) = I ro(r) I = lU1/(a - r) . (4.84) 

Initially we shall take for the function F(t) in Eq. (4.83) 

F(t) = t5(t), (4.85) 

and the current given by Eq. (4.83) with the initial condition 
that the electromagnetic field be zero. We know from our 
arguments that the fields at t = 0+ are given by Eq. (4.80). 
We shall obtain W(p) from Eq. (4.77) and thus 
W(p.A) = AW(p). Finally, we shall obtain E(x,t )andH(x,t) 
for t> 0 from Eq. (4.75). Formally, for all time E(x,t) and 
H(x,t ) can be written as products of an 1/(t ) function and the 
fields at time t> O. 

Having found the electromagnetic fields for the current 
given by Eqs. (4.83) and (4.85) one easily sees that the fields 
EF(x;t) and HF(x;t ) defined by 

f
+~ 

EF(x;t) = _ 00 E(x;t - t ')F(t') dt' , 

(4.86) 

f
+oO 

EF(x;t) = _ 00 H (x;t - t ')F(t ') dt' 

satisfy Maxwell's equations with the current Eq. (4.83) with 
initial fields zero if the functions F (t) are picked appropri
ately. [It might be mentioned that arguments of this sort can 
also be applied to more general situations for finding explicit 
solutions for the acoustic and electromagnetic equations 
with given sources and currents.] 

We now proceed to sketch the way the fields are found 
for the case F(t) given by Eq. (4.85). 

For the problem we are considering we have 

(4.87) 

We substitute into the second of the equations on the first 
line of Eq. (4.77) and use the Fourier-Bessel transform Eq. 
(3.38) to find W(p): 

(4.88) 

On substituting into Eq. (4.75) and using the first ofEq. (4.62) 
for the eigenfunctions of the curl operator, we find that the 
fields can be expressed in terms of a vector potential A(x;t): 

a 
E(x;t) = - A(x;t) , H(x;t) = VXA(x;t) . (4.89) at 

In Eq. (4.89) 

A(x;t) = - a-,6lUa2 sin f) 

In obtaining Eq. (4.90) we have used Eq. (4.78). Our principal 
effort in the calculation is to evaluate the integral in Eq. 
(4.91). We employed tedious but simple methods to evaluate 
the integral. Our final results for the fields are 
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E(x;t) = - ooxx( 7](a - r)7](a - r - t) 

- {7](t-\r-a\)-7](t-a-r)J 

x {(t /4,-1)[a2 - (t - rf] - (l/2r)(t - r)2j) , 

H(x;t) = - [(00 • x)x/,-1](2t77](a - r)7](a - r - t) 

+ {7](t-\r-a\)-7](t-a-r)J{(l/Sr) 

x [a2 - (t - rf]2 - [it - r)l2r] [a2 - (t - r)2] J) 

+ XX(~xX) (2t77](a _ r)7](a - r - t) 

+ { 7](t - \r - all - 7](t - a - r)J{ - (l/16r) 

x [a2 - (t - r)2]2 + (t /4r)[a2 - (t - r)2] 

- (t - r)2/2}). (4.91) 

One can similarly treat the case of concentric spherical 
shells rotating about the same fixed axis with each shell hav
ing a different angular velocity or constant charge. In this 
connection it should be mentioned that the problem of deter
mining fields due to rotating charged shells has been treated 
for the case of constant angular velocity and in a general 
relativistic context in Refs. 16 and 17. 
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The solutions of the Gel'fand-Levitan equation are obtained in a closed form for general rational 
reflection coefficients, and as a convergent limit of closed forms for reflection coefficients 
sufficiently close to being rational. 

PACS numbers: 03.80. + r, 03.65.Nk, 02.30.Rz 

1. INTRODUCTION 

In their study of one-dimensional inverse scattering 
problems, Gel'fand and Levitan introduced a certain linear 
integral equation which plays a central role. I In the case we 
consider here, the problem involves a scattering potential 
V (x), defined for - 00 < x < 00, which can be recovered 
from the resulting reflection coefficient r(k ), defined for - 00 

< k < 00, as follows: Set 

~ I f+oo k k R (x, y) = r(x + y) = - e - 1 Xr(k )e - 1 Y dk, (I) 
21T - 00 

and then solve for K (x, y) the Gel 'land-Levitan equation 

K(x,y) + R (x,y) + f~ 00 K(x,z)R (z,y)dz = O. (2) 

Then V(x) is given by 

V(x) = 2 dK (x,x). (3) 
dx 

The reflection coefficient r(k ) is subject to the require
ments 

r( - k) = r(k ), 

so that R (x, y) is real, and 

lr(k)I.;;;;I, 

(4) 

(5) 

together with some mild regularity conditions, so that the 
potential V (x) so obtained is physically reasonable (cf. Refs. 2 
and 3). 

We consider here the general problem of solving the 
Gel'fand-Levitan equation (2) under the assumptions Eqs. 
(4) and (5). We know that if r(k) is a rational function of k 
which is analytic in the upper half-plane, then the solutions 
of Eq. (2) are available in closed form. These solutions were 
first obtained by Kay,4 and more recently by Pechenick and 
Cohen5 in somewhat different form. (See also Ref. 6.) In Sec. 
2 of this paper, we obtain the solutions ofEq. (2) in closed 
form in the more general case that r(k ) is rational, but not 
necessarily analytic in either half-plane. Our results include 
the formulas of both Kay and Pechenick-Cohen. 

In Sec. 3 we consider the problem of nonrational reflec
tion coefficients. We show here that if r(k ) can be approxi
mated by a rational function ro(k) of k in a suitably chosen 
norm, then the solution ofEq. (2) obtained from r(k) can be 
uniformly approximated by the solution obtained from ro(k). 
In the process, we obtain quantitative estimates of the effect 
on the solution of small errors in the measurement of r(k ). 

2. RATIONAL REFLECTION COEFFICIENTS 

Here we assume that r(k ) is a rational function of k, 
subject to the restrictions Eqs. (4) and (5). We write 

r(k)=r_(k)+r+(k), (6) 

where r _(k)(r +(k)) is analytic in the lower (upper) half k
plane, and assume 

p 

r_(k)= I aJ(k-bJ, 
i=l 

(7) 
p+q 

r+(k)= I aJ(k-bj ), 

j~p+ I 

where the aj and b j are complex numbers chosen so that Eqs. 
(4) and (5) are satisfied, and so that 

1m b j > a for I.;;;;i.;;;;p, 
(8) 

Imbi<O forp+1.;;;;i<p+q. 

We shall assume, moreover, that the b i are all distinct. It 
follows from Eq. (1) that 

R (x,y) = R_(x,y) + R+(x,y), (9) 

where 

P 'b 
R_(x,y) = e( -x - y) I (ia i )e- 1 

,jx+Yi 

i= 1 

Here e (z) is the Heaviside function: 

{

a ifz<O, 

e (z) = ! if z = 0, 

1 ifz> O. 

(10) 

(11 ) 

(12) 

The function R (x, y) satisfies a linear ordinary differen
tial equation in y with constant coefficients, and so do 
R _ (x, y) and R + (x, y). To see this, we rewrite r(k ) as 

r(k) = p(k )/q(k), (13) 

wherep(k) and q(k) are polynomials in k, and then use Eq. (1) 
to verify that 

q(D )R (x, y) = p(D )8(x + y) (14) 

with D = ia; ay. A similar argument holds for R ± (x, y). 
As a consequence, we find that the solution K (x, y) of 

Eq. (2) also satisfies a linear ordinary differential equation 
with constant coefficients. We assume y < x, and distinguish 
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two cases: 

Case I: x+y<O. In this case z + y<O ifz<x, and 
R (x,y) = R_(x,y). Then Eq. (2) becomes 

K(x,y)+R_(x,y) + f:oo K(x,z)R_(z,y)dz=O. (15) 

Hence if we write r _(k) = p_(k )/q_(k), thenEq. (14) yields 

q_(D)K(x,y) + 0 + 0 = O. (16) 

It follows that in this case K (x, y) must have the form 

P -jb.y 
K_(x,y) = L Cj(x)e J, (17) 

)=1 

where the bj are the zeros of q _(k), i.e., the poles or r _(k) [cf. 
Eq. (7)]. 

Case II: x + y > O. In this case Eq. (2) involves both R + 
and R _, and instead of Eq. (16) we obtain 

q(D)K(x,y) + 0 +p(D)K(x, -y) =0. 

Hence 

q( -D)q(D)K(x,y) = -p(D)q( -D)K(x,y) 

= p(D )PI - D )K (x, y). 

It follows that in this case K (x,y) must have the form 

(18) 

(19) 

p + q k ·k 
K+(x,y)= L (Aj(x)ejjY+Bj(x)e-I'jY), (20) 

j=1 

where the ± kj are the 21p + q) solutions of the equation 

r(k)r( - k) = lr(kW = 1. (21) 

We shall assume here that these solutions are all distinct. 
Now we put the forms Eqs. (17) and (20) back into Eq. 

(2), do the integration, and equate the coefficients of the re
sulting exponential functions ofy. We assume y < x, and now 
distinguish three cases: 

Case I:x <0. In this case Eq. (2) reduces to Eq. (15), and 
K(x,y) toK_lx,y). We obtain, as the coefficient of e - jb,y, 

p • - jb;x 
L Cjlx) + laje - a j 

j=1 

x ± Cj(x)e-j(bj+bi)X/(bj +bj)=O. 
j=1 

(22) 

Case II: x> 0, but x + y < O. In this case Eq. (2) becomes 

K_(x,y) + R_(x,y) + f~: K_(x,z)R_(z,y)dz 

+ f: x K + (x,z)R - (z,y)dz = 0, (23) 

and we obtain, as the coefficient of e - ib,y, 
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K+(x,y) +R+(x,y) + f~: K_(x,z)R_(z,y)dy 

+ f_-: K+(x,z)R_(z,y)dy 

+ f:
y 

K+lx,z)R+(z,y)dy = O. 

and we obtain as the coefficient of e - jbi y, l<.i<p, 

and as the coefficient of e - ib,y, P + 1 <.i<p + q, 
. jb;x 

-laie -a j 

p + q ( ej(kj - bi)x e - j(kj + bi)x ) 
X L Aj(x) - Bj(x) = O. 

j= 1 (kj - bj ) (kj + bj ) 

(25) 

(27) 
In addition, we find in Eq. (25) a term independent of y: 
p+qp+q . 
L L (Aj(x)ej(kj - bi)x + Bj(x)e -llkj + b,)X) 
j= 1 j= 1 

+ Piq 

(a
j

) Piq 

(Aj(X) e(~j(~-:i;X 
1=1 J= 1 ] I 

_ Bj(x) (~~kj: :)~) = O. (28) 

It is clear that any choice of A j (x), Bj (x), and Cj (x) which 
satisfies Eqs. (22)-(28), when inserted into Eqs. (17) and (20), 
yields a solution ofthe Gel'fand-Levitan equation, Eq. (2). 

When x < 0, only Eq. (22) is involved, which may be 
rewritten 

P 

L (8ij + B jj (x))Cj (x) = (29) 
j= 1 

where Bij(x) is the matrix 

Bij(x) = _aje-j(bj+bi)X/(bj +bJ (30) 

We observe now that this matrix must be nonsingular, be
cause any nontrivial solution of the homogeneous equation 
~BijCj = 0 would yield, via Eq. (17), a nontrivial solution of 
the homogeneous form ofEq. (2), and we know that there are 
none. 1.2 Hence we may write 

Djdx) = (I + B (X))jk I. 

Then 

and 

Cj(x) = L Djdx )( - iak)e - jbp:, 

k 

K _ (x, y) = L Djk (x)( - iak)e - ibp: e - jbjy. 
k,j 

If we observe that 

where B ~(x) = dBkj(x)/dx, then we may write 

K_(x,y) = - LDjdx)Bkj(x)e-jbdX-Y). 

Reese T. Prosser 

(31) 

(32) 

(33) 

(34) 

(35) 
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In particular, when x = y, 

K_(x,x) = - L Djk(X)B kj(X) 

= - d [tr 10g(I + B (x))]Idx. (36) 

This formula for K_(x,x) has already been given by Kay.3 
When x > 0, then Eq. (22) is replaced by Eqs. (24)-(28). 

In this case, we first note that Eq. (28) may be rewritten, 
using Eq. (7), as 

Pi
q 

(Aj(x)eik,x + Bj(x)e-ik,x) 
j=p+l 

p+q 
+ L (r(kj)Aj(x)e-ik,x + r( - kj)Bj(x)e +ik,x) = 0. 

j=p+l 
(37) 

In order to satisfy Eq. (37), we note that /r(kj )/ = 1 [cf. Eq. 
(21)] and write 

r(k ) - 2i{;j 
j -e . 

We set, for p + 1 <j<2p + q, 

Aj(x) = Cj(x)e - i{;j, 

'0 Bj(x) = Cj(x)e' i, 

(38) 

(39) 

with the Gj(x),p + 1 <j<2p + q, arbitrary. The remaining 
equations, Eqs. (24), (26), and (27), may now be rewritten as 

2p+q 
L MijGj(x) = Di(x), (40) 
j= 1 

where the (2p + q) X (2p + q) matrix Mij(x) is given by 

(

Bij( -x) Ai,j_p( -X)) 

Mij(x) = _1_ Ai_P.j_p(x). 
a,_p 

° Ai_p,j_p(x) 

(41) 

Here Bij(x), for 1 <i,j<p, is given by Eq. (30), andAij' for 
1 <i,j<p + q, is given by 

a .ei(kj - bj)x - i{;j 
Aij(x) = -' ----

kj - bi kj + bi 

(42) 

The column vector D,.(x) in Eq. (40) is given by 

{
O, 1 <.i<p, 

D.(X)=b 
, -iai_pe-',-r, p+1<i<2p+q. 

(43) 

Here again we argue that the matrix Mij(x) must be inverti
ble, since a nontrivial solution of Eq, (40) would lead to a 
nontrivial solution ofEq. (2). If we set 

N;dx) = (M(X)-l)jk' (44) 

then Eq. (40) leads to 
2p+ q 

Cj(x) = L N;k (X)Dk (x). 
k=l 

From Eq. (4S) we obtain 
p+q 

K+(x,y) = L N;+P,k+P( - iak) 
},k= I 

X e - ib",,(/kjY - iOj _ e - ikjY + iOj ). 

Ifwe observe that, for 1 <j,k<p + q, 
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(4S) 

(46) 

Mk+p,j+p(y) =A kj(y) 
= iak (e'"(kj - bk)y- iOj _ e - i(kj + b.)y+ i{;j),(47) 

where M kj(X) = dMkj(x)/dx, then we may write Eq. (46) as 
p+q 

K+(x,y) = - L N;+P,k+P(x)Mk+p,J+p(y)e-ibk(X-Y). 
j,k= 1 

(48) 

Whenr _(k) = 0, sor(k) = r +(k ) is analytic in the upper half
plane, then p = 0, and Eq. (48) reduces to 

and when x = y, 
q 

K + (x,x) = - L A jk l(x)A jdx) 
j,k= I 

= - d (tr log A (x))/ dx. (SO) 

This formula for K+(x,x) has already been given in Ref. 6. 
From Eq. (4S) we also obtain, for x > 0, 

p p+q 
K_(x,y)= L L N;,k+p(x)(-iak)e-ib",,-ibjY. (Sl) 

j=lk=1 
Finally, we note that the desired solutionK (x,y) ofEq. (2) is 
given by 

K (x, y) = {K_(X,y) if x + y<O, 
K+(x,y) if x + y>O. 

Note that 

(S2) 

K(x,x) = {K_(X,x) ifx<O, 
K+(x,x) ifx>O, (S3) 

so that Eq. (Sl) plays no role in recovering V(x) [cf. Eq. (3)]. 

3. NON RATIONAL REFLECTION COEFFICIENTS 

We now turn to the case where the reflection coefficient 
r(k ) is not rational in k, and seek to approximate it by another 
reflection coefficient ro(k) which is rational in k, in such a 
way thatthe solution Ko(x, y) ofEq. (2) corresponding to r o(k ) 
approximates the solution K (x, y) corresponding to r(k ). 

To this end, we first replace Eq. (2) by a more general 
equation for the kernel K (x, y,w) (cf. Ref. 6): 

K (x, y,w) + R (x, y) + f: "" K (x,z,w)R (z,y)dz = 0. (S4) 

Here w is a real parameter, and x, y<w. Note that if w = x, 
thenK (x, y,w) = K (x, y). This more general equation may be 
expressed in operator form, with w as a parameter, as 

K (w) + R (w) + K (w)R (w) = 0. (55) 

Here K (w) and R (w) are integral operators with kernels 
K (x, y,w) and R (x, y,w), where 

_ {R (x, y) if x<w and y<w, 
R (x, y,w) - 0 h' ot erwlse. 

(56) 

Note that because ofEq. (4), R is a symmetric operator, and 
hence so are R (w) and K (w). By taking adjoints, we get also 

K(w) + R (w) + R (w)K(w) = 0, 

and in either case we have 

(I + K (w))(I + R (w)) = 1. 

Reese T. Prosser 

(57) 

(58) 
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Now suppose rj (k ), i = 0, I, are two admissible reflec
tion coefficients, Rj(x,y) the corresponding integral kernels 
obtained from Eq. (1), and Rj(x,y,w) and Kj(x,y,w) the cor
responding integral kernels ofEq. (54). Then from Eqs. (55) 
and (57) we obtain 

K)(w) - Ko(w) + R)(w) - Ro(w) + K)(w)(R)(w) - Ro(w)) 

+ (R)(w) - Ro(w))Ko(w) + K)(w)(R)(w) 

- Ro(w))Ko(w) = O. (59) 

Equation (59) gives us the difference K l(W) - Ko(w) in terms 
of the difference R)(w) - Ro(w). 

Now if A (x, y) is an arbitrary integral kernel, then we 
may define the following norms: 

IIA 11,.0 = suplA (x,y)l, (60) 
x,y 

IIA IIH = max {s~p f IA (x,y)ldy, s~p f IA (x,Y)ldX}. 

(61) 

Then IIA 1100 gives a uniform bound for IA (x,y)l, while IIA IIH 
gives the so-called Holmgren norm of A , which majorizes the 
operator norm of A (cf. Ref. 7). NotethatifB (x,y) is another 
such integral kernel, then we always have 

IIABIIH<IIA IIHIIBIIH' 

IIAB II", <IIA 1100 liB IIH' 

IIAB 1100 <IIA IIHIIB II",· 
Now from Eq. (55) we get, for i = 0,1, 

(62) 

(63) 

In particular, Eq. (69) gives a uniform bound for the differ
ence IK1(x, y,w) - Ko(x,y,w)1 in terms ofasimilarbound for 
the difference IR)(x,y,w) - Ro(x,y,w)l. 

To calculate the right-hand side of Eq. (69), we need 
only note that 

IIRI(w)lloo = sup IR)(x,y)l<supIRj(x,y)1 
x,y<w x,y 

= supl'\(z)I = Ilrj II '" < Ilrj III' (70) 
z 

where T(z) is the Fourier transform of r(k) [cf. Eq. (1)], while 

IIRj(wllIH 

Since these estimates are uniform in w, we have 

Theorem 1: If rj(k), i = 0,1, are reflection coefficients 
such that Ilrjlll<M < 1, and Ilr) - roll) <E, then the corre
sponding solutions Kj(x, y) of Eq. (2) must satisfy 

IKI(x,y) -K2(x,y)l<d(I-M)2 (72) 

uniformly in x and y. 
Now suppose Vj (x) are the potentials obtained from 

K;(x,x) = K;(x,x,x) according to Eq. (3). It is also of interest 
to obtain uniform estimates for the difference 
I V) (x) - Vo(x)/. In view ofEq. (3), this requires uniform esti
mates for the difference 

IdKI(x,x,x)ldx - dKo(x,x,x)ldxl· 

Kj(w) = - Rj(w) - Kj(w)Rj(w), (64) First we note that 

and so from Eqs. (62) and (64), 

IIKj(w)IIH<IIR j(w)IIH + IIR j(w)IIHIIKj(w)IIH' 

Hence, if IIRj(w)IIH < 1, 

dK(x,x,x)ldx 

= axK(x,y,w) + ayK(x,y,w) + awK(x,y,w)lx=y~w' 
(73) 

where ax denotes a lax, etc. Now from Eq. (64) we get 

11K II" IIR ,(w)IIH 
,(wi H"> I -IIR,(w)IIH (65) - axK = + axR + axKR (74) 

Similarly, from Eqs. (63) and (64), so that 

IIKj(w)lI", <IIRj(w)lIoo + IIRj(w)lIoo IIK j(w)IIH' 

Hence, if IIRj(w)IIH < 1, 

(66) lIaxK IIH<lIax R IIH + lIaxKIIHIIR IIH (75) 

11K II " IIR , (w)1I 00 

j(w) 00 "> 1 -IIR,(w)IIH 

Finally, from Eq. (59) we get 

IIK)(w) - Ko(w)IIH 

<IIR 1(w) -Ro(w)IIH(1 + IIK](w)IIH + IIKo(w)IIH 

+ IIK)(w)IIH IIKo(w)IIH), (67) 

so 

Similarly, we find 

11K (w) K (w)11 < IIR)(w) - Ro(wlil oo 
) - 0 00 (1 -IIR)(w)IIH)(1 -IIRo(w)IIH) 

(69) 

1927 J. Math. Phys., Vol. 25, No.6, June 1984 

and, if IIR IIH < 1, 

lIaxK IIH <lIaxR IIHI(I-IIR IIH)' (76) 

Similarly, 

lIayK IIH< lI ayR IIH/(I-IIR IIH)' (77) 

Finally, from Eq. (54), 

- awK (x, y,w) = + 0 + R (x,w)K (w, y,w) 

+ f~ 00 awK (x,z,w)R (z,y)dz, (78) 

so 

lIaw KIIH<IIRoKIiH + lIawK IIHIIR IIH' 

where (RoK )(x, y) = R (x,w)K (w, y,w). Now 

f IR(x,w)K(w,y,w)ldx<IIR IIHIIKlloo 

< IIR IIHIIR 1100 
l-IIR IIH ' 

Reese T. Prosser 
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and Hence, 

fiR (x,w)K(w,y,w)ldy<IIR II"" IIKIIH 

< IIR II"" IIR IIH. 
l-IIRIIH 

lIawK IIH<IIR II"" IIR IIHf(1 -IIR IIHf (82) 

(81) If Ki(x,y,w), i = 0,1, are solutions ofEq. (54) correspond 

ing to reflection coefficients ri(k), then from Eq. (59), 

- ax(KI - Ko) = + ax(R I - Ro) + axK1(R I - Ro) + ax(R I - Ro)Ko + axK1(R I - Ro)Ko. (83) 
Hence, 

lIax(KI-Koliloo <lIax(RI-Rolll"" + lIaxKIIIHIlRI-Rolioo + lIax(R1-Ro)lI", IIKoliH + lIaxKdIHIlRI-RoII", IlKoIiH 
<lIax(R I -Ro)lI", (1 + IIKoIIH) + lIaxKdlHIlRI -Rolloo (1 + IIKoIIH)' (84) 

Since by Eq. (65), 

1 + IIKoliH < 1/(1 -IIRoIIH), 

and by Eq. (76), 

lIaxKdIH<lIaxR I IIHf(1 -IIRdIH)' 
we get 

lIa (K _ K III < IIRI - Roll", lIaxRIIiH + lIax(RI - Ro)II"" 
x I 0 00 (1 -IIRoIIH}{1 -IIRIIIH) 1 -IIRoIiH 

IIRI - Roll"" lIaxRdlH + lIax(R I - Ro)lI", < . 
(1 -IIRoIIH}{I-IIRdIH) 

In the same way we get 

lIay(KI- K o)lIoo < IIRI-RolI", lIayRoliH + lIay(R I -Ro)lI"" . 
(1 -IIRoIIH}{1 -IIRIIIH) 

For aw(KI - Ko) we use 

- aw(KI - Ko) = + Klo(R I - Ro) + awKI(R I - Ro) + (Rl - Ro)oKo + (R 1 - Ro)awKo 

+ Klo(R l - Ro)Ko + awK1(R l - Ro)Ko + K1(R I - Ro)oKo + KI(R 1 - Ro)awKo. 

Then 

lIaw(K1-KollL", <IIRI -Roll"" (IIKdl"" + lI awK IIiH + IIKolioo + lIawKolIH 

+ IIKI II 00 IIKoliH + lIawK IIIHIIKoliH + IIKdlH IIKoll 00 + IIKIIIHllawKoIIH) 

< IIR _ R II ( lIawKdlH + IIKdloo + lIawKolIH + IIKoll 00 ) 

1 0 00 1 _ IIRoliH (I -IIRIIIH 

R R II ( IIRIII",,(1 + IIR1II H) IIRolloo(1 + IIRoIIH) ) 
<II 1 - 0 "" (1-IIRoIIH}{1 -IIRIIIHf + (1 -IIRdIH}{1 -IIRoIIH)2 

IIR -R II (IIRIII"" (1 + IIRIIIH)+IIRolloo(1 + IIRoIIH)). 
< 1 0 00 (1-IIRdIH)2(1-IIRoIIH)2 

Putting all this together, we obtain finally 

lI(ax + ay + aw}{KI - Ko)lIoo 

<IIR -RII ("axRdIH+llayIRoIiH + IIRdloo(1 + IIRdIH) + IIRolloo(1 + IIRoIIH)) 
I 0 00 (1 -IIR dIH)(1 -IIRoIIH) (1 -IIR IIIH)2(1 -IIRoIIH)2 

+ lIax(R I - Ro)lIoo CI -IIRIIIH~1 -IIRoII HJ 
I 
II VI(x) - Vo(xlll "" Here we have used the fact that axR = ayR, since 

axR (x,y) = ayR (x,y) = r'(x + y). 

This gives us <4€(N+P(I+M)) +4D( 1 ). 
(1 - M)4 (1 _ M)2 

Theorem 2: If the reflection coefficients ri (k ), i = 0,1, 
satisfy: IIrilll,M < 1, IIr;III,N, IIriII I'P, and IIrl - roll I <E, 
IIk(r) - ro)1I <D, then we have 
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Finally, we introduce the norm 

IIrll = max [ IIrlll,lIkrlll,lIrlitl. 
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Then Theorem 2 leads to 
Corollary 3: LetSbe the set of reflection coefficients r(k ) 

satisfying Eqs. (4), (5), and 

Ilrll<M< 1. 

If rES, then r may be approximated in the norm Eq. (93) by a 
rational reflection coefficient ro, so that the potential V(x) 
corresponding to r(k ) is uniformly approximated by the po
tential Vo(x) corresponding to ro(k). 

4. COMMENTS 

We have assumed throughout Sec. 1, where the reflec
tion coefficient r(k ) is rational, that the poles of r(k ) are all 
simple [cf. Eq. (7) ff.] and that the zeroes of Ir(k W - 1 are all 
distinct [cf. Eq. (21) if.]. The case of multiple poles has been 
considered recently by Pechenick and Cohen5

; they arrive at 
formulas for K (x, y) somewhat more complicated than Eq. 
(50). But now it is clear that, in the sense of the norm Eq. (93), 
the rational coefficient r(k ) is a continuous function of the 
position of its poles, so that a slight displacement of any pole 
results in a slight change in r(k ) in the sense of Eq. (93). Simi
larly for the zeros of 1 r(k ) 12 - 1; a slight change in the coeffi
cients in r(k ) results again in a slight change in r(k ), and hence 
in a slight change in the corresponding V(x). Thus our as
sumptions cause no essential loss of generality. This argu
ment has already been used by Kay.4 

In most practical applications of this theory, the reflec
tion coefficient is constructed from a finite set of measure
ments. Of the many construction procedures available, the 
construction of a rational reflection coefficient via Pade ap
proximates is often a particularly attractive choice. Our re
sults may then be used to give quantitative error bounds on 
the outcome. 

It is unfortunate that our results in Sec. 2 are restricted 
by the condition IIrlil < 1. This seems to be a consequence of 
our methods, and further analysis will probably show that it 
can be replaced by 11"111 < 00. In the meantime, we note that 
in fact it suffices that [cf. Eq. (71)] 
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f
2W 

_ '" I?(k )Idk < 1. (94) 

Hence our results hold at least for all w, - 00 < W < wO' for 
which Eq. (94) holds. 

Note added in proof The referee points out that the 
method used here to solve the Gel'fand-Levitan equation for 
rational coefficients is not new. It was first used by Barg
mann in his study of the inverse problem for the half-line 
(unpublished), and was then extended to the tensor-force 
case by Fulton and Newton8 in the earliest published version 
of Bargmann's procedure. It has also been used extensively 
by Kay and Moses.2 

At the recent conference on inverse scattering problems 
held in Tulsa, Oklahoma, May, 1983, Sabatier presented a 
paper9 which solves the Gel'fand-Levitan equation for ra
tional reflection coefficients by a quite different procedure, 
using a sequence of Backlund transformations to reduce the 
reflection coefficient, one pole at a time, to zero. His proce
dure offers certain computational advantages over ours. 

'I. M. Gel'fand and B. M. Levitan, "On The Determination of a Differential 
Equation by its Spectral Function," Amer. Math. Soc. Transl. Ser. 21, 253 
(1955). 

21. Kay and H.E. Moses, Inverse Scattering Papers: 1955-1963 (Math. Sci. 
Press, Brookline, MA, 1982). 

3p. Deift and E. Trubowitz, "Inverse Scattering on the Line," Commun. 
Pure Appl. Math. 32, 121 (1979). 

41. Kay, "The Inverse Scattering Problem When the Reflection Coefficient 
is a Rational Function," Commun. Pure Appl. Math. 13.371 (1960). 
~K. R. Pechenick and J. Cohen, "Inverse scattering-exact solution of the 
Gel'fand-Levitan equation," J. Math. Phys. 22,1513 (1981). 

6H. E. Moses and R. T. Prosser, "Eigenvalues and eigenfunctions associated 
with the Gel'fand-Levitan equation," J. Math. Phys. 25, 108 (1984). 

1N. Dunford and J. T. Schwartz, Linear Operators I (Interscience, New 
York, 1957). p. 518. 

"T. Fulton and R. G. Newton, Nuovo Cimento 3,677 (1956). 
"P. Sabatier. in Proceedings of the Conference on Inverse Scattering: Theory 
and Application, University of Tulsa, May, 1983 (SIAM, Philede1phia. 
1983). 
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The general "optical theory" of congruences of totally null strings is studied within complexified 
general relativity, employing the spinorial formalism, with the emphasis on the role of the 
Sommers vector. The results obtained yield a deeper geometric interpretation of the 
"complexified anatomy" of the fundamental Goldberg-Sachs theorem. 

PACS numbers: 04.20.Cv 

1. INTRODUCTION 

The concept of a congruence of null strings is instru
mental in the theory of df' df' spaces ("higher heavens"), i.e., 
the complexified solutions to the Einstein empty-space equa
tions, with the conformal curvature degenerated on at least 
one side. A theorem given in Ref. 1 states that the existence 
of such a congruence is a necessary and sufficient condi
tion-modulo the empty space Einstein equations-for the 
conformal curvature to be degenerate at least on one side. 
This theorem was a starting point of an integration process 
of Robinson and one of usz (for a complete computation see 
Ref. 3; see also Ref. 4, and for a spinorial transcription of the 
results see Refs. 5 and 6), which has led to the result that a 
complexified solution to the Einstein equations with the con
formal curvature degenerated at least on one side is entirely 
determined by one scalar key function, fulfilling a differen
tial constraint of the second order, with a quadratic nonlin
earity only. The program of our group aims-on the basis of 
this result-to derive all algebraically degenerate real space
times of signature (+ + + -), as real cross sections in the 
sense of Ref. 7, ofthe analytic solutions within the formalism 
of df' df' spaces. As a side result, demonstrating the versatil
ity of the formalism of df' df' spaces in applications, it has 
been recently shown8 that, employing it, one can obtain a 
synthetized form of all algebraically degenerated metrics of 
df'-spaces, derived using the N-P formalism in Ref. 9. (Com
pare also some preliminary results in that line in Ref. 10-
important from the point of view ofthe program and results 
of our group; for a resume offurther results see Refs. 11 and 
12). It should be mentioned also that already in Ref. 13, 
published about the same time as Refs. 1 and 10, E. Flaherty, 
in the final section of his book, appreciated the important 
role of "twistor surfaces," called null strings in our terminol
ogy. 

This paper is thought of as a synthetic outline of the 
geometry of congruences of null strings and their intersec
tions, postulated a priori, with the emphasis on the role 
played by the left (and right) Sommers vectors. 14 The theory 
is developed along similar lines as the standard theory of the 

alOn leave of absence from University of Warsaw, Poland. 
blOn leave of absence from Technical University of Kielce, Poland. 

optical congruences of null vector lines. A special emphasis 
is given to the transformational properties of the results un
der the conformal gauge. 

This paper relies on the use of spinorial techniques, am
ply described in Refs. 13 and 15; for the convenience of the 
reader, Sec. 2 outlines the basic formulas of this formalism. 
A paper by I. Robinson 16 is essential in understanding the 
theory of null strings from the more familiar point of view of 
tensorial techniques. 

2. THE SPINORIAL FORMALISM 

We classify the Riemannian structures in four dimen
sions, V = (M, g) [M is a differential manifold of dim M = 4, 
gEA I ® s A I is nonsingular metric] according to the scheme: 

CR: M complex analytic; signature meaningless 

{

HR: signature (+ + + -) 
RR: M real UR: signature (+ + - -) 

ER: signature (+ + + +), 
(2.1) 

referring to these structures as to the "complex relativity" 
(CR) and "real relativities" (RR), subdivised into "hyperbo
lic relativity" (HR), "ultrahyperbolic relativity" (UR), and 
"elliptic (or Euclidean) relativity" (ER). 

In all cases, with A = 1,2, B = i, i, the metric is postu
lated in the form of 

I ,..AB g= -~AB ®.'; , (2.2) 
s 

where the I-forms gAB constitute a base of A I. Spinorial in
dices are to be manipulated according to 'PI = 'Pz, 
'Pz = - 'P I, and similarly for the dotted indices. The forms 
gAB are in CR complex analytic, in RR in general complex 
valued-smooth over M, and specifically, endowed with the 
properties that (bar denotes complex conjugation) 

HR:gAB = ~A, 

UR:gAB = gAB, 

ER:gAB = - gAB' 

(2.3) 

We understand then the indices of gAB as the objects of 
the tensorial transformations from the groups 

(2.4) 
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CR:SL(2,q X SL(2,q } 

HR:SL(2,q X SL(2,q 

UR:SL(2,R ) X SL(2,R ) 

ER:SU(2) X SU(2) 

dot distinguishes 

an independent copy 

of the same group. 

These transformations leave (2.2) invariant, compatibly 
with (2.3); of course, the matrices III A 'A II and III A 'A II depend 
(smoothly) on a point in M. 

Then, the Cartran covariant differential D-founded on 
the symmetric connection I-forms, 

r AR = F(AB)' r AB = F(AB) (2.5) 

is defined for any A P-valued tensor with respect to the corre
sponding group from the list (2.4) by 

DT A .. B. = dr" + rAs/\ T S ' + rBs/\ T" s . + "', (2.6) 

(d meaning the external differential). This definition leads to 
the (generalized) Ricci formulas 

DDTA .. B ... = R A S/\ T S'" + R BS/\ T" s .. + "', (2.7) 

where the curvature 2-forms are tensors defined by 

RAB = drAB +FAs/\rSB' 

(2.8) 
RAB = drAB +rAs/\r s

B . 

Using these notions, one then states the first and the 
second (Cartan) structure equations in the form of 

SI : Dg-4B = torsion = 0, 

S ·R A_I C A SCD 
II' B - - 2 BCD 

+ !!...SA +.!. C A . SCD (2.9) 
24 R 2 BCD ' 

·1· . . 
SiI :R A B = - 2 C A BCDS CD 

+ !!...SA + .!.SCDC A .• 
24 D 2 CDD 

Of course, assuming torsion equal to zero, we work with the 
Levi-Civita connections. The 2-forms S AB = S (AD) and 
SAB = S(AB) appearing in (2.9) are defined by 

g-4B AgCD = ~CSBD + ~DSAC, (2.10) 

where II~B II = II ~! b II = II~B II are the Levi-Civita objects 
in 2 dimensions. 

The A 0 valued coefficients in (2.9) have the interpreta
tion: (i)R = scalar curvature, (ii) C ADCD = C(ABCD) and 
C ABCD = C(ABCD) are the self-dual and anti-self-dual parts of 
the conformal curvature (Weyl tensor), and (iii) 
C ABCD = C(AB)(CD) is the spinorial image of the Ricci tensor 
with its trace extracted. All curvature objects are tensors 
with respect to the corresponding group from the list (2.1) 
and, more specifically, are endowed with the properties: 

CR:CABCD ' C ABCD ' CABCD,R-are all complex, unrelated, 

UR: -"- -"- -"- -are all real, unrelated, 

HR: C ABCD = C ABCD ' C ABCD = CCDAB' R = R, 
(2.11) 

ER· CABCD C _._ = ABCD' 

C ABCD C = ABCD' 

C ABCD C R- R = ABCD' =. 
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One introduces then the spinorial covariant gradient 
V AB' acting on A 0 spinorial tensors: 

(2.12) 

We can now comment that the algebraic form of the right 
members of the Su and SIi equations, which have entered 
the same objects Rand C ABCD ' assures automatically the 
integrability conditions of the SI equations, i.e., DDgAB = O. 
Then, the integrability conditions of the Su and SIi equa
tions, the Bianchi identities (DRAB = 0 = DRAB)' have the 
effective scalar form of 

(i)VRsCARBs + ~VABR = 0, 

(ii)VS
A COCDS + V(D SCCD)A.S = 0, 

(iii)V A SCBCDS + VS(BCISA ICD) = O. 

(2.13) 

It is also useful to note that the effective scalar form of 
the Ricci identities for I-index spinors amounts to the fol
lowing: 

(2.14) 

1 n S .nA .TIS( CA R ~A) 
- V(C VD)sY" = Y" - SCD + -€S(CO D) 
2 12 

and 

1 n Sn ITIA C A .T,S 
-v(C vD)S'r = CDSY", 
2 

(2.15) 

1 nS n ITI A ( CAR ~A) S 
- V (CvISID)Y" = - CD S + -€S(Co D) IJI , 
2 12 

from which the corresponding rules for the tensorial objects 
ofthe more general type, IJIA ... B"·eA 0, easily follow. 

Within the spinorial formalism, it is convenient to em
ploy as the bases of A P, correspondingly, the objects 

A 0:1, A l:gAB, A 2: 

SAB: = !€RSgAR A gBs, SAB: = !€RSgRA AgSB, 

A 3:~B: = ~s ASSB=jS'\ A~B, (2.16) 

A 4:V: = - f,SAB ASAB=t,SAB ASAB=~B AgAB :;60. 

The objects listed above are all tensors with respect to 
the corresponding groups from the list (2.4). Any in general 
complex-valued lUeA = ED; = oA P can be now written as 
spanned by these bases: 

W = lUo·l - !lUABg-4B + !WABS
AR 

+ !lUABS
AB 

- !a;AB~B + lU4'V, 

Wo, lU AB' WAD' W AB' a; AB' lU4eA o. (2.17) 

It is then convenient to introduce a somewhat uncon
ventional definition of duality-the Hodge star-defined as 
the mapping A P _A 4 - P via the action of * on the bases: 

*rB = gAB, *v = 1, 

with *w given thus by 

J. F. Plebai'lski and K. R6zga 
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(2.19) 
hence .. = Ion A. 

With the star so defined, we can understand as the inner 
product (sometimes called step product)-1:A XA-A, the 
operation 

a, PEA: a..J/3: = .(a A.P). (2.20) 

One then easily shows that this -.1, in the cotangent lan
guage (within a metrical structure), has the standard proper
ties. If, in a local coordinate patch (XUj, the metric is 
g = gf'V dxl' ® s dxV, then dxf' -.1 dxv = g'"'v, af' dxf' 
.Jf3v dxv 

= af'p". 

Moreover, within our conventions the following also 
holds: 

if a,/3,rEA I then a..J(f3 A r) = (a-V3)r - (a Jr)/J. 
(2.21) 

We close this section by acknowledging the useful iden
tities 

and 

!SAB ASCD = - ,sA(C,sBD1 .V, 

is AiJ A Sci> = {jA(C{jiJ i> I'V, 

SAB ASci> = 0, 

~iJ ASci> = _rC~i> _ri>~C, 

SAB AgCi> = _ ~cgni> _ ~Cri>. 

(2.22) 

(2.23) 

The collection of formulas given in this section is rea
sonably complete; knowing them plus some trivial proper
ties of the operations on A like dd = 0, the Liebnitz proper
ties of d and D, and the like, one has, in principle, all 
necessary tools needed in order to execute any relativistic 
computation in language explicitly covariant with respect to 
the groups listed in (2.4). In the effective applications, within 
the work of our group, and the work initiated and continued 
by R. P. Kerr and co-workers in the last decade, it turned out 
that the formalism outlined above is somewhat more advan
tageous than the N-P formalism. I? The last has the obvious 
merit of working with the A 0 objects only; our treatment, on 
the other hand, maintains all advantages of spinorial tricks, 
and at the same time conserves a sort of "phonetic" notation; 
by working directly in the language of external forms, a more 
straightforward access to the results of modern differential 
geometry, which employs this language, is facilitated. It is to 
be stressed, however, that our formalism, summarized con
cisely by the 23 formulas of this section, is isomorphic to the 
NP treatment; it is rather a matter of taste and pragmatic 
choice for any practicioner of relativity which version of the 
spinorial formalism gets more effectively at the practical re
sults. (For a comparison of various conventions used in prac
tice see Ref. 18). 

3. CONGRUENCES OF NULL STRINGS-BASIC 
CONCEPTS 

We say that a Riemannian structure V = (M,g) admits a 
left congruence of null strings, in a connected (and singly 
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connected) domain.fiJ CM, if there exist over.fiJ smooth (in 
CR analytic) 2- and I-forms, ~ #0 and e, such that 

(i)..E A~ = 0, (ii).~ =~, 

(iii)d.I = e A~. (3.1 ) 

The algebraic conditions (i) and (ii) assure that the vec
tor space xCA I defined by 

x3x~x~=0, 

has dim(x) = 2 and is totally null in the sense of 

x, yEx-x-.Jy = 0; 

in particular x $ = 0. 

(3.2) 

(3.3) 

Proof Indeed, according to (3.1) (i), ~ is simple, and 
thus there are aAEA I such that 

(3.4) 

Then, a straightforward calculation employing (2.21) im
plies that 

crt -.J~ = 0. (3.5) 

On the other hand, from (3.2) one infers that (oj ,cr j span X. 
Thus, dim x = 2 and the condition (3.3) holds. • 

Then, taking into account (3.4), it follows that (3.1) (iii) 
has the form of the thesis of the Frobenius theorem: 
d (oj A cr) = e A (oj A cr). Hence there exist, over 
D,(rj',fAiJ)EA ° such that 

aA = JAiJ dqiJ, Ll: = det(IAiJ)#O, 

and consequently 

~ = Ll dqi Adqi#O. 

This, used in (3.1) (iii), implies that 

e = d lrui + eA drj'; eA EA o. 

Obviously drj'EX, and therefore 

drj' .JdqB = 0. 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

The equations rj' = const (over .fiJ), define then some 
two-surfaces (a two-dimensional foliation), with the tangent 
spaces to these surfaces totally null, in the sense of orthogon
ality of any 2-vectors contained in the tangent space. Notice 
that the conditions (3.1) determine the ~ 's modulo the 
transformations 

(3.10) 

The 2-surfaces from the congruence ~ are automatical-
ly geodesic. 

Proof Indeed, in a local chart (XUj, (3.9) amounts to 

rj';f'qiJ;f' = 0. (3.11) 

Define then 

(3.12) 

From (3.11) it follows that :xAiJC =xA [iJCI; on the other 
hand, the definition (3,12) implies xAiJC = XIAiJIC. From these 
two symmetries one can easily prove that xAiJC = 0. This, 
however, means that, for Band C fixed, the covariant deriva
tive of the vector field qC;V along qiJ;f' is tangent to ~ = const 
(A = i,i) surfaces. These surfaces are geodesic since ~;f' for 
A = i ,i span their tangent spaces. • 
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The property (3.9), accompanied by dqi I\dqi=l=O, was 
used in Ref. 1 as the starting point in defining a congruence 
of "totally null strings," which have, along leaves of the foli
ation, an induced "metric" of rank zero. This makes them a 
different concept from the "null strings" studied by A. 
Schild (within HR),19 which are also geodesic surfaces, and 
null, in the senseI ...lI = 0, but which have, along the leaves 
of the congruence, an induced "metric" of rank one. 

In comprehending the structure of our definition (3.1) 
of a left congruence of (totally) null strings, it is useful to 
recall that any 2-form I # ° endowed, within a metrical 
structure, with the properties 

(i).I I\I = 0, (ii)I...Jd *I = 0, (3.13) 

determines a congruence of 2-surfaces. 
Proof A simple way of seeing this, consists of represent

ing I in a local chart f XU) in the form of 

I = 1 Y dxPI\ dxv
• (3.14) Z-p,v , 

then, from (3.13) (i), the object I pv, well defined within a 
metrical structure, has the form of a simple bivector 

(3.15) 

The condition that the vector fields al' and b P are surface 
forming, i.e., their commutator is spanned by themselves, is 
equivalent to 

(3.16) 

where, if convenient, ",0" can be replaced by ";0 ". The in
variant form of(3.16) amounts precisely to (3.13) (ii). • 

With (3.1) determining a congruence of2-surfaces, I 
must, of course, fulfill condition (3.13) (ii). Indeed, we have 
that 

I J d *I = I J dI = I ...J(O I\I) = *(II\ *(0 I\I)) 

= *(*(01\ *I) 1\ *I) = (0 J.I) J.I 

= [0 J(o.i 1\a2)] J(o.i 1\a2) = ° (3.17) 

(becauseof2.21 and 3.5). 
Having now completed an outline of the basic implica

tions of our definition (3.1), we should like to observe that a 
transformation 

(3.18) 

maintains all the conditions (3.1) invariant. It follows, that 
we can always, without any lost generality, remembering 
(3.8), selecting K = L1, choose to work with the congruence of 
strings given by IEA 2 so normalized that (after dropping 
primes), 

(i).I 1\ I = 0, (ii)*I = I, (iii)dI = 0. (3.19) 

We will consider (3. 19) as the definition ofacongruence 
ofleft (totally) null strings via a 2-form given in the canonical 
normalization. Notice that the conditions (3.19) are still in
variant with respect to a transformation (3.18), provided it is 
constrained by 

dK~=O. (3.20) 

With the congruence given via I in canonical normali
zation, one can now associate the deviation I-form. Suppose 
that in a local chart! xP-} (over fiJ), the congruence is given in 
the form of 
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a( 1 2 3 4) 
P _ P(r4 H). X ,x ,x ,x ...LO 

X - X ,q, 1 --2 i i -r- , 
a(r ,T,q ,q) 

(3.21) 

with r1, r parametrizing the leaves ql = const. 
The geodesic nature of our congruence implies the exis

tence of C ~B = C ~B I such that 

D
2
X l' -c R ax!' D ~I'V_CS ~I'" 

--- - AB----->--"" - AS"" , 
ar4a~ a~ ar4 

(3.22) 

where .I pv represents contravariant components of I in ca
nonical normalization. The last relation amounts to .I pV;p 

axP / ar4 = CA ssI pv, which is then readily seen to be equiva
lent to 

I a{3
6
I r6 = I af3e r, (3.23) 

where e r = ~CA Ss~Baxr /a~ can now be interpreted as a 
vector field. Consistency with (3.16) necessitates then 

I [af3 e r1 = 0. (3.24) 

The cotangent object 

e: = e a dxa = - ~e AHgtH (3.25) 

is now the deviation I-form of the congruence; in terms of it, 
(3.24) is equivalent to 

e ...lI = 0. (3.26) 

With the congruence defined by (3.19), under the stilI-per
mitted rescaling I = KI " K constrained by( 3 .20), e trans
forms according to e = Ke '. Therefore, e # 0, or e = ° 
forms an invariant characteristic of the congruence. We 
shall call the congruence with e #0 deviating, and with 
e = O,plane, 

We conclude this section by stating that left congru
ences of null strings can exist only in the metrical structures 
ofeR and UR; as we shall see they are particularly interest
ing from the point of view ofCR interpreted as complexified 
HR. 

Parallel to left congruences of null strings, we can also 
consider right congruences of null strings; a general right 
congruence is defined by O#IEA 2 and OEA 1 such that 

(i) I I\I = 0, (ii) *I = - I, (iii) dI = OI\I, (3.27) 

or, with I in canonical normalization, 

(i) I I\I = 0, (ii) *I = - I, (iii) dI = 0. (3.28) 

All arguments and properties established for left congru
ences apply mutatis mutandis, for the right congruences; the 
right deviation shall be denoted bye. 

4. CONGRUENCES OF NULL STRINGS IN SPINORIAL 
FORMALISM 

The objective of this text-to explore systematically the 
structures V = (M,g) which admit a congruence of null 
strings, and to develop the theory of the "optical properties" 
of these congruences along similar lines as is done (within 
HR) for the geodesic null congruences of vector lines--can 
be conveniently approached by employing the spinorial for
malism. The existence of the left congruence of null strings, 
as determined by I given in the canonical normalization, 
can be readily seen to be equivalent to the existence of a 
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D (!,O) spin or such that 

(i) kA #0, (ii)Vss(kskAJ = 0, (4.1) 

i.e., to the left "Maxwell equations" for a null D (1,0) field. 
Indeed, a simple and self-dual ~ must be of the form 

~ = kAkBSAB. (4.2) 

Having fulfilled with this (3.19) (i) and (ii), one then easily 
finds that (3.19) (iii) amounts to 

d~= -*gAsVSs(kskA)=O. (4.3) 

Now, in HR, the optical properties of a geodesic congruence 
of nulI vectors (kll:k Jlkll = O,k vk Jl;v = J..k Il) are character
ized by the algebraic and differential properties of the matrix 
IIkJl;v II· It is thus to be expected that the optical properties of 
~ shall be characterized by the algebraic and differential 
properties of the covariant derivatives, ~1'v;J..' equivalently 
V AB kck D' Therefore, the first thing to do is to establish the 
algebraic structure of these derivatives, compatibly with 
(4.1). It is easily seen that (4.1) is equivalent to the existence of 
aD (!,!) vectorial object, the Sommers vector l4 

Z: = - !ZABgAB = Zil dxll
, 

such that 

(4.4) 

V Askc = 3ZAB k c + 2CACk SZSB' (4.5) 

If the structure V = (M,g) admits a left congruence of 
null strings~, then all conformally equivalent structures 
V' = (M,g'), g' = $ -2g, rp #0 also admit the same con
gruence. This is a consequence of the fact that the Hodge star 
applied with respect to 2-forms in the sense of V ("*") and in 
the sense V'("*' ")dooverlap:A 23w--..*w = .'w. Therefore 
(3.1), and in particular (3.19), are conformally invariant for
mulas. (Our definition of * is so arranged that in a local chart 
[xaJ, 

.( ~ fl'vdxl' Adxv) = + fl'vdxl' I\dxv, 

r i ~f3rbr Jl'v: = r--:: gl'agv{3 Jyb' 
2..; -g 

(4.6) 

so that .'sin the sense of gil V andg'/lv = rp - 2gl'v do coincide 
for every i;,v = frl'V ).) 

Rewriting now the basic (4.5) (by contracting it with 
- ~B) as a I-form equation, 

Dk A = 3Zk A + k sZsBgAB, (4.7) 

we shall now examine its covariance with respect to confor
mal transformations of the metric. 

We acknowledge first that, by taking as the spinorial 
tetrad of g' = rp - 2g simply 

g'AB = rp -lgAS, (4.8) 

it follows from D 'g'AB = 0 that 

r~B =rAB -!dlnrp...JSAB , r'AB =rAB -~dlnrp...JSAB· 
(4.9) 

The corresponding transformation law of the curvature co
efficients is then 

1934 

C ~BCD = rp 2CABCD , C ~BCD = rp 2CABCD ' 

CAB CD = rp 2 [CAB CD - !$ -IVIA(C VB)D) $ ], (4.10) 

R' = rp2[R + 6<POrp -I], 
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where 0 is defined by 

D:A o-+A °;0: = - ~VABVAB' (4.11) 

[In these formulas V AR refers to the g-metric; the first line of 
(4.10) is the spinorial counterpart of "C' a PyS = C a {3yb" of the 
classical Riemannian geometry.] 

Now, if we understand (3.19) as conformally invariant 
formulas, it is natural to require ~ = ~ '; i.e., 

kAkBSAB=k~k~S'AB (4.12) 

which, with SAB = ifJ -2SAB suggests as a natural transfor
mation law under conformal transformations 

(4.13) 

One then easily finds that, assigning to Z the transformation 
law 

C(f:Z ': = Z + !d In<P~Z ~B = rp (ZAS + !V Aslnrp), 
(4.14) 

(4.7) can be equivalently stated as 

D'k IA = 3Z'k ,A + k ,sZ ;;Bg1AB, (4.15) 

withD' in the sense of r ~B' We can therefore interpret (4.13) 
and (4.14) as the transformation law of (kA ,ZAB) under the 
conformal gauge C(f . 

It should be remarked that Sommers 14 assigns a differ
ent transformation law for kA and ZAB' 

There is an important relation between the Sommers 
vector Z, with respect to a left null string ~ in canonical 
normalization, and the deviation form of the string e. With 
SAB = lSAB dx/l1\ dxv and therefore ~I'v = k k SABjlv 2 J.LV , , A B 

used in (3.23), and employing (4.5), one easily finds out that 

eAB = 4kA k sZSB ' (4.16) 

which is equivalent to 

8= -2Z~. (4.17) 

From the last formula and (4.14) it easily follows that e 
transforms under the conformal gauge according to 

C(f:e' = <p2(e - dln<P ~), (4.18) 

compatibly with e ~ = o-e' ...J'~' = O. 
With respect to a fixed metrical structure (M ,g), the ob

jects (k A ,Z AB) related by (4.7) contain essentially all "opti
cal" information concerning the corresponding congruence 
of left null strings given in canonical normalization, deter
mining the covariant derivatives~atl;y. One can thus attempt 
to subclassify our congruences according to the algebraic 
properties of Z AS' 

The only invariant which one can construct from ZAB is 

..1=i=Z...JZ= -!ZABZAB=ZjlZjl. (4.19) 

Therefore, it makes sense to distinguish the general and iso
tropic cases 

G:..1 7"=0 1:..1 = O. (4.20) 

Notice that in the general case we have 

G:k SZ SB 7"=O (4.21) 

and so e 7"=0. 
In the isotropic case ZAS has the algebriac form of 

I:ZAB = a Af3B; (4.22) 
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therefore, there is a subcase, where 

10:ZAB = kA/3B~ksZSB = 0++8 = 0. (4.23) 

This subclassification into the cases G, I, 10 makes sense 
with respect to a fixed Riemannian structure, i.e., with the 
C(f -gauge frozen. On the other hand, if the conformal factor 
is available, 

Ll ' = Z' J' Z' = (/> 2(Z' JZ ') 

= -!(/> 2(ZAB + ! V AB In (/> )(ZAB + ! VAB In (/» 

(4.24) 

is strongly dependent on the choice for that factor. In parti
cular, it is always possible, when convenient, to select a point 
along the orbit of the C(f -group so that 

C(f 0:..:::1 = 0, (4.25) 

making Z isotropic. 
The conformally invariant geometric properties of ~ 

are clearly characterized by the algebraic and differential 
properties of the C(f -invariant 2-form 

r.'· - dZ - ·1£1 sAB + in- -SAB "". - - 'r AB TAB' 

Defining the quantities 

1" AB' 1 AB r = ".,ABP ,r = ¥JABP , 

we have then, under C(f -gauge, 

C(f :r' = (/> 4r , ;-' = (/> 4;-; 

(4.26) 

(4.27) 

(4.28) 

therefore, whether the "rotation coefficients" P AB and P AB 

are, respectively, algebraically general or null, are C(f -invar
iant properties. One also easily sees that 

J:=dZ ...J.2'=*(dZI\~)=2pABkAkB (4.29) 

is a C(f -covariant, J' = (/> 4J, and therefore, J ;60, or 

J = O++PAB = k(APB) (4.30) 

are C(f -invariant properties. 

5. CONGRUENCES OF NULL STRINGS ON BOTH SIDES 

Working, in principle on the level ofCR, we shall study 
in this section the case where the structure V = (M,g) admits 
simultaneously left and right congruences of null strings, 
i.e., we postulate the existence of (nontrivial) ~, ..tEA 2 such 
that (3.19) and (3.28) are satisfied. The congruences can be 
then characterized by the spinor fields k A ,k A and the Som
mers vectors Z and Z, such that (4.5) and a similar relation 
between kA and ZAB hold: 

(5.1) 

In CR and DR k A ,k A and Z AB ,Z AB remain unrelated. 

In HR, with kA = kA and gAB =gBA,Z ought to be inter
preted as the complex conjugate of Z, i.e., we have there 

(5.2) 

The corresponding deviations of both congruences are 

8 = - 2Z -.Lr, e = - 2Z ..J.i". (5.3) 

Consider now the null vector field 

k · - - lk k - ..AB - k dxJ.' • - 2 A B~ - I-' • (5.4) 

This vector field is simultaneously contained in tangent 
spaces to both congruences; indeed we have 
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(5.5) 

The vector field k can be, therefore, thought of as gener
ating a congruence of (null) vector lines which are the inter
sections of the 2-surfaces from the congruences ~ and ..t. 
Employing (4.5) and (5.1), one easily shows that those lines 
are geodesic. 

The "optical theory" of null congruences of geodesic 
lines, elaborated by R. Sachs20 and others in HR, is of basic 
importance, because of the Goldberg-Sachs theorem,21 in 
the theory of algebraically degenerate solutions of Einstein's 
equations (see, e.g., Ref. 21). Our congruence k, consisting of 
the intersection of the left and right congruences of null 
strings, can now be interpreted along the standard lines of 
this optical theory. In doing so, it is convenient to employ the 
vector fields 

~: = ~(Z + Z) = - !~ABgAB, 

Y: = !(Z - Z) = - ~ YABgAB. (5.6) 

Now, using (4.5) and (5.1), one easily finds for the mag
nification parameter of the congruence k 
{}:=kI-';1-' =*d*k= _!VAB(kAkB)=~ABkAkB. (5.7) 

Next, one finds the differential of k in the form of 

dk = 2~ 1\ k - 4*(Y 1\ k), (5.8) 

which implies, among other things, that 

~*(k 1\ dk) = irk, ir: = YABk Ak B. (5.9) 

Of course, r has the interpretation of the twist parameter of 
the congruence k and is real in HR. 

Having established this, we can now seek the corre
spondence with the conventional approach to the theory of 
the null geodesic congruences, via the properties of connec
tions in the corresponding tetrad gauge, as is done in Ref. 21. 

The null tetrad formalism of Ref. 21, which works with 

g = 2e l ® e2 + 2e3 ® e4 (5.10) 
s s 

and the connectionsFab = Flab J' overlaps with thespinorial 
treatment when we identify 

(gAB) = {i(e4

, e2 

) 

e l
, - e3 

(FAD) = - (F42,!(F12 + F 34)), (5.11) 
~(FI2 + F 34),F31 

(FAB) = _ (F41'~( - F12 + F 34)). 
!( - FI2 + F 34 ),F32 

Choosing now the SL(2,q X SL(2,Q gauge so that 

k A = 2 1
/
481, k A = 21/481, 

we have 

(5.12) 

(5.13) 

and from (4.5) and (5.1) spelled out in that gauge we obtain 

Fll = (~li + Y1i )ti + (~li + Y 1i jg2i, 

(5.14) 
F jj = (~li - Y1i )gli + (~2i - Y2ilt i . 

This means, however, that the congruence k = e3 is geodesic 
(F424 = ° = F 414) and shear-free (F422 = ° = F 411 ). 

The Sachs complex expansion is given by 
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z' - - r 421 = .J2(X1i + Y1i ) 

= (XAB + YAB)kAkB=if+i7=ZABkAkB, 
(5.15) 

z: = - r 412 = .J2(X1i - Y1i ) 

= (XAB - YAB)kAks=if-i7=ZAskAkB, 

as was expected. A more compact form of these formulas is 
of course 

z = if + iT = - 2k JZ, Z = if - i7 = - 2k JZ. 
(5.16) 

Under the conformal gauge the basic objects kA ,kA ,Z, 
and Z transform according to 

CCJ:k~ = <PkA, Z'=Z+!dln<P, 
(5.17) 

which implies k 'I" = <Pkw The congruence of vector lines 
determined by k I = <Pk is then a geodesic shearless con
gruence of null lines with respect to g' = <P -2g, with the 
corresponding Sachs parameters 

z' = <P 3(Z + !k A k BV AS In <P ), 

CCJ: 

Z' = <P 3(Z + ~k Ak Sv AS In <P). 

In particular, the twist, transforming according to 

CCJ :7' = <P 37, 

is a CCJ -gauge covariant. 

(5.18) 

(5.19) 

We can now approach conveniently the important 
question of this section: What is the mechanism, according 
to which the deviation properties of the congruences of 
strings determined by ~ and.t, define the optical scalars of 
the congruence of lines being their intersections? 

With our definitions of e, e, k, z, and Z, one easily finds 
that 

(5.20) 

Therefore, if one wants, in HR, the congruence k to be en
dowed with a nontrivial Sachs parameter, 'f = z#O, then 
both congruences ~ and .t must necessarily be deviating 
(e = e #0). Of course, with both congruences ~ and.t 
plane (e = ° = e), they necessarily intersect along a nondi
verging congruence k (z = 0 = z). There is, however, a sub
possibility that with Z AB = a A k D and Z AD = k A a 0 and 
aAkA #O#aAkA,z = Z = 0, whilee #O#e, i.e., thedeviat
ing strings can, in particular, intersect along a nondiverging 
congruence k. 

6. A CONGRUENCE OF LEFT NULL STRINGS AND LEFT 
CURVATURE 

Given a left congruence of null strings induced by ~ (in 
canonical normalization), we can consider (kA ,ZAO) as the 
basic objects describing the strings' structure, which are con
strained by 

Dk A = 3Zk A + kSZsBgAD. (6.1) 

The objective of this section is to study the integrability con
ditions of this relation. We define 

(6.2) 
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Then the objects 

F AB : = rAB - YAB' F Ao : = r AB - YAo (6.3) 

endowed with the natural transformation law of 
SL(2,q X SL(2,q connections, provide a new affine connec
tion on M. Because of(4.9) and (4.14), FAB and FAB are con
formally invariant. 

Denoting now by D the Cartan covariant differential in 
the sense of twiddled connections, one easily finds that 

DgAB = _ 2Z I\~o = :Y, (6.4) 

while (6.1) can be simply stated in the form 

DkA = 2k AZ. (6.5) 

Investigating the integrability conditions of (6.1), it is 
now technically advantageous to work with its equivalent 
form (6.5) with connection F, and Y interpreted as the tor
sion with respect to this connection. 

The integrability condition of (6.5), because of DDk A 
= R A B k B, amounts now to 

(6.6) 

and is, therefore, equivalent to the existence of X AEA 2, such 
that 

(6.7) 

Notice that under the conformal gauge CCJ, R ~B = RAB 
while k ~ = <Pk A' dZ ' = dZ, and consequently ~ trans
forms according to 

(6.8) 

The results obtained up to this point can now be ex
pressed in terms of the original connection r and the coeffi
cients of the left curvature R A B' 

For this purpose, we first decompose the covariant gra
dient of Z AB into its irreducible parts 

VAcZBiJ = aAB
CiJ + ECDPAB + ~BpCiJ - ~B€CD1/, 

-AB" _ ~AB) , , 
(T CD - (T' (CDi' 

PAB =PIAB)' PAB =p(AB)' 

The objects 

(6.9) 

PAB = !V(A SZB)S' PAB = !Vs(AZISIB) (6.10) 

coincide with the rotation coefficients in (4.26), and 1/ given 
by 

')'}- - IVABZ ' - lZI" (6.11) ./ - 4 AB - '1 ;1" 

has the interpretation of the expansion of the Sommers vec
tor. Consequently, (FABCD ought to be interpreted as the 
shear of that vector. 

The object ~ which enters in RAB = k(AXB)' we repre
sent as spanned by S CD and S ciJ: 

~ = ~ CpS CD + Ij/A CDS CD + SAClj/c, 
(6.12) 

Ij/ ABC = Ij/(ABC)' 

After some work, one can show that the conditions (6.7) 
(i) and (ii) reduce to the statement that Ij/A = 0, and 

(i)R /24 = - (.J + 1/), (ii).J = - !ZABZ AB, (6.13) 

(i) - ~CABCD = k(A Ij/BCDi' (ii)2pAB = kSIj/SAB' (6.14) 
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(·)lC AB . _ k (A.,B). . l-AB .. + ZA . ZB. 
1 2 CD - A: CD - 2U CD IC D) , 

(6.15) 

The formulas (6.13), (6.14), and (6.15) can be considered 
as the effective form of the integrability conditions of(6.1). 

Notice that, under the 'If -gauge, with k ~ = <Pk A' 

'If: (6.16) 

At the next step one should like to investigate integrabi
lity conditions of (6.9). We present only a part of them, that 
which can be obtained also from Bianchi identities 
DRAB = 0: 

(V
RS + 5Z

RS
)XRSA = ° 

and (6.17) 

(VSc + 3Z
S

c)I/IABS - (V(A
S + Z(AS)XB)CS = 0. 

7. NULL STRINGS AND ALGEBRAIC DEGENERATION 

The aim of this section is to examine our previous re
sults in the case of Einstein spaces, with the traceless part of 
the Ricci tensor vanishing: 

ES:CABcD = 0-R = - 4,1 = const. (7.1) 

Many of the results here are variations on Goldberg
Sachs theorem, to be found in the paper of I. Robinson and 
A. Schild,22 which carries over to the complex case. I 

Lemma I: IfES has nontrivial, algebraically degenerat-
ed, left conformal curvature, then it admits a left congruence 
of null strings. 

Proof Indeed, from assumption we have to consider the 
possibilities of CABCD having the shapes 

Type II or D 

Type III 

TypeN 

: - !CABCD = k(AkBI/ICD)' 

: - !CABCD = k(AkBkcl/IDI' 

1/1(1): = lJIABk Ak B #0, 

1/1(2): = I/IAkA #0, (7.2) 

: - !CABCD = kAkBkckD 1/1(31' 

where kA #0 is a multiple Penrose spinor. But with 
CABCD = 0, from (2.13) (ii) we have 

1/1(3) #0, 

V S
A CBCDS = 0. (7.3) 

Then, substituting here from (7.2) and contracting the result 
for the first line with k Bk ck D, for the second with k ck D, 

and for the third with k D, we infer for all the cases the neces
sity of the condition 

(7.4) 

This is exactly the condition for a geodesic shear-free spinor 
field studied in Ref. 14, which has been shown in Sec. 4 to be 
equivalent to the existence of a left congruence of null 
strings, induced by.I = kA kBS

AB
, given in arbitrary norma

lization. It is then obvious for all subcases from (7.2), one can 
always rescale the multiple Penrose spinor so that 
.I = kA kBS

AB is given in canonical normalization. • 
The case when the left conformal curvature spinor van

ishes is independent ofinterest23 (see also Ref. 24). Then 
there exists a complete set ofleft null strings. (The terminol
ogy used will be made clear below.) A construction based on 
the geodesic deviation equation leads to 

Lemma I': Let CABCD =0 and p be an arbitrary point of 
M. Then any undotted nonzero spinor Ie A at the point p de
fines a left null string passing through p. As a consequence of 
that, there exist, at least locally, left congruences of null 
strings. 

Proof Indeed, leA #0 defines a null two-dimensional 
subspace Wp of the tangent space at p, consisting of the vec
tors of the form Ie Al BaAB(P), where I B is an arbitrary dotted 
spinor and {aAB ) is a null tetrad dual to {gAB). Next, one can 
construct locally a geodesic two-dimensional surface S gen-
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erated by the geodesic lines passing through p in directions of 
Wp' That surface is automatically a null string. To prove 
this, it suffices to prove that Wp propagated parallel along 
generators of S remains tangent to it. For this purpose con
sider a null geodesic line y(r) on S passing through p for 
r = 0, and introduce a null tetrad {ea ) propagated parallel 
along it, such that e4(0) and e2(0) span Wp , and e4(r) is tangent 
to y(r); r is an affine parameter. 

Let xll(r,E) denote the family of geodesic lines forming S: 
E = ° corresponds to the line y(r) and XIl(O,E)==xIl(P). Then 
the components of the geodesic deviation vector 8xll(r): 
= (aXlllaE)(r,O), which is tangent to S, in the null tetrad 
[ea (r)) satisfy the following conditions: 

(i) 8xa(0) = 0, 

(ii) d8 x
3 

(0) = ° = d8 Xl (0) . 
dr dr 

Indeed, (i) follows from the fact that all geodesics forming 
that family intersect at p. To check (ii) we notice at first that 

d a 21l a21l 
- (8XIl)(0) = ~ (0,0) = ~ (0,0) 
dr araE aEar 

= ~ ( axil (O,E)) I . 
aE ar E~O 

Therefore, since the vectors (axil I ar)(O,E) are contained in 
Wp ' the same is true for their derivatives with respect to E. 

Next, one easily checks that 

~ (8xa)(0) = ~ (e~ 8xll )(0) 
dr dr 

= e~ (0) ~ (8x1l)(0) = e~ (0) ~ (8XIl)(0). 
dr dr 
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(Here e; are the components of the dual tetrad :ea = e; dxfl .) 
Hence property (ii) follows directly. 

On the other hand, from the geodesic deviation equa
tion, if CABCD=O is assumed, one infers that 

z~ 1 d DX 1 ~ 1 1 ~ 3 v 
----::2"" = -R44DX - -RZ4DX , R44: = e'te4Rflv, 

dr 2 2 
(7.5) 

d Z8x3 

~ = 0, RZ4 : = e'te~RflV' 

(For the correspondence between the components of curva
ture tensor and its irreducible spinorial images see Ref. 15.) 

The system of differential equations (7.5) with the initial 
conditions (i) and (ii) has only the trivial solution. This shows 
that 8x3 _0=8xl; therefore, the tangent spaces to S along 
y(r) are spanned by e4(r) and e2(r) only. The same argument 
can be repeated for an arbitrary geodesic generator of S pass
ing through p. 

To prove the existence of a congruence of null strings in 
a neighborhood of any point pEM, take two different left-null 
strings Sand S' passing through that point. Let k A and / A 

denote the corresponding spinor fields along Sand S " re
spectively, and k A (P)/A (P)#O. Extend k A (P) to a spinor field, 
in some neighborhood U' of ponS', such thatk A (q)/A (q)#O 
for qE U'. Then construct the unique null strings through the 
points at U' (defined by k A on U'). This construction thus 
provides a left congruence of null strings in some neighbor
hood U of the point p in M, assuming C ABCD = 0. • 

Lemma II: If an ES admits a left congruence of null 
strings, then its left conformal curvature is algebraically de
generate. 

Proof Indeed, taking the congruence as determined by 
~ given in canonical normalization, there are (k A ,Z AB) 
which satisfy (6.1) and its integrability conditions, in particu
lar (6.14), from which it follows that 

CABCDk Bk ck D = - !kA 'P, 

where 'P= 'PABCkAkBkc=2pABkAkB. (7.6) 

Then using (2.13) (ii) and (4.5) one easily shows that 'P #0 
implies 

ZAB = kAaB + to V AB In 'P, (7.7) 

and as a consequence of (6.1) 'P = 0. This contradiction 
means that it must be 'P = ° and, therefore, CABCD is alge-
braically degenerate. • 

Lemma III: If a Riemannian structure with algebrai
cally degenerate CABCD admits a left congruence of null 
strings, then there exist a B and a function cP # 0, such that 
the Sommers vector has the form 

ZAB =kAaB -!VAB IncP. (7.8) 

Consequently, from the point of view of the conformally 
equivalent space, g' = cP -Zg, with Z ~B = k ~aB [com
pare(4.14)], the congruence determined by ~ is plane 
(8'=0). 

Proof Indeed, given the structure of the null strings 
described by (kA ,ZAB), we consider a pair of simultaneous 
linear equations for the single function In cP, 

kS(ZsB+~VsBlncP)=O. (7.9) 

1938 J. Math. Phys., Vol. 25, No.6, June 1984 

Denoting VA: = k Sv SA' we infer that the integrability con
dition of these equations amounts to 

- !(VA VB - VB VA)ln cP = VAksZSB - V iJkSZSA' 
(7.10) 

It can be shown, employing (4.5) and (7.9) that (7.10) are 
identically satisfied. Therefore, Eqs. (7.9) are integrable, and 
being assured of the existence of the cP, the existence of a B in 
(7.8) follows. 

With (7.8) being true, in the conformally equivalent 
spaceg' = cP -Zg, Z ~B = k ~aB and we have 8 ~B = 0 .• 
Now we make two simple observations concerning Einstein 
spaces. 

In ES, employing the notation of (7.2) for 'P(a) , from (7.3) 
(contracted respectively in the Cases II and D with k ck D, in 
the Case III with k D, and in the case N directly), one can 
show that (7.8) is valid with algebraically degenerate 
CABCD #0, with cP having the specific values 

Type II or D: cP = ['P(I)] -1/3, 

TypeIII: cP=['P(2)]-I, (7.11) 

TypeN: 

Next we remark that, because of Lemma II, (7.8) is a 
fortiori valid in ES which admits a left congruence of null 
strings. 

Lemma IV: If a Riemannian structure with algebraical
ly degenerate CABCD admits a left congruence of null strings, 
then there exists a coordinate chart !pA,~ J and structural 
functions ¢ and QAB = Q(AB) in terms of which the metric 
assumes the form 

(7.12) 
s 

Proof Indeed, under the current assumptions, Lemma 
III is valid and, from the point of view of g' = cP - Zg, the 
congruence determined by ~ is plane and characterized by 
k ~ = cPkA, Z~B = k 'AaB' so that 

D 'k ,A = 3Z'k 'A. (7.13) 
Then selecting the SL(2,q gauge in such a way that 

k ,A = D ~ it follows from (7.13) and D 'g'ZB = ° that there 
exist a SL(2,Q gauge (denoted by the same symbols g'AB), 
and the functions A #0, qi,q2(dqi 1\ dq2#0), such that 

g'2B =A dqB. 

Then from D 'g'AiJ = ° one obtains 

dqi 1\ dq2 1\ d (Ag'liJ) = 0, 

(7.14) 

(7.15) 

which is equivalent to the existence of pB, Q 'BC such that 

Ag'IB = _ 2(dpiJ + Q 'BC dqc). (7.16) 

(In the last statement, we apply the theorem that if 
xiEA O(Mn), w: = dxll\dxzl\ ... l\dx'#O, and eEA I(Mn), 
then the condition w 1\ de = ° is equivalent to the existence 
of (x'Yi)EA O(Mn) such that e = dx + ~;~ IYidxi.) From 
(7.14) and (7.16) it follows that 

O#g,li I\g'12 I\g,Zi I\g'Z2 = 4dpi I\dp2 I\dqi I\dq2, 
(7.17) 

and so !pA,~ J constitute a chart. Substituting now from 

(7.14) and (7.16) into g' = - !g~B ® g'AiJ = - g'Z B ® g'IB 
s s 
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we have that 

g' = 2dqA ® (dpA + QAiJ dqiJ), (7.18) 
s 

where QAiJ: = Q IAill' On the other hand, for the original 
metric we haveg =,p -2g',,p: = (/> -1; therefore, Lemma IV 
is true. • 

As the next point, we should like to examine some spe
cific properties of the deviation form 8 in the subcase of an 
Einstein space which admits a left congruence of null strings. 
Quite generally, postulating only the existence of a left con
gruence of null strings (given in canonical normalization), 
using (4.5) and (6.9) and the definition of8AiI from (4.16), we 
can evaluate VA c8 B D' which, decomposed into irreducible 
parts, yields 

- !VAiJ8 AiI = 2pAB kAkB, 

!VsIA8ISliI = - kRksc?SAiI' 

!VIAS8BIS = - 2(1/ + 4..1 )kAkB + 2k Rk(APBIR' (7.19) 

!V(AIC8 B)DI = - kR [k(Ac?)BCD 
+ 6k IAZBcZRID] + kAk BpCD ' 

Knowing this, one easily determines the general expression 
for the twist of 8 

.(8 I\d8) = 2pABkAk B8 - 4kAk RZ R skpkQcI'QsilgAiI. 
(7.20) 

Specializing these formulas for the case of ES, we have, ac
cording to Lemma II, CABCD algebraically degenerate, with 
PABkAkB = O. Moreover, according to (6.15), we have 

(i) klAXBICD _~oABCD +ZA(CZBDI =0, 
(7.21) 

(ii)2p AB = k Sx SAD, 

from which, one obtains 

- kApCD - !kRoAR
CD + kRZAICZRVI = O. (7.22) 

Using this information, we infer that in ES the deviation 
form has vanishing twist: 

(7.23) 

while from the first of the formulas in (7.19) we see that the 
codifferential of 8 vanishes: 

(7.24) 

At the same time, the shear of 8 reduces to 

ES·!VIA·8BI)-3[kAkBp .. -2k k(AZBI·ZR.] 
'4 IC D - CD R IC DI 

(7.25) 

and the rotation coefficients reduce to 

!Vs(A8ISIB) = - 2kRksZRAZSiJ' 
ES: (7.26) 

lVIA s8BIS = [ - 2(1/ + 4..1 ) + ~IjIRsk Rk S] kA kB' 

IjIAB being the object from (7.2). 
Lemma V: In ES with A, = 0, the plane congruences of 

left null strings (8 = 0) do not exist if C ABCD is of the Type II 
or D, while with A, ;60, they do not exist if CABCD is of 
Type [-], N or III. Moreover, if an ES admits a plane con
gruence of null strings, then PAil = O. 

Proof Indeed, 8 = 0 implies Z AiJ = k A a iJ and conse-
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quently ..1 = O. Then from (7.26) and (6.13) it follows that 

IjIABkAkB =,.1,. (7.27) 

Therefore, with A, = 0, the Type II and D are contradic
tory, while for A, ;60, the Type Co], N and III are impossible. 

The conditionpAiJ = 0 follows from (7.25). • 
We notice also that in ES with a plane congruence ofleft 

null strings, the invariants of the left conformal curvature 
must be constant. Indeed, with - !C ABCD = k(A k B IjI CD I and 
(7.27) valid we have 

6CABCDCABCD = A, 2. (7.28) 

At last we notice that the structure of the Sommers 
vector as given by (7.8) can be still simplified in most degen
erated cases. 

Lemma VI: Let the Riemennian structure with CABCD 
of the Type III, Nor [-] admits a left congruence of null 
strings. Then there exist (/> ;60 and X such that 

(i)ZAiJ = kAaiJ - !VAilin (/>,(ii)aiJ: = (/>2ksVsiJX' 
(7.29) 

where 

VAiJ ((/> -2V
AiI 

) = )"0 for Types Nand [-] 
X\.# 0 for Type III, 

while the scalar curvature has the form 

~ = - !(/>O(/> -I. 
24 

(7.30) 

(7.31) 

Proof Indeed, via Lemma III, we are sure of the exis
tence of (/> ;60 and aiJ with which (7.29) (i) is valid. Consider, 
then, with k A ,(/> # 0 and a iJ known, the pair of linear equa
tions for the single function X 

(/> -2ail = ksVsiJX, (7.32) 

One can show that the integrability conditions of (7.32) are 
satisfied iffCABcD is of the Type III, Nor [-]. This proves 
(7.29). Then one can derive (7.30) from (6.14). Working out 
now, from (7.29), L1 and 1/, one finds according to (6.13), that 

R _ (..1 + 1/) = _ J. (/>0(/>-1 
24 4 

I k (VAiJ 3 VAil I + - A a iJ - - a iJ n (/> ), 
4 2 

(7.33) 

which, with integrability conditions of(7.32) being valid, re
duces to (7.31). • 

Suppose now that, under the assumptions of Lemma 
VI, we consider the conformally equivalent metric, 

g' = (/> -2g, (7.34) 

(/> being the same function which appears in (7.29). The left 
conformal curvature C ~BCD = (/> 2CABCD remains, of course 
of the Type III, Nor [-] correspondingly, and the congruence 
.I from the point of view of g' is now plane, characterized by 

k~ = (/>kA, Z~iJ=k~ail' ail=ksV,siJX. (7.35) 

This follows from (4.14) and the fact that, on A 0, V~B 
= (/>V AB'] Then, from (7.31) and the last line of (4.10) it 

follows that 

R'=O. (7.36) 

The condition (7.30) assumes now the form 
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O'x = /'0 for Types Nand [-] 
'\. #0 for Type III. 

(7.37) 

[This is so, because left-hand member of (7 .30) has the invar
iant form of *d *(et> -2 dX) and, on A 1:* = et> 2*" while on 
A 4:* = et> -4*,.] 

Let (M,g) now be an ES which admits a left congruence 
of null strings characterized by 

C ABCD of Type III,N or [-], 

C ABCD = 0, R = - 4A = const. (7.38) 

The Lemma VI applies, and consequently according to (7.31) 
the function et> -I must fulfill a Klein-Gordon (i.e., Helm
holtz) equation: 

(0 - yt )et> -I = O. (7.39) 

The conformally equivalent structure (M,g' = et> -2g) is now 
characterized, according to (4.10), by the curvature coeffi
cients 

C ~BcDofType III, Nor [ - ], R' = 0, 
(7.40) 

C'ABCD = - !et>VIAICVB)D)et>. 

But from (4.10), replacing the unprimed quantities (includ
ing covariant gradients) by primed and vice versa, and et> by 
et> -I, we have the identities 

(i) et> -20'et> + et> 20et> -I = 0, 

(ii)V'IA . V'B) et> -I + ViA. VB). "*' - 0 
IC D) IC D)"" - • 

It follows that (7.39) can be equivalently stated as 

O'et> + ytet> 3 = 0, 

while C 'AB CD has the form 

(7.41) 

(7.42) 

C'AB .. - Iet>V'IA . V'B) et> -I (7.43) CD-2 IC D) . 

One can discuss further the integrability conditions of the 
string structure as referred to the metric g'. We notice then 
that X'A CD can be represented as 

X'ACD = -k'sV,AICV'SD)X+2k,A(aCaD +VCD )' 

(7.44) 

where VCD = v ICD ) is some spinor field, such that 

et>V'IAIC V'B)D) et> -I + 6k 'sk 'IAV'B)IC V'SD)X 

= 8k ,Ak 'BVCD ' 

Below we summarize the main results of this section. 

(7.45) 

Theorem: An Einstein space (abbreviated to ES) admits 
a left congruence of null strings if and only if the Weyl spinor 
C ABCD is algebraically degenerate. 

The number of left congruences of null strings in an ES 
is equal to the number of degenerate Debever-Penrose 
spinor directions. For an ES with CABCD=O there are infi
nitely many 10ca11eft congruences. 
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We also have: 
(1) The metric of an Einstein space admitting a left con

gruence of null strings can be represented in the form 

g = 2¢> -2 dq A ® (dpA + QAiJ dqiJ), where QAiJ = Q(AB)' 
s 

(2) By the conformal rescaling g' = ¢ 2g, the congruence 
~ = const becomes plane. 

(3) Any left congruence of null strings in an Einstein 
space with C ABCD of the Type II or D and with A = 0, or with 
C ABCD of the Type [-], or N or III and A # 0, is necessarily 
deviating. • 

As a corollary, notice that our sequence oflemmas pro
vides, among other things, an extension of the theorem of 
Plebanski-Hacyan,1 which states that the left algebraic de
generation is equivalent to the existence of a congruence of 
left null strings-modulo the homogeneous Einstein equa
tions-to the case of Einstein spaces with nontrivial A. 
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Congruences of null strings in complex space-times and some Cauchy
Kovalevski-like problems 
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It is shown that a problem of construction of a local congruence of null strings is equivalent to a 
natural Cauch~-!<ovalevski-like problem, related to an equation for a spinor field k A defining the 
congruence. Imt~al data are specified on two-dimensional submanifulds. In left-conformally-flat 
spaces, the solutIon of that problem exists for arbitrary initial data. 

PACS numbers: 04.20.Cv 

1. INTRODUCTION 

It is the existence of a complete set of two-dimensional, 
totally null (in the sense of vanishing metric) and self-dual 
submanifolds, which distinguishes complex left-conformal
ly-flat space-times among others. 1 These submanifolds are 
referred to as null strings or twistor surfaces. For any point p 
of such a space (M,ds2

) and any null two-dimensional, self
dual subspace Wp of the tangent space Tp (M), there exists a 
null string tangent to Wp atp.2 (See also Ref. 3.) 

There are, however, congruences of null strings rather 
than single null strings, which are of great importance when 
one is trying to find an analytic form of the metric field. 4 In 
heavens (left-flat spaces) there is a special one-parameter 
family of nonexpanding congruences of null strings. This 
fact makes it possible to provide a description of heavens in 
terms of deformed projective twistor spaces 1 (see also Refs. 5 
and 6) as well as to find an almost explicit analytic form of 
the metric field. 7 (See also Ref. 8.) 

As a natural generalization of heavens, one obtains 
"projective extensions ofheavens,,9 characterized by the ex
istence of generalized canonical families of null strings. 10 

These spaces still do not exhaust all left-conform ally-flat 
ones. 

The objective of this paper is to study the mechanism of 
generation oflocal congruences of nuH strings in left-confor
mally-flat spaces. 

The way in which the constructions can be carried out is 
essentionally obvious from the geometrical point of view. 
Indeed, suppose we want to determine a congruence of null 
strings in some neighborhood of the point p EM. For this 
purpose, take any two-dimensional submanifold s:Y ---->-M 
passing thro~gh that point. Next, consider a holomorphic 
distribution D of null, two-dimensional and self-dual sub
spaces of the tangent spaces to M, defined on some open 
neighborhood ~ cY of the pointp, such that it is transver
sal to 5' . Thus ~e assume that there is a holomorphic map
~ing D: ~ 3q---->-D (q) C T JM), such that dim jj (q) = 2,D (q) 
IS null ~~d sel~-dual and D (q) EEl s. Tq (~ = !q (M), for 
q E ~ . ConsIder next all local two-dImensIOnal geodesic 
submanifolds generated by geodesic lines passing through 
the points of ~ in directions of jj (q), for q E ~. In this way 
one obtains a set ofnuH strings,2 which on some open neigh
borhood of p, UCM defines a congruence. It is also clear 
that any congruence ofleft nuH strings can be obtained by 
this method, at least locally. In left-conformally-flat spaces 

there are natural candidates for Y, the null strings passing 
through p. A construction of a congruence of n ull strings can 
be carried out also in a slightly different way. Given D on Y, 
one extends it to on integrable, two-dimensional distribution 
of totally null, self-dual subspaces and next one constructs its 
integral submanifolds (null strings). 

All these structures can be restated conveniently in 
terms of spinors. 3 Indeed, any congruence.I of self-dual null 
strings defines and is defined locally by an integrable, simple 
and ~elf-dual 2-form, denoted by the same symbol .1'; more 
preCIsely by a class of proportional 2-forms (integrability 
means, that d.1' = w /\.1' for some I-form w). Consequently 
.1' = kA kBSAB , where theSAB constitute a basis for self-dual 
2-forms. 11 Now it is convenient to rescale it in such a way 
that the new 2-form is closed. Then the corresponding no
where vanishing spinor field kA is said to be in canonical 
normalization, and it satisfies an equation of the form3 

(1.1) 

where ZAB is another spinor field, known as Sommers' vec
tor. It turns out that the geometrical construction of congru
ences described before, is equivalent to some Cauchy-Kova
levski-like problem related to Eq. (1.1). We discuss it in Sec. 
2. As a result, a proof of the existence oflocal congruences of 
self-dual null strings in left-conformally-flat spaces is pro
vided. 

Any congruence of null strings.1' can be described lo
cally in terms of two independent functions Z A, A = 1,2, as 
the set of submanifolds defined by the equations Z A = const. 
Given a spinor field k A , such that (1.1) holds, the existence of 
those functions follows from the fact that the corresponding 
2-form .1' is closed, and hence locally 

.x = 2dZ 1 /\ dZ 2. (1.2) 

The equations on ZA ,s take an especially simple form if 
a coordinate system based on two transversal congruences of 
null strings.1' 1 and.1'2 is introduced. Then one obtains the 
corresponding Cauchy-Kovalevski-like problem. It is dis
cussed in Sec. 3. 

2. THE EXISTENCE OF CONGRUENCES OF NULL 
STRINGS AND A CAUCHY-KOVALEVSKI-LIKE 
PROBLEM 

. Let (M,ds2
) be a complex space-time and let p be any 

p?m~ of fl.!. Take an arbitrary two-dimensional, holomorphic 
dIstnbutlon D defined on some open neighborhood U of the 
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point p. Suppose D is integrable. Thus for Ubeing sufficient
ly small there exist two independent vector fields X and y, 
which span that distribution. Moreover there is a coordinate 
system ! r/ ,pB J on U such that the equations r/ 
= const, A = 1,2, define integral submanifolds of D and, 

therefore, X and Yare spanned by the vector fields 
! a /apA JA = 1,2 only. 

Suppose there is on U a congruence of self-dual null 
strings transversal to the distribution D. Therefore, there 
exist on U (provided it is sufficiently small) spinor fields kA 
and Z AB (k A nowhere vanishing), such that Eq. (1.1) is satis
fied. The condition of transversality means that for any point 
q E U a direct sum of the tangent spaces at q to a null string 
and to an integral submanifold of D, both of them passing 
through q, is equal to the tangent space Tq (M). This property 
can be restated conveniently in terms of components of X 
and Y in some null-tetrad! a AiJ J .12 Indeed, the tangent 
spaces to null strings of the congruence are spanned by the 
vectors of the form ~ I iJa AiJ with I iJ being arbitrary. Conse
quently, the congruence is transversal to D iff the spinor 
fields 

(2.1) 

where X AB and yAiJ are defined by X = - ~AiJaAiJ and 
y = - ~yAiJaAiJ' respectively, are linearly independent (this 
condition does not depend on the particular choice of X and 
Y), 

Next we show that the Sommers vector ZAiJ is deter
mined completely by covariant derivatives of kc in direc
tions of D. For this purpose it is convenient to introduce the 
following notation: 

V . - lyAiJV· V· - 1yAiJV' Z XABZ x' - - Z'" AB' y. - - 2 AB' x: = AiJ, 

Zy: = yAiJZAiJ , and OiJ: = kSZsiJ ' 

Then from (1.1) one easily infers that 

- 2V xkc = 3Zx kc - 2XcBOiJ 

and 

- 2V ykc = 3Zykc - 2YC
iJOB' 

(2.2) 

(2.3) 

Next, by contraction of both sides of (2.3) with k C and 
employing the fact that U iJ and p B (2.1) are linearly indepen
dent, one obtains 

8 B = (pNUN)-I!(kCVxkclPiJ -(kCVykc)uBJ. (2.4) 

(One can easily check that the form of 8 iJ does not depend on 
a specific choice of vector fields X and Y which span D.) 

The Sommers vector ZAiJ can be represented as a linear 
combination of XAiJ , YAiJ , k AU iJ and k A ps. One easily finds 
that 

ZAiJ = (pNUN)-I!(~8M)YAB - (pM8 M)XAB J 

+ (pNUN )-2kAUiJ [(pM8M)(ycDXCD) 

- (£T"18M)(ycDYCD)] 
+ (pNUN )-2kA PB [(~OM)(XCDYCD) 
- (pM8M)(XCDXCD)] 

+ (pNUN)-I(kAZyUiJ - kAZX PB)' (2.5) 

where 8 A is defined by (2.4), and kAZX and kAZy can be 
obtained from (2.3). 
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Thus we see that it is the tangential counterpart of (1.1), 
which can be satisfied by an arbitrary spinor field kA' such 
that the corresponding spinor fields UiJ andpiJ are lineary 
independent, provided the Sommers vector ZAiJ is defined 
according to (2.5). The transversal counterpart of(1.1) pro
vides a nontrivial constraint on k A 

~ V AiJkc = kCOB' which depends on D. (2.6) 

Now we infer a Lemma. 

Lemma 1: Let D be a two-dimensional distribution de
fined on some open subset UCM. Then: 

(i) Any solution ~ of Eq. (2.6), nowhere vanishing on 
U, such that the spinorfields UiJ andpiJ are linearly indepen
dent, defines a congruence of self-dual null strings transver
sal to D. 

(ii) If D' is another two-dimensional distribution, such 
that U iJ' and p B' related to it by (2.1) with the same ~ are 
linearly independent, then the spinor fields 0 iJ' and Z ~iJ are 
identical with 8iJ and ZAB' respectively. 

Proof Indeed, for ~ being a solution of(2.6), with 8iJ 
defined in terms of D, it follows from the discussion above 
that ~ is also a solution of (1.1). 

To prove (ii), assume that the vector fields X' and Y' 
span the distribution D '. Then they can be represented in the 
form of 

'X AiJ = aX AiJ + byAiJ + a~ ~ + /3~ pB, 
(2.7) 

'yAiJ = cX AiJ + dyAiJ + r~~ + 8k ApB, 

with a, b, c, d, a,/3, r, and 8 being some functions. Hence'~ 
= a~ + bpiJ and 'piJ = cuB + dpiJ, and necessarily 

ad - bci=0. Further '8B can be calculated according to 
(2.4). Finally employing (2,6) one obtains '8iJ = 8iJ. In the 
same way one checks that 'ZAiJ = ZAiJ' • 

We now study Eq. (2.6) further. In the coordinate sys
tem ! r/, pB J , related to an integrable distribution D, the 
vector fields a AiJ can be represented in the form of 

a 
C a C a 

AB = /-l SA aqc + y BA apC' (2.8) 

with/-lcsA and YCBA being some holomorphic functions. We 
have also X = - ~AiJ/-lcBAa/apc, and Y = - !yAiJyciJAa/ 
apc since X and Yare spanned by a /apc. Now, since 
X, y, ~ a A i and ~ a Ai are assumed to be linearly indepen
dent [this is equivalent to the linear independence of UiJ and 
PiJ determined by (2.1)], it follows that the (2X2) matrix 

(bA iJ): = (k S/-lA SS) (2.9) 

is nonsingular. This fact, together with an identity 

V AiJ(=VaAB ) = /-lciJA Va/aqc + YCiJA Va/apc , (2.10) 

which is the result of(2.8) and properties ofa covariant deri
vative imply that, as far as transversal to D congruences are 
considered, Eq. (2.6) is equivalent to another one of the fol
lowing general form: 

aea = Ha (,.B B OfJ aOfJ) (2.11) 
art A 'I ,p, apB' 

where a,/J, = 1,2, ... ,N and H a A is linear in a(J13 /apB. In our 
case N = 2 and (ea ) = (~ ). 
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There is a natural Cauchy-Kovalevski-like problem re
lated to (2.11) and so to (2.6) as well. Indeed, consider a point 
p E U and a two-dimensional submanifold Ye U deter
mined by the equations tt = tt (p). (Y is an integral sub
manifold of D passing through the point p.) Suppose the ini
tial data are specified in some open neighborhood ~ of the 
point p on Y, ~ ey, i.e., holomorphic functions ea on ~ 
are given, such that for any point q E ~, (~, pB,e f3 ae f3 I 
apC) belongs to the domain ofEq. (2.11). Then the problem is 
to find a local solution of (2.11), which agrees with those 
initial data. (The standard Cauchy-Kovalevski theorems of 
existence and uniqueness are related to equations for which 
initial data are specified on a hypersurface13 or at a point. 14 

Differentiation of both sides of (2.11) with respect to qB , 
and (2.11) itself, provide an expression for a 2ea I aqB att in 
terms of q's and the derivatives of (Jf3 with respect to pC's up 
to the second order. Then as a consequence of a 2ea I 
att a~ = a2ea I a~ att the functional relations between 
q's and those derivatives follow. We call them the integrabi
lity conditions ofEq. (2.11). An equation of the form (2.11) is 
said to be completely integrable, if its integrability conditions 
are satisfied identically. By the integrability conditions of 
Eq. (2.6) we mean the integrability conditions, in the sense 
just explained for an equation of the form (2.11), equivalent 
to (2.6). 

Lemma 2: Equation (2.6) is completely integrable if and 
only if the space-time is left-conformally flat. 

Proof Indeed, to find integrability conditions of (2.6) it 
is convenient to use (2.6) itself. Let V A be defined by 
V A : = ~ V AA' Then acting with that operator on both sides 
of(2.6), forming the comutator (V A V iJ - V iJ V A )kc , employ
ing the Ricci identity, 12 

~VIAMVBIMkc =k
S

[ -CCSAB + ~ €SIA8CBI]' 

(2.12) 
and the Eq. (2.6), one obtains 

- 2CABCDkBk ck D = (VM8 M)kA· (2.13) 

The expression for VM8 M can be found from (2.4). The 
formula, which results, contains the second-order derivative 
of the form V iJ V ykc and V iJ V xkc. These can be expressed 
in terms ofV y V iJkc and V x V iJkc, respectively, due to the 
Ricci identities (2.12) and 

~VMIA VIMliJlkc = kSCSCAiJ' (2.14) 

Finally the first-order derivatives of kc can be eliminat
ed by (2.6), V xkc and Vykc . 

A substitution of VM8 M into (2.13) results in 

- 2CABCDkBk ck D 

= (pMaM)-I(PiJXMiJ - aiJ yMiJ)CMBCDkBk ckDkA. 

(2.15) 
Now it is clear that Eq. (2.15) is an identity with respect 

to k E' if and only if C ABCD = O. This, however, means that 
the space-time is left-conformally flat. • 

The properties of completely integrable equations of the 
form (2.11) are summarized in the next two Lemmas. 

Lemma 3: For an arbitrary completely integrable equa
tion of the form (2.11) and arbitrary initial data defined on an 
open neighborhood au e Y of the point p, there exists a for-
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mal solution of the corresponding Cauchy-Kovalevski 
problem in the form of unique formal power series at p. 
These are the power series which, if they converge, represent 
a unique holomorphic solution of the Cauchy-Kovalevski 
problem in some open neighborhood Up eM of the pointp. 

Proof Indeed, we notice that the coefficients of the ex
pansions of functions ea at the point p are determined by the 
initial data and Eq. (2.11) itself. This can be accomplished by 
the process of differentiations and substitutions13

; for arbi
trary initial data, the coefficients are defined uniquely by this 
procedure. To make sense in a power-series expansion, they 
must be symmetrical in the appropriate indices. For this, the 
complete integrability is sufficient. If an expansion coverges 
in some neighborhood of p, then its sum represents the 
unique solution of the corresponding Cauchy-Kovalevski 
problem because of the way in which it has been defined. 13 • 

Lemma 4: If the equation of the form (2.11) is complete
ly integrable, then for arbitrary initial data defined on some 
open neighborhood ~ e Y of the point p, there exists a 
unique holomorphic solution of the corresponding Cauchy
Kovalevski problem defined on some open neighborhood Up 
of that point; Up CM. 

Proof It can be accomplished by the use of a technique 
of majorizing functions. 13 

Finally taking into account a relation between the Eqs. 
(1.1) and (2.6), and Lemma 1, 2, and 4 one infers 

Theorem 1: Suppose that a complex space-time (M,ds2) 

is left-conformally flat. LetD be a two-dimensional and inte
grable distribution on an open subset UCM. Let p by any 
point of U and Y an integral submanifold of D passing 
through that point. 

Consider an arbitrary spin or field j(A , defined along Y, 
j(A #0 everywhere, such that the null two-dimensional sub
spaces of tangent spaces to M, determined by j(A at points of 
Y, are transversal to D 1.7'.11 Then: 

(i) there exists an open connected neighborhood Up 3p 
in M, and a unique nowhere vanishing spinor field ~ on it, 
such that k AIYnUp = k Awnup and ~ is a solution of (2.6); 

(ii) ~ is a unique solution of(Ll) on Up, which agrees 
with the initial data j(A l.7'nUp and consequently j(A defines on 
Up a unique congruence of self-dual null strings such that its 
null strings are tangent to null subspaces defined by the 
spin or field j(A at points of Y n Up . 

Proof Indeed, the first part of Theorem 1 is a result of 
complete integrability of (2.6), Lemma 2, and Lemma 4. 
Next because of Lemma 1, ~ is also a solution of (1. 1). If D' 
is any integrable distribution on Up with Ybeing its integral 
submanifold, then the same ~ satisfies (2.6) with '8iJ relat
ed to D '; indeed, '8 iJ = 8 iJ (Lemma I). Such ~ is a deter
mined, however, uniquely, by the initial conditions j(A . 
Hence the assertion (ii) is true. • 

We remark that proportional initial data on Y deter
mines the same congruence. Indeed, it is a class of propor
tional spinor fields which defines the same congruence. Con
sider now a pair of proportional initial data kA and if;.kA (if; a 
function nowhere vanishing on Y). Let ~ and '~ denote 
the corresponding, unique solutions and let (ZA ) be holo
morphic functions defining locally a congruence related to 
~. The mapping (pl,p2) __ (Z l(tt (p),pB), Z2(tt (p),pB)) is 
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invertible in some neighborhood of the point (pB (p)). Let its 
inverse be denoted by H. Then I ~ = q:J'~ , where 
q:J(rt , pB ) = (iPo H)(ZC (rt , pB)). Indeed, q:J~ satisfies the 
condition d (~B q:J 2kA k B) = ° [equivalent to (1.1n because 
~ does (SABkA kB = 2dZ I 1\ dZ 2) and it agrees with theini
tial data iP.kA for I ~ • 

In the next section we make a more specific choice for 
.'7 and a distribution D. And so .'7 is a member of a con
gruence of self-dual null strings (or its open subset) and D is 
determined by that congruence. 

3. A CONSTRUCTION OF CONGRUENCES BASED ON 
TWO TRANSVERSAL CONGRUENCES OF NULL 
STRINGS 

We begin this section by recalling the following facts. 
Proposition 1: Let Mbe a complex four-dimensional 

manifold and let ~ I' ~2' and ~ be three congruences of two
dimensional submanifolds, such that any two of them are 
transversal, i.e., in some open neighborhood of any point 
p E M there are holomorphic functions rt , rt ' , and ZA such 
that dq l l\dq21\dqll I\dq21=/=0, dq l l\dq21\dZ I 1\ dZ 2 =/=0, 
and dq" I\dq21 I\dZ I 1\ dZ 2 =/=0 and locally ~I:rt = const, 
~2:rt' = const, and ~:ZA = const; A = 1,2, A I = 1 ',2'. 

Then M admits a unique conformal structure in which 
~I' ~2' and~ are congruences of null strings. It is represent
ed by local metrics of the form 

ds2 = tJ> -IZA,BZ:C' dqB dqC',ZA: = CABZB [see (3.4)] 
(3.1) 

with tJ> being an arbitrary nowhere vanishing function. 
Proof Indeed, any local metric structure admitting ~ I' 

~2' and ~ as congruences of null strings is of the form 
2 . .,..A B'.,..A d B ds = 2flAB , d'1 dq = 2uJAB d'1 Z. 

Then necessarily liJ(A IB I Z ~I = 0. This condition provides 
three algebraic equations on four components of liJ AB' In 
consequence of that, one obtains flAB' = tJ> - I ZC.A Z ~, , for 
some function tJ> =/=0. It is clear that taking tJ> arbitrary 
(tJ> =/= 0) we obtain a class of conformally related metrics, de
fined uniquely by the requirement that ~I' ~2' and ~ are 
congruences of null strings. It is also easy to check that the 
conformal structures defined on two overlapping coordinate 
neighborhoods are identical on their intersection. • 

Proposition 2: 
(i) A congruence of null strings transversal to con

gruence of self-dual null strings is self-dual itself. 
(ii) Congruences of self-dual null strings which are no

where transversal to each other are identical. 
Proof Indeed, (i) follows from the fact that the tangent 

spaces to a self-dual null string consist of the vectors of the 
form ~ I Ba AB for ~ fixed, while those for anti-self-dual 
ones are spanned by the vectors fA k Ba AB with k B fixed I (a AB 
denotes a contravariant null tetrad). So the tangent spaces of 
self-dual and anti-self-dual null strings intersect along null 
directions. To obtain (ii) one observes that the tangent spaces 
to null strings of such congruences, passing through the 
same point are identical. • 

Now suppose a conformal structure on M is given, 
which admits two self-dual congruences of null strings. One 
can represent it locally by metric fields of the form 
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ds2 = 2flAB , drt d~', 

with flAB' restricted conveniently by 

det(flAB ,) = 1. 

(3.2) 

(3.3) 

We introduce also the convention, which permits us to 
change the position ofindicesA,B, ... andA I,B f, ... , according 
to the standard rules, 12 employing skew-symmetric Levi-Ci
vita symbols: 

) -AB -A'B' ( ° 1) (CAB =(e )=(CA'B,)=(e )= -1 0' (3.4) 

(flA B' = flAC' cC'B ',flA B' = flCB,cCA etc.). With this con
vention (3.3) takes the form of flAB,fl AB' = 2, 

There is a natural choice for the null tetrad one forms 
gAB. 12 The self-dual two forms SAB related to gAB are 
S II = 2dq' f 1\ dq2/, S 22 = 2dq' 1\ dq2, and 
12.,..AJ' S = fl AB ,d'1 I\d'1 . 

By the standard process 12 one obtains the components 
of left-conformal curvature spin or CABCD : 

CIIII = ° = C2222 , 

CII12 = - AflBC', CD'fl B D', 
(3,5) 

C1222 = AflAB"ABflB B', 

C1212 = j( - flAB',AB' + flAC',AflBD " D'fl BC'). 

It follows from Propositions 1 and 2 that to construct all 
local congruences of self-dual null strings transversal to the 
congruences ~ I:rt = const and ~2:rt' = const, it sufficies 
to find local holomorphic functions ZA and tJ> (tJ> nowhere 
vanishing), such that 

ZA,B ZA ,C' = tJ>flBC" (3,6) 

Let FA 'B denote the inverse of ZA.B" i.e., pA' B is such that 

pA' BZB.C' = 8A'C'. (3.7) 

Then (3.6) can be rewritten as 

ZA,B = tJ>flBB,FB'A' (3.8) 

By differentiation of both sides of(3.8) with respect to qC one 
finds 

B' B' B' ZA,BC = tJ>,cflBB,F A + tJ>F AflBB,.C + tJ>flBB,F A,C' 
(3.9) 

while a similar proccess applied to (3.7) plus (3.8) results in 
B' B' C' f F A,C = - !tJ>,C' flc F A 

B' C' N'L C' B' - !tJ>flc ,C'F A f - tJ>flcN,F ,C'F AF L, 

(3.lO) 

wheref = FA 'BFA 'B, 
Now the condition ZA ,BC = ZA ,CB together with (3.9) 

and (3.lO) provides an equation, which can be solved with 
respect to tJ>,A , and 

tJ>,A =jtJ>tJ>,B,flA
B' +!tJ>2flAB/B' +tJ>flcB',cflA

B'. 
(3.11) 

There are two important systems of differential equa
tions to be discussed later. The first one referred to as I, 
consists of Eqs. (3.8) and (3.11), while the second, auxiliary, 
referred to as II consists of (3.8), (3.lO), and (3.11). In I there 
are ZA and tJ>, which are unrelated, whereas pA , B is deter
mined by (3.7). In II, all of them ZA ,pA' B, and tJ> are unrelat
ed, 
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Next, one observes that the structure of both of them is 
of the form 

aoa _ H a ( B -JJ' (JP a(Jp a2(Jp) 
at/ - A q ,'1 , 'at!" Bt!'BqC" (3.12) 

where a = 1,2,3 and (oa) = (ZA ,</» for I, and a = 1,2, ... ,7, 
(oa) = (ZA ,pB' c,</» for II. 

There is a natural Cauchy-Kovalevski-like problem re
lated to (3.12). The initial data are assumed on a submanifold 
given by t/ = const, A = 1,2. Also integrability conditions 
of (3.12) can be defined in a similar way as those for (2.11). 
However, a dependence ofits right-hand sides on the second
order derivatives requires special attention. (We recall a 
well-known fact i3 that the equation aulat = J2ulax2 does 
not have local holomorphic solutions for arbitrary local ho
lomorphic initial data on the hypersurface t = 0.) 

Now we notice that 
Lemma 5: The system I is completely integrable iff the 

metricstructureds2 ={)AB' dt/ dt!' isleft-conformallyflat. 
Proof Indeed, integrability conditions of(3.8) are satis

fied identically being equivalent to (3.11). Then rather 
lengthy but straightforward calculation provides integrabi
lity conditions of (3.11), in the form of 

4</>CI222 + 3/</> 2CI122 + </> 'l2C1112 = 0, (3.13) 

where CABCD are defined by (3.5). It is now obvious that 
(3.13) becomes an identity if and only if CABCD = O. • 

For completely integrable equations of the form (3.12) 
there is also an assertion of Lemma 3 which is true. Indeed, it 
is just complete integrability, which makes it possible to con
struct unique formal power series expansions from arbitrary 
initial data. However, in general they fail to be convergent. A 
system I is exceptional in this respect. Indeed, it is easily seen 
that any formal solution of! determines a formal solution of 
II. Moreover, a convergence of one of them implies that of 
the second. Since a system II is of the form (2.11) it follows 
that the corresponding formal power series solutions con
verge. Thus we have 

Theorem I': Suppose the complex space-time (M,d?) is 
left-conformally flat. Let ~ I and ~2 be two transversal con
gruences of self-dual null strings defined on some open sub
set UCM: .I1:t/ = const, ~2:t/ = const, and 
dql Adq2 Adql' Adq2'=l0. 

Let p be any point of U and :T a null string of the con
gruence ~ I passing through it; :T: t/ = t/ (p). 

Consider arbitrary holomorphic functions ZA and ii> 
defined on :T, such that det(ZA ,B') and ii> nowhere vanish. 

Then there exists an open neighborhood Up 3 P in M, 
Up C U and unique holomorphic functions ZA and </> on U 
(</> nowher~ vanishing) such that ZA!Up = ZA !Up' P 

</>!U/,7 = </>1 Up and (3,6) are satisfied. 
The equations ZA = const, A = 1,2, define on Up a 

congruence of self-dual null strings transversal to.I I and.I2 

and any congruence with that property can be obtained in 
this way. 

Remark I: One easily finds, employing (3.3), (3.6), and 
(3.7), that 2dZ I AdZ 2 = kA kBSAB with 

+ ~ = (lZM,N'Z ,)I12fjA + </>(lZM,N'Z )-1/2£A 
- 2 M,N 2 2 M,N' U I , 

(3.14) 

81 and 81 are components of the spinor fields defining con-
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gruences I I and I 2, respectively. The condition (3.13) is then 
equivalent to CABCD~ P k C ~ = o. 

We can restrict the initial data ii> and ZA conveniently, 
requiring, for example, <i> = 1. Then a special class of con
gruences can be obtained if an additional condition 
(ZA,B'ZA,B') = const =I 0 is imposed. If (M,ds2

) is a left-flat 
space-time and.I I and I z are nonexpanding congruences of 
null strings related to covariantly constant spinor fields, then 
those new congruences defined by (3.14) are again of that 
type. Also ZM,N'ZM,N' = const, </> = 1, and ~ is a covar
iantly constant spinor field. 1,8 

Remark 2: "Projective extensions of heavens" and in 
particular "heavens" (left-flat spaces) can be characterized 
by the existence of special one-parameter families of congru
ences of self-dual null strings. 10 

For a complex space-time to be of that type it has to 
admit, at least locally, two linearly independent spinor fields 
~ and k 'A such that 

V ABkC = /1ABkc + vcBkA , 
(3.15) 

and 

/1AB + VAil =/1~B + V~B' (3.16) 

[There is some obvious ambiguity in/1's and v's, which does 
not effect the condition (3.16).] 

Then any spinor field lA = a~ + bk ,A , where a and b 
are arbitrary constants, such that (a,b ) =I (0,0), defines a con
gruence of null strings. In this way one obtains a generalized 
canonical family of congruences of null strings parametrized 
by ratios of a and b, We notice that in generallA is not in a 
canonical normalization, even if the space-time is a left-flat 
one lO [see also (1.1)]. 

N ow let </> and </> ' be such that the spinor fields 
m A = </>~ and m'A = </>'k'A are normalized canonically, 
i.e., they satisfy the equations of the form (1.1). Then employ
ing (3.15) one obtains 

3Z AB = V Ail In </> + /1 AB + v AB' 

3Z ~B = V AB In </>' + /1 ~B + V~B' 
~(ZAB - ~VAB) = 0, 

~ (Z ~B - !V~B) = O. 

Next (3.16) together with (3.17) implies 

dZ=dZ', 

(3.17) 

(3.18) 

(3.19) 

where Z = - !ZABgAB, Z' = -!Z ~B gAB, and {gAB I are 
null-tetrad I-forms. 12 

Conversely, the condition (3.19) implies that ZAB and 
Z ~B are of the form 

ZAB = j VAB In </> + jPAB 

and 
Z ~B = j V AB In </>' + j PAD' 

for some functions </>,</>' and a spinor fieldPAB' 

If VAB and V~B are chosen according to (3.18) with m A , 
m,A instead of ~ and k'A (this can be always done), then the 
spinor fields </> - I m A and </> ' - 1 m' A satisfy (3.15) with /1 AB 
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= PAB - v AD and,u ~D' = PAD - V~D' The condition (3.16) 
is also fulfilled. Thus we have 

Proposition 3: A complex space-time is a "projective ex
tension of heavens" if and only if there exist two transversal 
congruences of self-dual null strings, such that Eq. (3.19) 
holds. 

We notice also that the condition (3.19) is conformally 
invariant.3 

Proposition 4: A complex space-time is conformally re
lated to a "heaven" if and only if there exist two transversal 
congruences of self-dual null strings, such that Z = Z' and 
dZ=dZ' =0. 

Proof Indeed, if dZ = dZ' = 0 and Z = Z " it follows 
that there exists a conformal gauge in which Z = 0 = Z '.3 

This means that the corresponding spinor fields are covar
iantIy constant and consequently CABCD = O. The converse 
assertion follows by a similar argument.. 

IR. Penrose, Gen. Relativ. Gravit. 7, 31 (1976). 
2(M,ds2) is a pair consisting of a complex four-dimensional manifold and 
holomorphic metric structure, restricted by the condition that its left-

1946 J. Math. Phys., Vol. 25, No.6, June 1984 

conformal-curvature spinor CABCD = 0. (Left- is here equivalent to se1f
dual.) By the tangent space Tp (M) is meant a complex four-dimensional 
vector space of complex tangent vectors of the type (1,0). All submanifolds 
are understood as complex submanifolds. A congruence of two-dimen
siona! submanifolds on UCM (U-open) is a set C(j of two-dimension a! 
submanifolds of U, such that for any point p E U: 

(i) there is exactly one member of C(j passing through that point; 
(ii) there exists a coordinate system (Up,lzl,i',z" ,z4)), Up C U, such that 
all members of C(j passing through the points of Up are given on Up by 
the equations of the form Zl = const, i' = const. 
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Approximate causal solutions for a class of wave equations with 
backscatter-> 

James L. Anderson 
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(Received 3 December 1982; accepted for publication 7 October 1983) 

The construction of solutions of wave equations with backscatter usually requires the use of some 
kind of approximation scheme. A problem then arises-how can one ensure that the approximate 
solution is causal? In this paper we present a method of constructing approximte causal wave
zone solutions that is applicable to a class of wave equation which reduce in form, in the limit as an 
expansion parameter goes to zero, to the scalar wave equation in flat space-time expressed in 
terms of the null coordinate Uo = t - r. An extension of the method which is applicable to higher 
spin wave equations is also given. 

PACS numbers: 04.20.Jb 

I. INTRODUCTION 

The construction of solutions of a system of wave equa
tions requires either initial value data or some kind of radi
ation condition. If the equations are linear and the underly
ing space-time is flat and empty except for a region of 
compact spatial support containing the sources of the waves, 
there are several forms this condition might take. One can 
require that (i) the radiation is everywhere outgoing, or (ii) 
the solutions are causal, or (iii) there is no incoming radiation 
at past null infinity. Furthermore, it is a relatively easy mat
ter to construct solutions that satisfy all of these conditions. 
One way of doing so is to use a retarded Green function 
which can be given in closed form for these equations. Such 
solutions automatically satisfy conditions (i) and (ii) and, if 
the sources do not grow too rapidly with time in the distant 
past, one can show! that condition (iii) is also satisfied. 

The presence of back scattered radiation due to nonlin
ear terms in the wave equation which act as secondary emit
ters, the presence of a medium with variable index of refrac
tion, a curved background space-time, or some combination 
of these possibilities complicates the construction of radia
tive solutions for a number of reasons. For one thing, one 
almost always has to resort to some kind of approximation 
scheme for this purpose. Furthermore, because of the pres
ence of backscattered radiation, condition (i) above is not 
applicable. One should, of course, require that there be only 
outgoing radiation at future null infinity. However, this con
dition is not sufficient to exclude incoming radiation. 2 

Ehlers3 and Leipold and Walker! have advocated the 
use of a Sommerfeld-type condition to be imposed at past 
null infinity for such problems. The imposition of such a 
condition is supposed to exclude the presence of incoming 
radiation. However, it is not clear what form such a condi
tion should take in all cases. Even when one has such a condi
tion, it is often difficult to employ in practice since solutions 
are usually given as functions of a retarded null coordinate 
while the approach to past null infinity is along curves of a 
constant advanced null coordinate. In general the relation 
between these two coordinates is not simple and usually de
pends on the expansion parameter. 

alWork supported in part by NSF Grant No. 79-11664-01. 

In this paper we present a method of constructing ap
proximate wave-zone solutions for a class of wave equations 
that satisfy condition (ii) above. A condition of causality is, of 
course, required on physical grounds. It is also, as we shall 
see, a condition that can be easily imposed on approximate 
solutions since its application involves the retarded rather 
than the advanced null coordinate. It should be noted that 
the imposition of a causality condition does not automatical
ly ensure the absence of incoming radiation; one can easily 
give examples of causal solutions that violate a no-incoming 
radiation condition.! However, in these cases, the sources 
grow with time in the infinite past. Thus, a no-incoming radi
ation condition can be considered to be a condition on the 
behavior of sources associated with causal solutions and 
hence, if it exists, can be imposed to bound the motion of 
these sources after a causal solution has been found. That, 
however, is a problem which does not concern us here. 

The type of problem to which our method of construc
tion can be applied is one in which the source of the emitted 
radiation has compact spatial support. In what follows we 
shall refer to the region exterior to the source as the wave or 
outer zone. Our procedure leads to approximate causal solu
tions in this zone that do not require a knowledge of the 
solution in the region occupied by the source. As a conse
quence they will be seen to depend on one or more arbitrary 
functions of a retarded null coordinate. These functions 
must then be determined in some manner from a knowledge 
of the solution in the region occupied by the source. If, for 
example, the source is in slow motion, that is, if the ratio of 
the propagation time across the source to its period is small 
compared to unity, one can most easily use the method of 
matched asymptotic expansions (MAE)4 for this purpose. 
We will not concern ourselves here, however, with the aspect 
of the problem. 

We now make three additional assumptions concerning 
the nature of the problem with which we are dealing. We first 
assume that there exists in the outer zone a well-defined fam
ily of nonintersecting future-directed characteristic surfaces 
u = constant. Here u is a retarded null coordinate which is 
determined by the characteristic equation for the problem. 
The determination of u may be independent of the solution 
of the wave equation associated with the problem, or it may 
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depend on it as it does in the case of general relativity, where 
the metric used to determine u is not known initially. In this 
case, u must also be determined by some approximation 
scheme which is consistent with that used to determine the 
solution of the wave equation. 

Our second assumption concerns the nature of the wave 
equation for the problem. We will assume that, in the limit in 
which a suitable expansion parameter E goes to zero, this 
equation reduces in form, when expressed in terms of u and 
the spatial coordinates, to that of the scalar wave equation in 
flat, empty space-time when the latter is expressed in terms 
of the flat space-time characteristic coordinate Uo = r - t. 
While u = Uo in the limit in which our expansion parameter 
goes to zero, we emphasize that, in taking the above-men
tioned limit, u is to be considered to be an independent vari
able. And finally we assume that, in the limit u = const, 
r-+oo, the effective source terms in the wave equation, i.e., 
the terms that go to zero in the limit E-+O, are 0 (lIrl This 
last assumption is necessary in order that the integrals which 
appear in the wave-zone expansion exist. 

While the above assumptions may seem overly restric
tive, they are in fact satisfied by a number of problems of 
physical interest, including the radiation of gravitational 
waves by gravitationally bound systems in general relativity 
and similar problems in Yang-Mills theory. We also expect 
that the method will prove to be applicable to other physical
ly interesting problems involving electromagnetic radiation 
in a material medium and the radiation of acoustic waves. 

II. A MODEL PROBLEM 

In order to fix the ideas discussed above, and at the 
same time to illustrate the general approach used in our 
method, we will consider the following model problem for a 
scalar field satisfying a wave equation of the form 

[(1 - f(rW at 2 - V2 l¢ = 41Tp(Et,r), 

where 

f(r) = K, r<,l 

K/r, r> 1, 

and where 

p(Et,r) = 0, r> 1. 

(2.1) 

(2.2) 

(2.3) 

In what follows we will assume that the "coupling constant" 
K is at least 0 (E). 

In the wave-zone zone one introduces stretched coordi
nates t = Et, and r = Er, and also a stretched coupling con
stant K = EK. The outer equation, when expressed in terms of 
these quantities, takes the form 

(2.4) 

where we have dropped the bars over all quantities. 
The retarded null coordinate for this problem is deter

mined by the characteristic equation 

(1 - K/r)2(a,uf - (arf = O. (2.5) 

It follows that the retarded null coordinate is given by 

u = t - t - K In r. (2.6) 
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Similarly one finds that the advanced null coordinate is giv
en by 

v = t + r + K In r. (2.7) 

Let us now rewrite Eq. (2.4) in terms of the variables u 
and r and at the same time set 

¢=cp/r. 

The resulting equation is 

(lIr)(2au ar - a2
r)cp 

+ K[ (2/r)au ar - (l1,-3)au cp j = O. 

(2.8) 

(2.9) 

We see that our equation is of the type discussed in the intro
duction. The flat space-time D'Alembertian, when ex
pressed in terms of Uo operating on cP / r, has just the form of 
the first term in the above equation. Furthermore, if in the 
limit u = const, r-+oo, cP = 0 (1), then the remaining terms 
are all 0 (1/,-3). 

In order to construct an approximate solution to Eq. 
(2.9), we will expand in a usually asymptotic power series in 
of the form 

(2.10) 

When this expansion is substituted into Eq. (2.9) and the 
coefficients of the various powers of K are equated to zero, 
one obtains a sequence of equations for the cP n of the form 

(2.11) 

where So = 0 and where Sn depends on CPn _ I , ... ,CPo and is 
thus a known function of u and r. It is this system of equa
tions that we must solve subject to a causality condition. In 
the next section we show how this task is accomplished. 

III. CAUSAL APPROXIMATE SOLUTIONS 

In the above example we considered a special problem 
with spherical symmetry; in this section we drop that as
sumption. However, we will assume that the field can be 
expanded in spherical harmonics as well as in an asymptotic 
series in the coupling constant K. In this case the hierarchy of 
equations to be solved for the CPn,/,m which appear in this 
double expansion have the general form 

(3,1) 

where again So, I,m = 0 and Sn,l,m is a function oflower order 
cp's. 

Consider first the equation with n = O. The most gen
eral solution to this equation is a linear combination of an 
outgoing and an incoming solution of D' Alembert's equa
tion of multipolarity I with Uo and Vo replaced by u and v, 

respectively. For I = 0 

CPo,oo = g(u) + h (v), (3.2) 

whereg and h are arbitrary functions oftheir arguments. For 
1=1 

CPO,lm = !gm(u) + (lIr)gm(u)j 

+ [hm(v) - (lIr)h m (v) j, (3.3) 

where againgm and hm are arbitrary functions oftheir argu
ments and similarly for other values of I. The arbitrary func-
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tions appearing in these solutions are determined in the 
method of MAE by matching these solutions to correspond
ing solutions of the inner problem. In order that our overall 
solution be causal we shall require that, if the sources are 
stationary for times t < to, then there exists some Uo which is 
related to to such that the above solutions are also stationary 
for all u < Uo' The only way in which this can happen, of 
course, is if these solutions are independent of v. In this case 
they represent purely outgoing waves plus, perphaps, some 
everywhere static field. 

Let us now consider the remaining equations in the 
hierarchy (3.1). In order that our overall solution will be 
causal we shall require that each ¢In,lm be stationary for 
u < uo. It follows that the effective sources on the right-hand 
sides of these equations will also possess this property, They 
can therefore be written as the sum of two terms, one of 
which is everywhere stationary and another that vanishes for 
u < Uo' Thus, each ¢In,/m will consist of an everywhere sta
tionary part which has as its source the stationary part of 
Sn,lm' and another part which has the part of Sn,lm that van
ishes for u < Uo as its source. Since no causality condition is 
involved in solving the stationary parts of the hierarchy 
equations, we will not concern ourselves with them here, but 
consider only the problem of sol ving the nonstationary parts 
of these equations. 

We thus require solutions of equations of the form (3,1) 
where the effective sources vanish for u < Uo which also van
ish for u < uo' The problem of finding such solutions is com
plicated by the fact that the effective sources are only known 
as functions of u and r in the outer zone so that the usual 
retarded Green function, whose use requires a knowledge of 
the sources everywhere, cannot be employed. In spite of this 
difficulty, we have found a particular causal solution to 
equations of the form (3.1). It is 

¢In,lm = pJ~ 00 kn,/m(u',y) du', (3.4) 

where y = (u - u')/2 + r and where the operator PI is given 
by 

p{ = (ar - 2/r)(ar - 4/r) ... (ar - 21/r). (3,5) 

The integrand appearing in Eq. (3.4) in turn satisfies 

2ar Plkn,Im = Sn,/m' (3.6) 
This last equation can be integrated directly to give 

kn,lm =':21 roo dr1 r 1 
-2 roo dr2 r2 -2 x ... 

Jr Jrl 

(3,7) 

where 

(3.8) 

The proof that Eqs. (3.4)-(3.8) constitute a particular 
solution to Eq. (3.1) is given in the Appendix. Here we note 
that, as follows from Eq. (3.7), we only need a knowledge of 
the source function Sn,/m in the outer region to construct 
kn,'m' since the integrals appearing in Eq. (3.7) do not extend 
into the inner zone. Furthermore, we see that if Sn,lm is zero 
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for u < Uo then kn,lm will also have this property. It follows 
therefore that ¢In,lm will also have this property. Since it is a 
particular solution of Eq. (3.1), we see that we can add to it 
any solution of the homogeneous equation that also vanishes 
for u < Uo to obtain the general causal solution of this equa
tion. This latter function will then be determined by match
ing to the inner solution. Finally, we should mention that 
Bardeen and Press5 have constructed approximate solutions 
for wave equations in a Schwarzschild space-time that are 
causal in the sense employed here. We have applied our 
method to their equation for a scalar field for the cases 1 = 0 
and 1 and have shown that the two sets of solutions are equal 
to each other. 

IV. CAUSAL SOLUTIONS FOR HIGHER-ORDER SPIN 
FIELDS 

In their paper referred to above, Bardeen and Press also 
considered wave equations for higher-order spin fields in a 
Schwarzschild space-time. These equations have the form 

pauar + (2/r)(s + p + l)au - J2 r - (2/r)(s + l)ar 

+ (l/r)(l + s + 1)(/- sJl if, = S/(u,r), (4.1) 

where SI is a known function of u and r which vanishes for 
u < Uo and is 0 (r- 3). In these equations s is the spin of the 
field and can take on values 0,1, .... The parameter p is the 
spin weight of the particular component of the field being 
considered and has the values ± s. If we make the substitu
tion if, = ¢J/~, where m =s -p + I, Eq. (4.1) takes the 
form 

(l/~H ar (2au - ar ) + (2p/r)(2a u - ar ) 

+ (l/r)(1 + p)(/- p + 1) 1¢J, = S/(u,r). (4.2) 

A causal solution to this equation is again of the form 

¢JI = pJ~ 00 k{(u',y)du', 

where now 

PI = (ar - 2/r)(ar - 4/r) ... (ar - 2(P + 1 )/r) 

(4.3) 

(4.4) 

with I> - p if P is negative or 1>0 if p is positive. The func
tion k{ now satisfies 

(4.5) 

which can again be integrated to yield an expression for k{ 
similar to that given by Eq. (3.7). 

V. DISCUSSION 

In this paper we have shown how to construct an ap
proximate causal solution to a class of wave equations with 
backscatter. We want to emphasize that although we have 
employed the notion of a source that is stationary for times 
less than some to, there is nothing that precludes the possibil
ity that to lies in the infinite past. The solution given above is 
applicable in this case as well, provided only that the integral 
in Eq. (3.4) exists; this will be the case ifthe source does not 
grow too rapidly in the infinite past. We also want to empha
size that, even if one only requires the first term in the ap
proximation, it is important to know that it is the first term in 
a consistent approximation procedure. 
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APPENDIX: PROOF OF SOLUTION 

To prove that ¢In.lm given by Eq. (3.4) is a solution ofEq. 
(3.1) we will first prove by induction that 

ar(2iJu - ar)PIK = arPI(2iJu - ar)K -/(1 + l)(PIK)/r 
(AI) 

for alII where PI is given by Eq. (3.5) and where K is any 
reasonably well-behaved function of u and r. Because au 
commutes with PI' this equation reduces to 

rJ2rPIK = arPlarK + 1(1 + l)(PIK)lr. (A2) 

Equation (A2) is obviously satisfied when I = 0. Let us as
sume now that it is satisfied for some I and make the substitu
tion 

K~(ar - 2(1 + l)/r)K (A3) 

in Eq. (A2). The result of this substitution is 

a/PI + IK = arPI+ larK + (I + 1)(1 + 2)(P[+ IK)lr 

+ arP[(K /r) - (lIr)PMr - 2(1 + l)1r)K. 
(A4) 

Thus we see that Eq. (A 1) will hold for I = I + 1 if it holds for 
I provided that 

arP[(K /r) = (lIr)PMr - 2(1 + l)1r)K (AS) 

for alII and any K. It is any easy matter to show that this 

1950 J. Math. Phys., Vol. 25, No.6, June 1984 

equation holds for I = I + 1 if it holds for I by now making 
the substitution 

K~(ar - 2(1 + 2)1r)K (A6) 

into it. Since it obviously holds when I = 0, we can again 
conclude by induction that it holds for alII. We therefore 
conclude that Eq. (AI) holds for alII. 

With the use ofEq. (AI) we can now rewrite equation 
(3.1) after dropping unnecessary subscripts in the form 

arPI(2iJu - ar)K1 = Sf' (A7) 

If we then take 

K[ = f: 00 k[(u',y)du', 

we see that kl satisfies 

(AS) 

2iJrP[k[ = SI' (A9) 

which is just Eq. (3.6), thus proving that ¢In,[m given by Eq. 
(3.4) is indeed a solution ofEq. (3.1). A similar proof can be 
given for the case of the higher-spin equations. 

'G. Leipold and M. Walker, Ann. Inst. H. Poincare, 27 (1977). 

2M. Walker (private communication). 
3J. Ehlers, in Isolated Gravitating Systems in General Relativity, Proceedings 
of the International School of Physics Enrico Fermi, Course XL VII, edited 
by J. Ehlers (Academic, New York, 1979). 

4See, for example, A. Nayfeh, Pertrubation Methods (Wiley, New York, 
1973). 

'1. M. Bardeen and W. M. Press, 1. Math. Phys. 14, 7 (1973). 
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Alberto Garcfa Dfaze) 

Centro de [nvestigacion y de Estudios Avanzados del [PH, Departamento de Flsica, Apartado Postal 14-740, 
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All type D electrovac solutions with cosmological constant for an algebraically general 
electromagnetic field aligned along the Debever-Penrose directions are obtained. From a single 
canonical metric element both the null and the non-null orbit solutions are derived 
simultaneously. The explicit expressions of the obtained solutions are listed in the table. 

PACS numbers: 04.20.Jb 

1. INTRODUCTION 

In this work we determine, in a systematic and unified 
manner, the complete set of solutions for the class §J of 
electrovac metrics with A, i.e., solutions of Petro v type D to 
the Einstein-Maxwell equations with cosmological constant 
for an algebraically general electromagnetic field aligned 
along the double Debever-Penrose (DP) vectors. The §J so
lutions possess always a two-parameter Abelian isometry 
group with orbits of two kinds-null and non-null orbits. 

The general structures for the non-null and null orbit 
§J metrics have been established, without explicit integra
tion, by Debever and McLenaghan. 1 

In our earlier paper,2 in what follows referred to as I, we 
have established all solutions of the null orbit §J class, and 
also we have shown, in Sec. 5 of!, the canonical form ofthe 
metric for the non-null orbit family of §J solutions together 
with the complete set of field equations to be satisfied by the 
structural functions. 

Here, starting from a single canonical metric element, 
we determine, by integrating the field equations pointed out 
in Sec. 5 of I, all the non-null orbit §J solutions and the null 
orbit §J class as well. The obtained solutions contain, as it 
should be, all known typeD metrics; for instance, the seven
parameter Plebanski-Demianski solution,3 by canceling out 
the electric and magnetic charges, one arrives at the vacuum 
type D metrics with A, by setting A to zero, one obtains the 
Kinnersley electrovac solutions,4 and so forth. 

2. GENERAL METRICS. EINSTEIN-MAXWELL 
EQUATIONS AND THEIR SOLUTIONS 

The study of the §J class of solutions, possessing an 
isometry group with null or non-null orbits, we begin from 
the canonical metric 

g = H -2{ ~dX2 + .!-. (dr + P daf 
P ..1 

+ 2 dy(dr + m dO') - ~ (dr + m dO')2} , (2.1) 

and the electromagnetic two-form 

(j) = H -2(1&' + i.@)[(dr + m dO') 1\ dy 

+ i(dr + p dO') 1\ dx I, (2.2) 

aJ Also at Seccion de Graduados, Escuela Superior de Ingenieria Mecimcia y 
Electrica del lPN, Mexico, D.F. 

where the structural functions mix), p( y), ..1: = m - p, P (x), 
Q (y), and H (x,y) satisfy the canonical set of equations 

..1 (mxx - Pyy) - (mj - (py)2 = 0, (2.3a) 

4L1Hxx = diY, 4L1Hyy = - diY, 

2mxHx + 2pyHy = diY, 

2L1Hxy - mxHy + pyHx = 0, diY: = (mxx + pyy)H, 
(2.3b) 

- 4,1..1 = DxP + DyQ, 
DJ: = H2Fzz - 6HHJz - 4F(HHzz - 3(Hz)2), 

(2.3c) 

and the electromagnetic functions I&'(x,y) and .@(x,y) fulfill 
the Maxwell equations 

d In(1&' + i.@)H-2L1 - { :x dy + ~ dX) = 0, (2.4) 

which states that (j) from (2.2) is a closed two-form. The inte
grability condition of this last equation is just Eq. (2.3a). 

If the function Q is equated to zero, one obtains the null
orbit §J metric studied in I. 

For the non-null orbit §J class is more convenient, in 
order to facilitate the identification of the solutions studied 
with previously known solutions, the symmetric form of the 
metric (2.1), namely 

g=H-2{~dx2+ .!-.(du+pdv)2 
P ..1 

+ ~dy2_ Q (du+mdvf }, 
Q ..1 

(j) = H -2(1&' + i.@)[(du + m dv) 1\ dy 

+ i(du + p dv) 1\ dx J, 

(2.5) 

which is obtainable from (2.1) by executing the transforma
tion 

dr = du - L dy, dO' = dv + dy. 
Q Q 

(2.6) 

Without any loss of generality, one can consider option
ally the metric structure (2.5), with the structural functions 
satisfying the canonical set ofEqs. (2.3) and (2.4), as the basic 
canonical metric structure for the §J class of solutions pos
sessing a group with null or non-null orbits. From this point 
of view, the null-orbit solutions become limiting contrac
tions of the solutions for the metric (2.5) when Q is setting to 
zero, having executed previously the transformation (2.6). 
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TABLE I. Type fj) electrovac solutions with A. 

N 

B-R 

gR-N 

g*R-N 

gC 

gB(-) 

P- C[A] 

P-D 

g= H- 2{! dX2 + ~ (dr+ pdoP + 2dy(dr+ m do) - ~dr+ m da)2},,;j = m -p, 

w = H-2(~ + i@){(dr+ m da)/\ dy + i(dr + p do)/\ dxJ. 

T:{X =X,y=y, dr= du - ~ dy, do= du + ~}, 
g=H-2{~dx2 +~du +pdU)2 +~dy2 -~du +m dU)2}. 

p,;j Q,;j 

Static Metrics 

S(jlZ): = I - p.i', m = I = H,p = 0, P= S[(A + e2 + .flx], Q = S[(A - e2 - .flY], 
w = d ((e + ig)(ydr + ix da)l = :w(I). 
Q= 0, P= S(2.1.x), .1.= e2 +.f. 

E: = (- I,O,I}, m = I,p = O,H =y,w = w(I), 
A 

P=S(EX), Q= - - + Ey2 + 2my3 + (c + y2)y4. 
3 

m = I,p =O,H=x,w =w(I), Q=S(EY), 
A p = __ + €X2 + 2nx3 

- (e2 + .f)x4. 
3 

A Q = 0, P = - - + 2nx3 
- (e2 + .flx4. 

3 

m = I,p= I,H=x+y,w=w(I), 

p = ( - ~ + r) - EX2 + 2mx3 
- (e

2 + .flx4, 

Q=( - ~ -r)+ET+2mY +(e
2

+.flY
4
. 

Stationary Metrics 
m = e2x,p = 0, H = eXcos y, 
T:(x-> - pn x, ,Y-:-+arctany/I, P->(2Ix)-2p, Q->(J2 + y2)-2Q I, 

( 
dX2) 8 Q g=8 Pda2+- +-dT--7(dr-2Ixdoy,8=J2+y2, 
P Q 8 

A P= S(EX), Q = e2 +.f _ El2 + fA 4 - 2my + (E _ 2.1.1 2) y2 __ y4, 
3 

d {( . )( dr .y - if d )} w= - e+lg --. -1--. X a . 
y+li y+li 

m = 0, p = e2y, H = eY cos x, 
T:(x;arctanx/I,y-> - j Iny, P->(/2 + X2)-2p, Q->(2Iy)-2Q j, 

g = -7(dr + 2lydO)2 + - dx2 + 8(2 dydo - Qda2), 8 = 12 + x 2, 
[) p 

A 
P= - e2 -.f - El2 +.1./4 + 2nx + (E - 2.1.J2)x2 - -x<, Q = S(EX), 

3 

w=d (e+lg) --. +--. yda . { 
. (dr 1 - be )} 

l+lX l+lX 

Q=O,P= _e2_.f+2nX+A(/4_2/2x2_~4). 

m = x 2, p = - T, H = I, W = - { e + ~g (dr + ixy do)} = :w(2), 
Y+lX 

P = b -.f + 2nx - EX2 - .ix<, Q = b + e2 - 2my + €)I2 _ .i y4. 
3 3 

Q = 0, P = - (e2 + .f) + 2nx. 
m=x2,p= -I,H= l-xy,w=w(2), 

P(x) = ( - ~ -.f + r) + 2nx - EX2 + 2mx3 + ( - ~ - e
2 

- r )X4, 

Q(X)=( - ~+e'+r)+2mY-Ey2+2ny+( - ~ +.f-r}4. 

Z 

° 

ReZ 

° 

ReZ 

Z 

° 

Z 

Z 

To integrate the field equations [(2.3) and (2.4)] one has 
to proceed as follows: First, solve Eq. (2.3a) for m and p. 
Second, integrate Eqs. (2.3b) for H. Finally, integrate Eq. 
(2.3c) for P and Q. Equations (2.3a) and (2.3c) yield always to 
variable separable equations. The Maxwell equations (2.4) 
are trivially integrable by virtue ofthe (2.3a) equation. Basi-

cally, all solutions of Eq. (2.3a) and (2.3b) for m, p, and H 
have been obtained in I, therefore, in the present generaliza
tion with Q different from zero, it remains only to integrate 
the scalar curvature equation (2.3c) for P and Q. 
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In the present generalization, the following theorem for 
the congruences of electromagnetic eigenvectors, say I and n, 
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applies: Within the class g of metrics, when mx andpy do 
not vanish simultaneously, if the congruence I (n) is nondi
verging, then it is also twist-free. 

Proof For the g metric in the (2.5) form, the complex 
rotation Z of I (n) is given by 

Z(t) =Z(n) 

= _ H + -...LH+ __ x H 
( 

Q )112{ 1 P i m } 
L:1 y 2.:i 2 .:i 

= =( ; )1I2(p + iw). (2.7) 

[For the g metric given by (2.1) the complex rotations are 
Z (/) = p + iw, Z (n) = (Q /2.:i ) (p + iw)]. Let the diver
gencep to be zero, p = 0, differentiating with respect to y this 
equation for p, and substituting Hyy from (2.3) in the so ob
tained equation, one arrives at H (m x f = 0, thus the twist w 
is zero. Inversely, suppose that the twist w is zero, w = 0=> 
mx = 0, hence, from (2.3a), Pyy =.:i -I(pyf Substituting 
this Pyy into the equation with first derivatives of H, one 
arrivesatpyp = 0. Therefore, provided thatmx = ° =l-Py,p is 
equal to zero. 

If mx = ° = PY' there exist twist-free g solutions en
dowed with divergence p = Hy • 

This theorem allows us to subclassify the solutions ac
cording with the (vanishing or different from zero) values of 
the derivatives mx and Py. The determination of P and Q 
from Eq. (2.3c), as was pointed out above, is straightforward 
once the functions m, p, and H are known. Omitting this 
evaluation, we list all type D (electrovac and vacuum) solu
tions with cosmological constant (if present) in the table be
low. 

In the table we give the solutions in canonical coordi
nates, omitting spurious parameters. When Q is equal to 
zero, one arrives at the null orbit solutions; in the case Q =I- 0, 
one is dealing with the non-null orbit solutions. The symbols 
used are N (name symbol); BR (Bertotti-Robinson), RN 
(Reissner-Nordstrem), C (metric ofLevi-Civita), [A ],]j ( + ), 
]j ( - ) (Carter solutions),:'i P (Plebanski),6 and PD (Ple
banski-Demianski).7 The symbolsg and • stand for "gener
alized" and "anti." T:f I denote transformations; we omit 
linear transformations of the Killingian variables r(u) and 
u(v). Z denotes complex expansion. 

Specializing the values of the parameters one arrives at 
more special subclasses of solutions. For complete refer
ences, see Ref. 8. 

For the sake of completeness, the explicit expressions of 
the secondary curvature quantities are given in the Appen
dix. 

3. CONCLUSIONS 

The g metrics (null and non-null orbit) are exhausted 
by the solutions presented in the table. Specializing the val
ues of the parameters one arrives at more particular solu
tions; for instance, the vacuum and charged Kinnersley solu
tions, the g's with A, the Kerr-Newman solution, the 
generalized Schwarzschild metric, .... The seven-parameter 
Plebanski-Demianski solution is the most general of the g 
metrics. 

Note added in proof After this paper was concluded, we 

1953 J. Math. Phys., Vol. 25, No.6, June 1984 

learned ofthe work ofR. Debever, N. Kamran, and R. G. 
McLenaghan on closely related subjects.9 

APPENDIX 

The curvature quantities can be easily determined by 
using the null tetrad formalism. The metric g and the two
form w for the g class of solutions can be given as 

g = 2el ® e2 + 2e3 ® e4
, 

w = (i&' + i~)(el /\e2 + e3 /\e4
), 

(AI) 

Thus, the e3 and e4 null vectors are aligned along the electro
magnetic eigenvectors I and n, and consequently, along the 
DP directions. Hence, the only nonvanishing component of 
the traceless Ricci tensor Cab is C12 = - i&'2 - ~2, and the 
only different from zero complex curvature quantity Cia) 

(a = 1, ... ,5), which characterize the Weyl tensor, is C(3). 

For the expression (2.1) the choice of eO is 

EI} ( P )1I2{ .:i } c = H - I L:1 P dx ± i{dr + p du) , 

(A2) 
c =H-I(dr+ m du), 

E4 = H -I[dy - (Q /L:1 )(dr + m do")), 

while for the symmetric metric (2.5), the ea are 

::}=H-I( ~ y/2[ ~dX±i{du+mdV)]' 

::}=H- I(; )1I2[ ~dY±{du+mdV)]. (A3) 

The tetrad eO from (A3) is related with ~ from (A2) by a 
u-gauge, withu = In{Q /L:1 )112, accompanied by the coordi
nate transformation (2.6). Under this gauge-coordinate 
transformation one has 

el---+EI, e2~, (Q /L:1 )-1(2 e3~, (Q /L:1 )1/2 e4---+E4, 

C(3)(e)_CI3)(E), Cde)-CdE). (A4) 

With respect to these eO or ~ tetrads the curvature quantities 
C(3) and CI2 are given by 

6.:iH -2C(3) = P _ 3 mx P _ 2P [ mxx 
xx .:i x .:i 

- 2( :x r + (~ rJ 
+Qyy +3~ Qy 

+2Q[ P; +2(~ r -( :x)T 
4.:iH -2C12 = - 4.:iH -2(i&'2 + ~2) 

P (Hx mx) = xx -2 H + ~ Px 

2 ( H x ) - - p -2m - P .:i yy x H 

_ Q + 2( Hy _ Py )Q 
YY H .:i Y 

2 ( H y ) - ~ mxx - 2py H Q. (A5) 
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Exhaustive integration and a single expression for the general solution of the 
type D vacuum and electrovac field equations with cosmological constant for 
a nonsingular aligned Maxwell fielda) 

R. Debever 
Departement de Mathematique, Universite Libre de Bruxelles, Brussels, Belgium 

N. Kamran and R. G. McLenaghan 
Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada 

(Received 1 June 1983; accepted for publication 18 November 1983) 

W e prese~t an exhaustive integration of the type D vacuum and electrovac field equations with 
cosmologIcal constant admitting a nonsingular aligned Maxwell field satisfying the generalized 
Goldberg-Sachs theorem. We derive a single expression for the general solution from which one 
may obtain all particular cases known until now in partial versions. We also investigate in detail 
the separability properties of the Hamilton-Jacobi equation for the charged particle orbits and of 
the Klein-Gordon equation for a massive charged spin-zero test particle and their corresponding 
Killing tensors. 

PACS numbers: 04.20.Jb, 02.30.Jr 

1. INTRODUCTION 

A major contribution to the theory of type D vacuum 
and electrovac solutions with cosmological constant was 
made by Carter l

-
3 who, while searching for the solutions 

admitting a two-parameter abelian invertible isometry 
group and separable Hamilton-Jacobi and Klein-Gordon 
equations, determined essentially all the nonaccelerating 
typeD solutions4 in a coordinate system in which the compo
nents of the metric and Maxwell field are rational functions. 
Another important contribution was made about the same 
time by Kinnersley5 who, by choosing a null tetrad and co
ordinates specialized along one of the pair of repeated null 
directions of the Weyl tensor whose existence is guaranteed 
by the Goldberg-Sachs6 theorem, obtained all the vacuum 
solutions the most complicated of which, the C-NUT (Case 
III.B in his paper), a twisting generalization of the accelerat
ing C-metric of Levi-Civita, is expressed in terms of Jacobi 
elliptic functions. All the vacuum D solutions admit, as was 
observed by Kinnersley and later proved more directly by 
Hughston and Sommers,7 Weir and Kerrs (in the expanding 
case), and Czapor and McLenaghan9 (referred to as CM in 
the sequel), at least a two-parameter abelian isometry group 
and, as has been shown by Matravers lO and CM, a separable 
Hamilton-Jacobi equation for the null geodesics. The next 
advance was the integration by Plebaiiski and Demiaiiski II 

of the electrovac field equations with cosmological constant 
for a particular metric ansatz similar in form to one consid
ered by Carter I 2 but incorporating a more general conformal 
factor derived earlier by Debever13 in his analysis of Carter's 
hypotheses, yielding a seven-parameter family of type D so
lutions expressed in rational functions and interpretable as a 
charged version with cosmological constant of the C-NUT 
solution. This result was obtained independently by Weir 
and Kerr in the vacuum case, from their analysis of expand
ing algebraically special solutions admitting two commuting 

-) This work was supported in part by a grant from the Natural Sciences and 
Engineering Research Council of Canada. 

Killing vectors. The explicit coordinate transformation re
lating the seven-parameter solution to the C-NUT solution 
generalized to include charge and cosmological constant has 
been given independently by Debever and Kamran 14 based 
on previous work of Debeverl5 and by Ishikawa and Miya
shita. 16 The picture of the type D electrovac solutions with 
cosmological constant is completed by a class of solutions 
apparently first brought to light by Debever and McLen
aghan 17.IS and Debever and Kamran, 19 for which the orbits 
of the two parameter abelian isometry group are null. The 
existence of these solutions seems to have been overlooked in 
the literature because of the generally held assumption that 
the above mentioned isometry group is invertible. All the 
previously known solutions, including the null orbit solu
tions, are special cases of a single expression for the general 
solution given recently by the authors20 (in a letter denoted 
by DKM 2 in what follows). 

The purpose of the present paper is to prove the above 
result, stated without proof in DKM 2, by giving an exhaus
tive integration21 of the type D vacuum and electrovac field 
equations with cosmological constant for an aligned nonsin
gular Maxwell field (the results of which have been presented 
without proof in an earlier paper22 denoted by DKM 1 in the 
sequel), followed by the derivation, by analytic continuation 
from the most complicated solution obtained, of the above 
mentioned single expression for the general solution. The 
results of this integration procedure are given in Theorems 1 
and 2 of Sec. 2. In passing, we give a derivation of the metric 
which was the starting point of Plebaiiski and Demiaiiski's 
calculation. 

This work is guided by the following principles: (i) unifi
cation by a single treatment of all the various particular cases 
previously considered separately, (ii) a choice of coordinates 
yielding maximal algebraic simplicity in the expressions for 
the components of the metric and Maxwell field. The inte
gration is modelled on and completes the work of Carter as 
generalized by Debever23 and has as its starting point the 
canonical forms for the metric and Maxwell field given in the 
electrovac case by Debever and McLenaghan24 (DM in the 
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sequel) and in the vacuum case by CM, where in the inverti
ble case the two principal null directions are treated in a 
symmetrical25 fashion, and where the existence of at least a 
two-parameter abelian orthogonally transitive isometry 
group and the separability of the Hamilton-Jacobi equation 
are shown without explicit integration. Another feature of 
the work is the proof of generalized versions of Carter's 
Hamilton-Jacobi and Klein-Gordon separability hypoth
eses, Theorems 3 and 4 of Sec. 2, as consequences of the type 
D field equations for the class of solutions considered. These 
results enable us to exhibit the corresponding (conformal) 
Killing tensors admitted by the solutions and to distinguish 
between the accelerating and nonaccelerating solutions. 

In Sec. 2 we state the hypotheses and results of the pa
per and give their relation to the work of others. Sections 3, 
4,5, and 6 contain the proofs of the theorems. We perform 
the calculations using the Newman-Penrose26 (NP) formal
ism and the equivalent complex vectorial formalism of Ca
hen, Debever, and Defrise. 27 The relationship between these 
formalisms is given in Debever, McLenaghan, and Tariq28 
(DMT). 

2. HYPOTHESIS AND STATEMENT OF RESULTS 

We consider solutions of Einstein's vacuum and elec
trovac field equations with cosmological constant, which 
may be written as 

Rij - !Rgij + Agij = FikFj k - J.gijFkIFkl, 

F ik; k = 0, F[ij;k J = 0, 

(2.la) 

(2.lb) 

where we permit the cosmological constant A and the elec-
I 

tromagnetic field tensor Fij to vanish, which satisfy the fol
lowing conditions: 

HI. The Weyl tensor Cijkl is everywhere of Petro v type 
D which is equivalent to the existence of real null vector 
fields I and n satisfying at every point 

I jl kCijk [11m J = njnkCijk [I nm J = O. (2.2) 

H2. If the Maxwell field tensor Fij is nonzero it is non
singular with its principal null directions aligned with the 
principal null directions of the Weyl tensor, that is we have 

liFiU1k J = niFi[jnk J = O. (2.3) 

H3. The invariants of the Weyl tensor and the trace-free 
Ricci tensor Sij: = Rij - !Rgij satisfy at least one of the fol
lowing inequalities: 

c. ·Cijkl ~O 
'lkl -r- , 

C C ijk/~4S Sij 
ijkl -r-) ij . 

(2.4a) 

(2.4b) 

The last hypothesis is required to insure that the principal 
null congruences defined by I and n, respectively, are both 
geodesic and shear-free, that is that the generalized Gold
berg-Sachs29.30 theorem holds. The exceptional case when 
H3 is not satisfied has been studied by Plebaiiski and Ha
cyan3J and Garcia and Plebaiiski. 32 It is worth noting that 
H3 is automatically satisfied in the case of the vacuum field 
equations with or without cosmological constant. Following 
DM we shall denote the class of solutions ofEqs. (2.1) satisfy
ing HI, H2, and H3 by SD and the subclass which are solu
tions of the vacuum equations with or without cosmological 
constant by SDo. 

The main results ofthis paper are given in the following 
theorems. 

Theorem 1: For every solution in SD there exists a system oflocal coordinates (u,v,w,x) in which the metric and self-dual 
Maxwell field have the form 33 

dsz = [ IEJP(W) - E2m(x) I ] I m(W)[ EJ du + m(x)dv]Z + (1 _ f2)( _2_) [ dW{E J du + m(x)dv) ] 
TZ(w,x) t'v EJP(W) - Ezm(x) 1 + f2 EJP(W) - E2m(x) 

( 
2f )Z[ dW2] V()[ E2 du + P(W)dV]2 _ dX2} 

- 1 + f2 jU(w) - x EJP(W) - Ezm(x) V(x) , (2.5a) 

; = B (W,X){dW 1\ [ E J du + m(x)dv] _ i dx 1\ [ Ez du + p(w)dv ]} , 
EJP(W) - E2m(x) EJP(W) - E2m(x) 

(2.5b) 

where E J , Ez, andfare constants satisfying E/ + E/I=O, and 
all functions are real valued except B which is complex. 

The above forms follow by combining the non-null 
group orbit (whenf 1=0) and the null group orbit (whenf = 0) 
metrics and Maxwell fields given separately in Theorem 2 of 
DM (electrovac case) and CM (vacuum case). The group or
bits are timelike, spacelike, or null at a given point according 
to whetherjU (w) is positive, negative, or zero, respectively. If 
fl=Oitmay, under the assumption U(w»O, beset equal to 1 
or - 1 corresponding to timelike or spacelike orbits, respec
tively, in which cases the group is manifestly invertible and 
hence orthogonally transitive. Iff = 0 the group is orthogo
nally transitive but not invertible. 

A real vector potential for the Maxwell field F has the 
following form34

: 
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-,---------------------------------------
A = ( EzG (x) + E JH (w) )dU + (p(W)G (x) + m(x)H (W))dV, 

EJP(W) - E2m(x) EJP(W) - E2m(x) 
(2.5c) 

where G and H are real valued functions of the indicated 
variables. It should be noted that F: = 2 dA is more special 
than the Fimplied by Eq. (2.5b). However, it will be shown 
that vector potentials of the form (2.5c) exist for every solu
tion in the class SD. 

Integration of the remaining Einstein field equations 
yields the following: _ 

Theorem 2: The general solution A • in the class SD may 
be obtained by specifying the constants E J and E2 and the 
functions m, p, T,jU, V, and B appearing in (2.5) as follows: 

E J = b z cos y, Ez = sin y, (2.6a) 
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m(x) = - [e2x2 + b 2k 2 + z2(1 - b 2 COS2 r)/sin2 r] 

Xsin r - 2clx, (2.6b) 

e2(go sin2 r - b % cos2 r) 
+ c[(2a/ 3 + b 4k)[1 cos r -lgI sin r] 

p(w) = [b 2e2w2 + k 2(b 2 - sin2 r)/cos2 r + 12] 

X COS r + 2b 2ekw, (2.6c) 

(2.6d) 

- (b 4k2 + 12 + 4akP)[2 

+ (b 4k3 + 3kl 2 + 6ak 2/3)h 
T(w,x) = a(ew COS r + k )(ex sin r + I) + 1, 

fU(w) = e2(b 4g4 + 2a2BJio)w4 cos2 r + ehw3 

X cos r + 12w
2 + Il w + 10' (2.6e) 

+ (314 _ b 8k 4 - 6b 4k 2z2 - Sab 4k 3e)g4 

+ 2(1 - 6a2k 2/2 - Sa2k 3e - a2b 4k4)BJio = 0, 

V(x) = e2g4x
4 sin2 r + e[ae/l cos r - 2ak12 (2.6i) 

+ 3ak 2/3 + 4(/- ab 4k 3)g4 - Sa3k 3BJio]x3 sin r 

+ [3aelfl cos r - (1 + 6akl)[2 + 3k (1 + 3akl)[3 
+ 6(12 - b 4k2(1 + 2akl))g4 - I2a2k 2 

X(I + 2akl)BJio]x2 +glx+go, (2.6f) 

B (w,x) = Bo( b 2(ew cos r + k ) + i(ex sin r + I) ), (2.6g) 
b 2(ew cos r + k ) - i(ex sin r + I ) 

and are otherwise restricted to a range such that the metric is 
nonsingular and of signature minus two. This requires that 
V (x) > ° which may also limit the range of the coordinate x. 
The cosmological constant A is given in terms of the above 
parameter by 

A = - 3 [a2e2/0 cos2 r - a2ekfl cos r + a2k 2/2 

where 10' II ,/2,13' go' gl' g4' Bo, a, b, e, k, I, and r are real 
parameters and Bo is a complex parameter which satisfies 
the following relations: 

-a3k 3/3+(1 +a2b 4k4)g4 + 2a4k 4BJio]' (2.6j) 

We now list the main special cases of the general solution 
described in Theorem 2 which are obtained by giving the 
indicated values to the parameters a, b, e, k, I, and r in the 
Eqs. (2.5) and (2.6). The nonzero NP component 1[12 of the 
Weyl tensor is also given in each case. In Sec. 4, it will be 
shown by direct integration that these solutions exhaust the 
class :D. 

aeg I sin r - 3a2cl 2/1 cos r 

1957 

+ 2a/(I + 3akl)[2 - [1 + 3akl(2 + 3akl)V3 

+ 4[b 4k - ae + 3ab 4k 21 (1 + akl)]g4 

+ Sa2k [1 + 3akl (1 + akl )]BJio = 0, (2.6h) 
I 

Case A *: b = 1, e = {i, k = 1 = 0, and r = 1T/4, implying 

EI = E2 = 1!{i, m(x) = - ,[2x2, p(w) = {iw2, T(w,x) = awx + 1, 

fU(w) = [a
2
(2BJio - 10) -!A ] w4 + agtw

3 + 12w2 + Ilw + 10' 

V(x) = - (a% +!A).x4 + allx
3 - IzX2 + gtX + 10 - 2BJio, 

B (w,x) = Bo(w + ix)/(w - ix),Bo = :bo(cos a + i sin a), 

G (x) = boX sin a, H (w) = - bow cos a. 

1[12: = ~Cijkll inj(mkm1 -I knl) = !(1 + awx)3(w - ix)-3 [fl + igt + 4BJio(1 - awx)(w + ix)-t]. 

Case B O
: a=O, b=e= 1,1=0, r=1T/2, implying 

EI = 0, E2 = I, m(x) = - x 2 - k 2, p(w) = 2kw, T(w,x) = 1, 

fU(w) =/2w2 + Ilw + 10' 

V(x) = - jAx4 - (/2 + 2k2A).x2 + gtX + k % + k4A - 2BJio, 

B (w,x) = Bo(k + ix)/(k - ix), Bo = :bo(cos a + i sin a) 

G (x) = bo(x sin a - k cos a), H(w) = - bow cos a. 

1[12 = !(k - ix)-3[ - 2k(3/2 + 4k2A) + 3igl + 12BJjo(k + iX)-I]. 

Case B O+: a = 0, b = e = 1, k = 0, r = 0, implying 

EI = I, E2 = 0, m(x) = - 21x, p(w) = w2 + 12, T(w,x) = 1, 

fU(w) = - jAw4 - (g2 + 2/ 2A )w2 + Ilw + 12g2 + 14A + 2BJjo, 

V(x) = gzX2 + gtX + go, 

B (w,x) = Bo(w + if )/(w - if ),Bo = :bo(cos a + i sin a), 

G (x) = boX sin a, H (w) = bo(/ sin a - w cos a). 

1[12 = i (w - il)-3[3/1 - 2if(3g2 + 412A) + 12BJio(w + il)-I]. 

Case C*: a = 1, b = 0, e = {i, k = 1=0, r = 1T/4, implying 

EI = 0, E2 = 1!{i, m(x) = - ,[2x2
, p(w) = 0, T(w,x) = wx + 1, 

fU(w) = 2BJiow4 + 13w3 + f2W 2 + flw + 10, 
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(2.7a) 

(2.7b) 

(2.7c) 

(2.7d) 

(2.7e) 

(2.7f) 

(2.7g) 

(2.Sa) 

(2.Sb) 

(2.Sc) 

(2.8d) 

(2.8e) 

(2.8f) 

(2.Sg) 

(2.9a) 

(2.9b) 

(2.9c) 

(2.9d) 

(2.ge) 

(2.9f) 

(2.9g) 

(2.1Oa) 

(2.1Ob) 

(2.1Oc) 

1957 



                                                                                                                                    

V(x) = - (10 + ~ A.)x4 + I IX3 - IzX2 + J;X - 2BJio, 

B(w,x) = -Bo =: - bo(cosa + isin a), 

G (x) = boX sin a, H (w) = - bow cos a, 

1[12 = ~-4(I + WX)3U;X + 4BJio(I - wx)]. 

Case COO: a = 0, b = 1, c = 0, k = 0, 1= 1, r = 0, implying 

EI = 1, E2 = 0, p(w) = 1, mIx) = 0, T(w,x) = 1, 

(2.Wd) 

(2. We) 

(2. 1 Of) 

(2.Wg) 

(2. 11 a) 

(2.11b) 

(2.11c) 

(2.1Id) 

(2.IIe) 

(2.II!) 

(2.IIg) 

jU(w) = (2B;Bo -A. )w2 + IIW + 10' 
V(x) = - (2BJio + A.)x2 + gIx + go' 

B (w,x) = - Bo = : - bo(cos a + i sin a), 

G (x) = - boX sin a, H (w) = - bow cos a. 

1[12 = - ~ A.. 

We now describe the relation between our solution and the main classes of type D solutions of Eq.(2.I) given in the 
literature. By setting a = 0, b = I = 1 in Eqs. (2.5) and (2.6) we obtain the following family of solutions: 

E, = cos r, E2 = sin r, T(w,x) = 1, 

mIx) = - (C2X2 + k 2 + [2)sin r - 2clx, p(w) = (C2W2 + k 2 + [Z)cos r + 2ckw, 

U(w) = - j A.CZW4 
COS

Z r - ~ A.ckw3 cos r + Izw2 + IIW + 10' 

(2.12a) 

(2.12b) 

(2.12c) 

(2.12d) 

(2.12e) 

V(x) = - j A.C2X4 sinz r - ~ A.clx3 sin r - [j; + U (k Z + f2)]X2 + g,x + go, 

BJio = ~[c2(fo cosz r - go sin2 r) + c(/g, sin r - kil cos r) + (k 2 + [2}fz + A. (k Z + [2)2]. 

Modulo an obvious substitution and relabeling this is 
Carter's35 [A] class of solutions which he characterized as 
the most general solution of the Eqs. (2.11 for which the met
ric and Maxwell fields admit a two-parameter, abelian, in
vertible isometry group and for which the Klein-Gordon 
equation for a massive, charged spin-zero field is soluble by 
separation of variables (Conditions I, II, illS, and IV of his 
paper). Such solutions are necessarily of Petrov type D. In 
Theorem III to follow we shall give a converse of this result. 

If we set c =..j2, k = 1= 0, r = 1T/4 in the Eqs. (2.12) or 
equivalently a = 0, b = I = I in our A * solutions we obtain 
Carter's [A ] class which has been rediscovered by Ple
baiiski. 36 This family of solutions is the most complicated 
branch of the [A] solutions depending as it does on six essen
tial arbitrary parameters and admitting only a two-param
eter isometry group. It reduces to the Demiaiiski-New
man37 solution when A. = 0./2> 0, 
g ,2 + 4/2(/0 - 2B;Bol > 0, to the charged Kerr solution of 
Newman et aJ.38 when in addition g, = ° and to the Kerr39 

solution when furthermore Bo = o. Whenl = 1 in our B 0_ 

and B 0+ solutions we obtain Carter's [0 ( - )] and [0 ( + )] 
class of solutions, respectively, which include the charged 
version with cosmological constant of the Taub4°_NUT4I so
lutions and their charged generalization due to Brill.42 These 
solutions depend in general on five essential arbitrary con
stants and possess a four-parameter isometry group. Setting 
1= 1 in our C 00 solution yields Carters [D ] class of solutions, 
the complete class of which was first discovered by Bertotti43 

and Robinson.44 These solutions depend in general on three 
essential arbitrary constants and admit a six-parameter iso
metry group. Kinnersley's45 class of vacuum type D solu
tions may be obtained in a single coordinate system by set
ting Bo = A = ° in the Eqs. (2.6) defining our general 
solution A *. Setting a = I = 1 in our A * solution yields after 
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the substitution u-..j2u, v--+(l/..j2)v and upon setting 

u = T, V = (7, W = q, x = - p (2.13a) 

B;Bo = ~(e02 + go2), 10 = r + e0
2 - tA, 

I, = -2m, 12=E, g) = -2n, (2.13b) 

and a change of signature, the seven-parameter family of 
solutions given by Plebaiiski and Demiaiiski46 in Eqs. (3.30) 
and (3.311 of their paper. These solutions generalize Carter's 
[A ] class of solutions to include the charged version with 
cosmological constant of Kinnersley's Case III.B solutions 
in a different coordinate system where the metric and Max
well field functions are rational functions of the coordinates 
rather than elliptic functions (see also Weir and Kerr,47 Deb
ever and Kamran,48 and Ishikawa and Miyashita49). The 
generalization is effected by allowing a more general confor
mal factor (see Debever50) which implies nonzero third de
gree terms in the metric functions U and V given by Eqs. 
(2.8b) and (2.8c). A charged version with cosmological con
stant of Levi-Civita's5' vacuum solution due to Plebaiiski 
and Demiaiiski, Newman and Tamburino,52 Robinson and 
Trautman,53 and Ehlers and Kundt54 may be obtained from 
our C * solution by settingl = 1 in the Eqs. (2.5) and (2.10). 
This solution depends on six essential arbitrary parameters 
and admits a two-parameter isometry group. Both of the 
above solutions have the property which will be stated pre
cisely in Theorems III and IV that the Hamilton-Jacobi 
equation for the massless particle orbits and the conformally 
invariant wave equation satisfied by massless spin-zero fields 
are solvable by separation of variables55,56 while the corre
sponding massive equations are not. 

If/= -iinthefamilyofsolutionsA *,B o+ ,Bo_ ,C*, 
and COO we obtain solutions with spacelike group orbits. 
However, these solutions are not essentially different from 
the ones enumerated above where I = 1 if we allow the sign 
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of the function U appearing therein to be negative. This sign 
is determined by the relevant metric parameters and the 
range of the coordinate w. 

It remains to consider the solutions in ~ corresponding 
to f = 0 when the orbits of the two-parameter abelian iso
metry group are null. These solutions seem to have been 
overlooked in literature and have only recently been deter
mined. The most complicated of these solutions which we 
denote by Ao is obtained from the class A • by setting 
a = I = 0 in the Eqs. (2.5) and (2.7) which yields on rescaling 
the coordinates u and v the following metric and Maxwell 
field: 

d? = (w2 + X2) [ 2 dw(d: - ~2 dv) - (g IX - 2BJio) 
w +x 

X (
dU + w2 dV)2 _ dX2 ], 

w2 + X2 glx - 2BoBo 
(2.14a) 

F = Bo( w + ~x) [dW A ( du - X2 dv) 
W-IX W2+X2 

_ i dx A ( d:;-:::V)] , (2.14b) 

A = O. (2.14c) 

Up to an obvious relabeling this is the solution first brought 
to light by two of us. 57 It depends on three essential arbitrary 
constants, admits only to a two-parameter abelian isometry 
group, and possesses separable Hamilton-Jacobi and Klein
Gordon equations. It reduces to a vacuum solution iff 
Bo = 0, in which case one recovers Kinnersley's Case n.E 
solution with b = m = O. When Bo::/=O, the above solution is 
a special case of a class of type D solutions given by Deb
ever8 [obtained by setting b = 0 in his Eq. (2.12)]. It is also a 
special case of a family of solutions obtained by Leroy59 un
der different hypotheses60 [given by his Eq. (3.36) with 
b = 0]. For further reference we denote by A 0 the solution 
obtained by setting a = 0 in theA • solution. TheA 0 solution 
contains Carter's [A] solution and the null orbit solutionAo. 

A second class of null orbit solutions is obtained from 
the family B 0_ by settingf = 0 in Eqs. (2.5) and (2.8) which 
yields after the substitution U---+ - u, v---+ - v the following 
metric and Maxwell field: 

d? = (X2 + k 2)[2 dw dv - V(x) 

X ( du + 2kw dV)2 _ dX
2

], 
X2 + k 2 V(x) 

(2.15a) 

-; =Bo(k+~X)[dWAdV+idXA(du+2kwdv)J, 
k-IX x2+k 2 

(2.15b) 

where 

V(x) = - jAx4 - 2k2AX2 +glx + k4A - 2BJio' 
(2.15c) 

This solution which we denote by B 0_.0 has been given pre
viously by us in DKM 1 and OKM 2. The solution depends, 
in general, on four essential arbitrary constants since the 
parameter k if nonzero may be set equal to 1 by rescaling the 
coordinates. If k = 0 one obtains a more special null orbit 
solution61 which we denote by C o_.o in OKM I and which 
depends on three essential arbitrary constants. The B 0_ 0 
solution is in fact a special case of Carter's [B ( - )] family 
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obtained by setting h = 0 in his Eqs. (l3) and (14) or equiv
alently of our B 0_ family obtained by settingf = 1'/2 = 0 in 
the Eqs. (2.5) and (2.8) which condition is equivalent to the 
vanishing of the Gaussian curvature of the two-dimensional 
metric U (w)dv2 - U -1(w)dw2. The explicit coordinate trans
formation which yields the B °_.0 solution from the above 
B O

_ solution is given in the casefl::/=O by 

u---+u + kvw + 4klofl- 2 tanh-I [(w + 2v)l(w - 2v)], 
(2. 16a) 

v---+2/1 -I tanh -I [(w + 2v)l(w - 2v)], 

w---+-!j'lvw-Iofl- l, X---+X, (2.16b) 

with a similar but simpler transformation holding when 

11=0,/0=1=0. 
A third class of null orbit solutions may be obtained 

from the family COO by setting! = 0 in the Eqs. (2.5) and 
(2.11) which gives the following metric and Maxwell field: 

d? = 2 dv dw - V(X)dV2 - (V(X))-I dX2, (2.17a) 

+ 
F =Bo(duAdw + idxAdv), 

where 

V(x) = - UX2 +glx + go, 

BJio = !A. 

(2.17b) 

(2.17c) 

(2.17d) 

This solution which we denote by C 00'0 has been given pre
viously by the authors in DKM I and in a slightly different 
coordinate system in OKM 2. In general it depends on two 
essential arbitrary constants. This solution, in analogy with 
the property of the B 0_ .0 just discussed, is a special case of 
Carter's [D] family (the Bertotti-Robinson solutions) which 
may be obtained by setting A = - e2 in his Eqs. (17) and (18) 
or equivalently a special case of our COO family which may be 
obtained by setting I = I, A = 2BJio in Eqs (2.5) and (2.11). 
The explicit coordinate transformation which yields the 
C 00'0 solution from the above described COO solution is given 
in the case Of/I::/=O by U---+U and the Eq. (2.l6b) and in the 
case/l = 0,/0::/=0, by a similar but simpler transformation. 

In Sec. 5 a proof (a sketch of which is presented in 
DKM I) is given thatAo, B O

_.o, C o_.o, and COO'O are the 
only solutions in ~ for which the orbits of the two-parameter 
abelian isometry group are everywhere null. We denote by 
A 0 the solution in ~ obtained by setting a = 0 in the solution 
A •. The A 0 solution contains Carter's [A ] solutions and all 
the null orbit solutions. 

The separability of the Hamilton-Jacobi (HJ) equation 
for the zero rest-mass particle orbits (null geodesics) in a 
canonical coordinate system for every solution in ~ has been 
established in OM (electrovac case) and CM (vacuum case). 
The corresponding result for the HJ equation for the 
charged particle orbits is given in the following theorem: 

Theorem 3: The Hamilton-Jacobi equation for a parti
cle of mass m and charge e 

~8,ij( as -eAi ) (as -eAj ) = as = ~m2, 
2 ax' ax' aT' 2 

(2.18) 

where T' is an affine parameter, the gij are the contravariant 
components the metric tensor defined by Eq. (2.5a) and Ai 
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are the covariant components of the vector potential defined 
by Eq. (2.5c), is solvable by separation of variables in the 
canonical coordinates (u,v,w,x) of Theorem 1 if m = 0. If 
m # 0, the equation is solvable by separation of variables iff 
the condition 

~ [T-2(cJP - C2m)] = ° (2.19) 
awax 

is satisfied. 
Proof If S of the form 

S = !m2r + au + /3v + SI(w,a,f3,r,~) + S2(x,a,f3,r,~), 
(2.20) 

where a, /3, r, and ~ are constant, is substituted into the Eq. 
(2.18) one obtains the following equation: 

- jU(w)(S;(w)J2 + 2(1 + j2)-I(1 - p) 
XS; (w)(ap(w) - cz/3 - eH (w)) 

+ 4/(1 + j2)-2(U(w))-I(ap(w) - cz/3 

- eH (wW - V (x)(S ; (X))2 

- (V(X))-I(CI/3 - am(x) - eG (xW 

= m2(T(w,x))-2(cJP(w) - C2m(x)). (2.21) 

If m = 0, the above equation clearly separates into a pair of 
ordinary differential equations for the functions SI and S2' 
respectively. If m # 0, this separation is possible iff the addi
tional condition 

(T(W,x))-2(EJP(W) - C2m(x)) = g(w) + h (x) (2.22) 

is satisfied for some single variable functions g and h. This 
condition is clearly equivalent to the condition (2.19). 

An examination of the Eqs. (2.7) to (2.11) shows that the 
condition (2.19) is satisfied in the cases B 0_ , B 0+ , and Coo, 
and in the case A • if a = ° and is not satisfied in the case C·. 
Since these cases exhaust the class 1) we have proved the 
following corollary: 

Corollary: The Hamilton-Jacobi equation (2.18) for a 
particle of mass m and charge e is solvable by separation of 
variables in the case m = ° in the canonical coordinates 
(u,v,w,x) of Theorem 1 for every solution in the class 1). In 
the case m #0 the equation is solvable by separation of varia
bles only in the cases A 0, B 0_ ,B 0+ ,and COO that is in theA ° 
family of solutions. 

This corollary shows that Carter's separability condi
tion III is satisfied in only the subclass A ° ofthe class 1) of 
solutions but that it holds in the entire class 1) ifit is weak
ened to apply to the HJ equation for the zero rest-mass 
(charged) particles only. 

The existence of a conformal Killing tensor for every 
solution in 1) arising from the separability of the HJ equation 
has been shown in DM (electrovac case) and CM (vacuum 
case). The existence of a full Killing tensor B ij in the subclass 
A ° may be established in a similar manner from the separa
bility therein of the HJ equation for the massive charged 
particle orbit. Explicitly one has 

Bijrpi - eAJ(pj - eAj ) 

: = (g + h )-Ifh [ - jUp~ + 2(1 + P)-I 

X(1 - j2)Pw(p(pu - eAu) - C2(Pv - eAv)) 
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+ 4/(1 + j2)-2U- I(p(pu - eAu) - C2(Pv - eAvW] 

+g[Vp/+ V-I(CI(Pv -eAv)-m(pu -eAuW]J 

=:K, 

(2.23a) 

where 

as 
Pi = axi (2.23b) 

denote the components of the canonical momentum. The 
quantity K appearing in Eq. (2.23) is precisely the separation 
constant that arises from Eq. (2.21) when Eq. (2.22) holds. As 
such it must be constant along each charged particle orbit. 
This property may also be established by showing the van
ishing of the Poisson bracket (see Carter62

) 

[K,H] = 0, (2.24) 

where 

H: = !gij(Pi - eAi)(pj - eAj ) 
= ~ T 2Z -I [ _ jUPw 2 + 2(1 - j2) 

X(1 + j2)-lpw (ppu - c2Pv - eH) 

+4j(1 +P)-2U- I(ppu -c2Pv -eH)2 

- Vpx 2- V-I(cJPv -mpu -eG)2], 

(2.25) 

(2.26) 

is the Hamiltonian of the charged particle orbits and Eq. 
(2.22) again holds. It thus follows63 that the tensor Bij de
fined by Eq. (2.23a) must satisfy the Killing tensor equation 

B(ij;k I = 0, (2.27) 

and the additional condition 

Bk(i~l k = 0. (2.28) 

The tensor B. gt'ves an explicit form for the Killing tensor 
Jj -

whose existence in the A 0 solutions (in the case A = 0) has 
been shown by Hughston and Sommers64 from the existence 
of an appropriate two-index Killing spinor. 

The class of solutions 1) also possesses stronger separa
bility properties an example of which is provided by the sep
arability of the Klein-Gordon (KG) equation which governs 
the motion of a massive, charged, spin-zero test particle in an 
external field in the first quantized limit (for a discussion of 
such a theory see Carter65

). The precise result for this case is 
given in the following theorem: 

Theorem 4: The Klein-Gordon equation for a spin-zero 
field of mass m and charge e given by 

H1/I: = (g-112 ~gll2 - ieA.)gjk( ~ - ieAk) 1/1 
ax} } axk 

+ (~ R + m2)1/I = 0, (2.29) 

where Iij are the contravariant components of the metric 
tensor defined by Eq. (2.5a), where Ai are the covariant com
ponents of the vector potential defined by Eq. (2.5c), where 

g = Idet(gij)l, (2.30) 
and where R denotes the curvature scalar, admits in the case 
m = ° an R-separable solution66 of the form 

1/I(u,v,w,x) = ei(au + .8vI1/l1(W)1/I2(X)T(w,x), (2.31) 

where (u.v,w,x) are the canonical coordinates of Theorem 1, 

Debever, Kamran, and McLenaghan 1960 



                                                                                                                                    

provided that the Weyl tensor of the metric (2.5a) is of Petro v 
type D or equivalently that the metric functions p and m 
satisfy 

(€tP(w) - €2m(X))P"(w) - €1€2(P'(WW 

= (€tP(w) - €2m(x))m"(x) - €1€2(m'(x))2. (2.32) 

If m :;60, the Eq. (2.29) admits an R-separable solution of the 
form ofEq. (2.31) iff the condition (2.19) is satisfied. 

Proof A proof of this theorem will be given in Sec. 6. 
A comparison of Theorem 3 and Theorem 4 reveals that 

KG separability is more restrictive than HJ separability 
since the metric functions p and m are restricted by the type 
D condition (2.32) in the former case but not in the latter. By 
hypothesis all solutions in srl are of Petro v typeD thus satis
fying the condition (2.32). Furthermore an examination of 
the Eqs. (2.7) to (2.11) shows that the condition (2.19) is satis
fied in the cases A 0, BO_ ,B 0+ ,and COO but is not satisfied in 
the case A • with a:;6 0 nor in the case C·. Since these cases 
exhaust the class srl we have proved the following corollary 
to Theorem 3: 

Corollary: The Klein-Gordon equation (2.29) for a par
ticle of mass m and charge e admits an R -separable solution 
of the form (2.31) in the canonical coordinates of Theorem 2 
in the case m = 0 for every solution in the class srl. In the case 
m :;6 0 the equation admits an R -separable solution only for 
the cases A 0, BO_ ,Bo+ ,and COO that is in theA ° family of 
solutions. 

The above corollary shows that, in analogy with 
Carter's separability condition III, his SchrOdinger separa
bility condition IllS is satisfied only in the subclass A ° of srl 
but that it holds in the entire class srl if it is weakened to appl y 
to the KG equation (2.29) in the case m = 0 when the equa
tion is conformally invariant. Some care is required to reach 
the above conclusion since Carter's Klein-Gordon equation 
[Eq. (39) in his paper] differs from our Eq. (2.29) by the omis
sion of the term! Rrp. However, this is immaterial since R is 
constant for the srl solutions implying that the two equations 
are identical modulo a redefinition ofthe mass ofEq. (2.29). 
However, if one wishes to work in the more general context 
of the canonical forms of Theorem 1 without imposing the 
type D condition or the remaining electrovac field equations 
one finds a different separability result for Carter's form of 
the KG equation than that given in Theorem 4: namely, the 
KG Eq. (2.29) where the term t Rrp has been omitted admits 
a separable solution of the form 

rp(u,v,w,x) = ei(au + PV)rpl(W)rp2(W), (2.33) 

in the case m:;60 provided that the condition 

T(w,x) = const (2.34) 

is satisfied. We note that the imposition of the type D condi
tion (2.32) is not required to obtain this result. Thus we have 
shown that Carter's separability condition IllS holds for the 
canonical metric and vector potential of Theorem 1 when 
the condition (2.34) is satisfied. However, if the metric func
tion Tis not constant the equation does not in general admit 
an R-separable solution of the form (2.31) even in the case 
m = o. This is the reason one is lead to consider the confor
mally invariant equation (2.29). 

In analogy with the case of the HJ equation the separa-
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bility of the KG equation in srl gives rise to a symmetry oper
ator K of the form 

K: = (Vj - ieA j )Bjk (V k - ieAk), (2.35) 

where V· denotes the covariant derivative, which commutes 
with th: KG operator H in the case m:;6 0 and which R
commutes with this operator when m = 0, that is, it satisfies 

[K,H] = rH, (2.36) 

where the bracket denotes the usual operator commutator 
and r is some function. The operator K has the property that 
the R-separable solution (2.31) is an eigenfunction ofK cor
responding to the separation constant as eigenvalue. The 
symmetric tensor Bij implied by the existence ofK satisfies 
the Killing tensor Eq. (2.27) in the case m:;6 0 and is identical 
with the Killing tensor defined by Eq. (2.23). In the case 
m = 0, the tensor Bij satisfies the conformal Killing tensor 
equation 

BW;k) = jgWBk) 1;[, (2.37) 

and is identical with the conformal Killing-tensor defined by 
Eq. (2.23) which exists in this case. Details of the above re
sults will be given elsewhere. 

3. PROOF OF THEOREM 1 

It is shown in DM (electrovac case) and CM (vacuum 
case) that the hypotheses HI to H3 and the field equations 
(2.1) imply the existence of a canonical null tetrad (l,n,m,m) 
such that I and n are principal null vectors of the Weyl tensor 
Cijkl and the Maxwell field Fij and such that the correspond
ing NP spin coefficients satisfy the conditions 

K = (T = v = A = 0, 

II: = 1T1r - 7T = 0, 

12: = jip - p,p = 0, 

(3.1a) 

(3.1b) 

(3.lc) 

with 1/12 = :1/1, <1>11 = :<1>, and A = R /24 =!A being the 
only nonzero curvature components. On account of the con
ditions (3.lb) and (3.lc), the transformation 

(3.2) 

which preserves the directions of I and n may be used to set 

1T = 7, (3.3a) 

p, = /p, (3.3b) 

where/is a constant which may be zero. We note that if/:;60 
we may use the transformation (3.2) to set/ = - e, where 
e2 = 1; this is the choice that was made in DM and CM 
where in addition one has 1T = - e7 instead of Eq. (3.3a). 
However, as will be shown, we are able by leaving/arbitrary 
to treat simultaneously the non-null group orbit (f :;60) and 
the null group orbit (/ = 0) cases. 

When Eqs. (3.3) are taken into account in the NP curva
ture equations [DM Eqs. (4.21) and CM Eqs. (3.22) to (3.41)] 
we obtain in a manner similar to that employed in DM and 
CM for the Cases, I, I1a, lIb, and III defined therein the 
following additional relations between the spin coefficients 

r=/€, 
f3=a, 

7 + T = 2(a + a), 
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p -p = 2(E- E), 

and the following derivative conditions 

~p =~r= ~E=~a =0, 

2" p = 2" r = 2" E = 2" a = 0, 

where 

~:=fD+,:j, 2":=15+6, 

where D, ,:j, 15, and 6 denote the NP operators. 

(3.4d) 

(3.4e) 

(3.4f) 

(3.4g) 

A quantity which will be useful in the sequel is the com
plex I-form () defined by 

():= -21p()1_f-l()2+ r ()3_ 1T()4), (3.5) 

where the ()a denote a null tetrad of I-forms defined by 

() I di ()2 ld i ()3 -di .-()4 : = ni x, : = iX, : = - m i x =. . 
(3.6) 

The metric and, in view of H 2, the self-dual Maxwell field of 
the solutions may be expressed in terms of these I-forms as 

ds2 = 2() I() 2 _ 2() 3() 4, (3.7) 

where B is a complex valued function and where 

Z2=()lfI()2_()3f1()4. (3.9) 

Under the conformal transformation of the basis I-forms 

o a = erP() a,(a = 1,2,3,4), 

the I-form () transforms as 

0= () + 2 dif;. 

(3.10) 

(3.11) 

It follows by choosing the conformal factor to satisfy 

(3.12) 

that 

(3.13) 

The choice (3.12) is always possible on account of the inte
grability condition for the vacuum Bianchi identities67 or for 
Maxwell's equations68 (2.1) which may be expressed as 

d() = O. (3.14) 

By virtue of Eqs. (3.3) and (3.5), the Eq. (3.)3) implies 

p= -p, 7=7. (3.15) 

In an analogous manner to that employed in OM it may be 
shown that the conformal transformation (3.10), where if; is a 
solution ofEq. (3.12) preserves the relations (3.1), (3.3), and 
(3.4) satisfied by the spin coefficients and that in addition the 
transformed curvature components satisfy 

Wo = WI = W3 = W4 = 0, (3.16a) 

if>2Z=Pif>OO' if>20=if>o2' if>12=/if>1Q' (3.16b) 

In view ofthe relations (3.la), (3.3), (3.4), and (3.15) Car-
tan's first structure equations have the form 

dO 1=/[(2£ -p)O 1 fl0 2 
- 2ji03 fl04], (3.17a) 

dO 2 = (U _ p)O I fI 0 2 _ 2ji0 3 fI 0 4, (3.17b) 

d0 3 = - 270 I fl0 2 + (2a - 7)0 3 fl0 4 = d0 4. (3.17c) 

It follows from the Frobenius integration theorem that there 
exists a local coordinate system (u,v,w,x) such that 
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0 1 
= (.J2/(1 + P))[f(L du + M dv) + R dw], (3.18a) 

02 = (.J2/( 1 + /2))[L du + M dv - fR dw], (3.18b) 

0 3 = (1/.J2)[ N du + P dv + iT dx ], (3.18c) 

where L, M, N, P, R, and T are real-valued functions of the 
four coordinates. If one replaces the differential forms in 
Eqs. (3.17) by their values given by Eqs. (3.18) and equates 
the corresponding coefficients of the differentials one ob
tains expressions for the spin coefficients in terms of the tet
rad functions and a set of restrictions on these functions. If 
one then performs an appropriate transformation of the co
ordinates u and v which preserves the form of the tetrad 
(3.18) and which is permitted by virtue of the Eqs.(3.1), (3.3), 
(3.4), and (3.16) following a procedure which is described in 
Sec. 9 of OMT (non-null orbit case) and Sec. 7 of OM (null 
orbit case), one finds that all the functions appearing in the 
transformed tetrad of the form (3.18) are independent of u 
and v. 

In addition it follows that 

Rx = Tw =0 (Rx = ~~ ,etc')' (3.19a) 

(LZ)w = (MZ)w = (NZ)x = (PZ)x = 0, (3.19b) 

where 

Z: = (LP-MN)-I, (3.19c) 

and that the function if; appearing in the conformal transfor
mation (3.10) satisfies 

(3.20) 

It now follows from Eqs. (3.7), (3.8), (3.10), and (3.18) that 
general forms of the metric and self-dual Maxwell field for 
the :it) solutions are 
ds2 = e2

1/' [ 4f(1 + P)-2(L du + M dvf 

+ 4(1 - P)(l + j2)-2R dw(L du + M dv) 

- 4/(1 + j2)-2R 2 dw2 - (N du + PdV)2 - T2 dx2 ], 

(3.2la) 

+ 
F = B [2( 1 + /2) -I R dw fI (L du + M dv) 

- iT dx fI (N du + P dv)], (3.21b) 

where the substitutions if;- - if; and B-e2"'B have been 
made. We note that the expressions (3.21a) fords2 and (3.2Ib) 

+ 
for F reduce respectively to OM Eq. (2.12) [or CM Eq. (2.10) 

in the vacuum case] and OM Eq. (2.6b) when/ = - e, where 
e2 = I, and OM Eq. (2.6c) is taken into account modulo the 
substitution w- - w, and reduces to OM Eq. (2.13) [or CM 
Eq. (2.11)in the vacuum case] and OMEq. (2.7b)when/= ° 
upon the substitution w_w/2. Thus we have shown that the 
null and non-null canonical forms for the metric and Max
well field of the :it) solutions presented separately in DM 
(electrovac case) and CM (vacuum case) are special cases, 
respectively, of the single canonical form (3.2Ia) for the met
ric and (3.2Ib) for the Maxwell field. 

We now proceed with our derivation of the canonical 
forms (2.5) by the integration ofthe Eqs. (3.l9b) which yields 

L = l/Z, M = m/Z, N = n/Z, P = p/Z, (3.22) 

where I and m are functions independent of w, and nand p 
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are functions indepedent of x. It follows from the Eqs. (3 .19b) 
and (3.19c) that 

Z=lp-mn. (3.23) 

The tetrad (3.18) may thus be reexpressed as 

8 1= (.J2/(1 + j2lHj(RZ)-I(1 du + m dv) + R dw], 
(3.24a) 

82 = (.J2/(l + f2))[(RZ)-I(1 du + m dv) - jR dw], 
(3.24b) 

8 3 = (l/.J2)[(TZ)-I(n du + p dv) + iT dx), (3.24c) 

where the substitutions I_IT, m_mT, n-nR,p-pR, have 
been made. It follows from the Eqs. (3.19) that the spin coef
ficients corresponding to the tetrad (3.24) have the form 

,0 = (iI.J2)(1 + j2)-I(RZ)-1 W2, (3.25a) 

7'- = (l/4.J2)(1 + j2)(1Z )-1 WI' (3.25b) 

E = (l/2.J2)R -I 

X IZ -I[mn' - Ip' + i(1 + j2)W2) - R -IR '},(3.25c) 

a = (l/2.J2)T- I 

X IZ -lUll + j2)WI + ilpl' - mn')) + iT-IT'}, 
(3.25d) 

where WI and W2 are Wronskian determinants defined by 

WI: = np' - pn', (3.25e) 

W2: = 1m' - ml'. (3.25t) 

In a similar manner to that used to obtain the tetrad 
(3.24) we find that the metric (3.21a) and self-dual Maxwell 
field (3.2Ib) may be expressed as 

ds2 = e2"'14(1 + j2)-2[f(RZ)-2(1 du + m dvf 

+ (I - j2)Z -ldw(1 du + m dv) _ jR 2 dw2) 

_ (1Z)-2(n du + p dV)2 - T2 dx2), (3.26a) 

+ 
F = BZ-I[2(1 + j2)-1 dw 1\ (I du + m dv) 

- idxl\(n du +pdv)). (3.26b) 

The metric (3.26a) is identical with the corresponding 
expression given in Eq.( 1.8) ofDKM I after the substitutions 
e"'-S, R-l/W, T-l/X, l-gl, m-gm, n_n/g,p_p/g, 
u-gu, v-+gv have been made where 

g: = ((I + j2l12)112. (3.27) 

The fact remarked at the beginning of this section that one 
may setf = - e (where e2 = 1) by the transformation (3.2) 
whenj #0 is reflected in the canonical forms (3.26) by the 
fact that the coordinate transformation 

u-I fl- I/4gu - ~ f-II fll12(1 - f2) JPR 2 dw 
2 ' 

(3.28a) 

v_ljl-I/4gv+ ~f-Ilfll/2(I-f2)JnR2dw 
2 ' 

(3.28b) 

w-lfll/2W, x_x, (3.28c) 

has the effect of transforming (3.26a) and (3.26b) into expres
sions of the same form, when the functions I, m, n, and pare 
suitably rescaled, withf = - e. The same result applies mu-
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tatis mutandis to the tetrad (3.24) provided an appropriate 
tetrad rotation is made. The latter result is that of Theorem 1 
ofDKM 1. 

It remains to be shown that in the expressions (3.26) for 
the metric and Maxwell field or equivalently in the tetrad 
(3.24) it is always possible to choose I and n to be constant 
functions by means of form preserving coordinate transfor
mations. In order to achieve this it is necessary to consider 
the following possibilities: 

CaseA:,07'-#O. Because of the Eqs. (3.15) this inequality 
is equivalent to 

Ip - p)(1' + 1')#0, (3.29) 

a form which is invariant under the conformal transforma
tion (3.10) defined by (3.12) which induces the transforma
tions 

(3.30) 

It follows from the Eqs. (3.25) that the defining condition for 
Case A is equivalent to the inequality 
(1m' - ml ')(np' - pn') #0, on some open set which implies 
the inequality Imnp#O. The last inequality permits us mod
ulo a form preserving coordinate transformation and a rede
finition of the functions m,p, R, and T to rewrite the tetrad 
(3.24) as follows: 

8 1= (.J2/(1 + j2))[f(RZ)-I(e l du + m dv) + R dw], 
(3.31a) 

8 2 = (.J2(1 + j2))[(RZ)-I(e l du + m dv) - jR dw), 
(3.3Ib) 

8 3 = (l/.J2)[(1Z )-I(e2 du + p dv) + iT dx], (3.31c) 

where e1 and e2 are constants satisfying ele2 #0 and where 

(3.3Id) 

We note that our Case A metric canonical form reduces 
to Carter's69 [a] canonical form whenf = 1 and the confor
mal factor is suitably restricted. 

Case B_:,o = 0, 7'-#0. By the Eqs. (3.15) these condi
tions are equivalent to 

p-p=O, 1'+1'#0 (3.32) 

which by the Eqs. (3.30) are invariant under the conformal 
transformation defined by (3.12). Because of the Eqs. (3.25) 
the conditions (3.32) can be written as 

1m' - ml' = 0, (3.33a) 

np' - pn' #0, (3.33b) 

the last of which implies np#O. SinceZ #0, not both land m 
may vanish. Assuming m # 0 Eq. (3.33a) implies I = em, 
where e is constant. When we substitute for I in (3.24) we 
obtain, after a suitable coordinate transformation and rede
finitions, the tetrad (3.31) with e l = O. In the case I #0, Eq. 
(3.33a) implies m = cl, where c is some constant. An argu
ment identical to that given above again yields a tetrad of the 
form (3.31) with e l = O. 

We thus conclude that in the Case B _ there exists a 
coordinate system in which the tetrad has the form (3.31) 
withe l = O. 

Case B +: 7'- = 0, ,0 # O. These conditions are equivalent 
to 
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7+1'=0, p-p=/=O, (3.34) 

because of the Eqs. (3.15) and as such are invariant under the 
conformal transformation (3.10) where 1/1 satisfies (3.12). By 
an argument similar to that employed in the Case B _ we are 
able to conclude that in the CaseB + there exists a coordinate 
system in which the tetrad has the form (3.37) with e2 = O. 
We note that the metric canonical forms in our Case B _ and 
B + reduce to Carter's [b (E)] canonical forms whenf = 1 and 
the conformal factor is suitably restricted. 

Case C:p =::r = O. Because of the Eqs. (3.15) these con
ditions may also be written as 

(3.35) 

in which form they are invariant under the conformal trans
formation defined by Eq. (3.12). In view of the expressions 
(3.25) for the spin coefficients the above conditions have the 
form 

Im'-ml' =0, 

np/ -pn/ =0. 

(3.36a) 

(3.36b) 

The inequality (3.41) implies Ip=/=O or mn =/=0. We need only 
consider the first possibility since consideration of the sec
ond leads to an equivalent result. The Eqs. (3.36) thus imply 
that m = CI/, n = czP, where CI and C2 are constants satisfy
ing the inequality 1 - CIC2 =/=0. When the above values of m 
and n are substituted in the tetrad (3.24) and a suitable coor
dinate transformation is made we obtain the tetrad (3.31), 
where e2 = 0, m = 0, and p(w) = 1. It should be noted in this 
case that other choices of coordinates are possible, some of 
which will be used in the sequel. 

The above results for the Cases A, B _, B +, and Care 
combined in the following statement: for every solution in :n 
there exists a local coordinate system in which the canonical 
null tetrad for the class has up to a conformal transformation 
the form (3.31). 

An alternate form of the tetrad required for the proof of 
I 

1/11 = Aez",(UV) liZ [ Ez(Z -Ipw)w - EI(Z -Imx)x], 

Theorem 1 and useful in the sequel may be obtained by the 
transformations u-+gu, v-+gv, m-+gm,p-+p/g, R-+1/U 112, 
T -+ 1/ V 1/2, where g is defined by (3.27), yielding 

1Jl = (1/~)UVI/2Z -I(EI du + m dv) + g-2U- 1/2 dw], 
(3.37a) 

1)2 = (1/~)[UI/2Z-I(EI du + m dv) - fg- 2u-1/2 dw], 
(3.37b) 

1)3 = (1/~)[ V l/2Z -1(E2 du + P dv) + iV-liZ dx], (3.37c) 

where 

EI: = g-Iel , Ez: = ge2, Z: = EtP - E2m. (3.37d) 

A canonical tetrad for the class :n is obtained from the above 
tetrad by the conformal transformation 

(r = e - "'e a (a = 1,2,3,4), (3.38) 

which is the inverse of the transformation (3.10) defined by 
(3.12) and whereby Eq. (3.20) 1/1 may be expressed as 

1/1(w,x) = InIT(w,x)I-! InIEtP(w) - E2m(x)l. (3.39) 
+ 

The expressions for ds2 and F given in Theorem 1 follow 

from the Eqs. (3.7), (3.8), (3.9) where the values for the () a are 
given by (3.38), (3.37), and (3.39). 

We complete this section by giving expressions needed 
in the sequel for the NP operators and curvature compo
nents for some of the tetrads considered in this section. For 
the tetrad (3.37) the corresponding NP operators are 

DtP = (1/~)[fg-lU-l/Z(ptPu - E2tPv) + UI/2tPw], 
(3.40a) 

.3tP = (1/~)[g-1 U -1/2(ptPu - E2tPv) - jU IlztPw ], 
(3.40b) 

btP = (1/~)[ V-l/Z(EltPu - mtPv) - iVllztPx], (3.40c) 

For the tetrad (3.38) the nonzero curvature components are 

(3.4la) 

1/12 = fie'" Iff Uww - 3EIZ -IUw(Pw - imx ) - 2E IUZ -2(Zpww - 2EtP~ + Elm~ 
+3iElmxpw)] + Vxx +3E2Z-IVx(mx +IPw)+2E2VZ-2(Zmxx +2E2m~ -EzP~ + 3iE2m xpw)J, 

1/13 = .fIJI!> 

4>00 = AUe2'" [ 4T- ITww - 2EI(Z -Ipw)w + EtZ -2(m~ - p~)], 

4>02= -AVe2"'[4T- ITxx +2E2(Z-lmx )x +~Z-Z(p~ -m~)], 

4>01 = A(UV)1I2e2"'IZ -I [EzPww + Elmxx - 2T- I(EzPw Tw + Elmx Tx)] - 2iT -I [2Twx + Z -I(mx Tw - Pw Tx)] J, 
4>11 = foe2"'1 f[2Uww - 4Uw(T- ITw + EIZ -Ipw) + U(8EI(TZ)-lpw Tw - 4T- 1Tww + 3Etz -Z(p~ + m~) 

-2EIZ- lpww)] -2Vxx +4Vx(T- ITx -E2Z -- lmx) + V(8E2(TZ)-lmx Tx 

+ 4T- ITxx - 3~Z -2(p~ + m~) - 2E2Z -Imxx ))' 

4>21 = f4>OI' 

4>22 = f24>00, 

6A = Ae2"'1 f[ - 2Uww + 12T- IUwTw + U(12T- ITww - 24T-2T~ + Etz -2(p~ + m~) - 2E IZ -lpww)] 

-2Vxx + 12T- IVx Tx + V(12T- 1Txx -24T-2T~ 

+ ~Z-2(p~ + m~) + 2E2Z- lmxxll. 
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4. PROOF OF THEOREM 2 

The general idea of the proof is first to demonstrate by 
integration of the Einstein-Maxwell field equations (2.1) 
that the solutions in the subclasses A *, B 0_ , B 0+ ' C *, and 
COO enumerated in Sec. 2 exhaust the class :D. Then adopting 
an idea of Carter 70 an appropriate parametrized coordinate 
transformation is performed on the solutions of the formA * 
to obtain the solution denoted by A * in Theorem 2. By an 
analyticity argument we conclude that the formA * is a solu
tion even for parameter values for which the defining coordi
nate transformation is singular. The proof of the theorem is 
completed by remarking (as has been done already in Sec. 2) 
that the solutions A *, B 0_ , B 0+ , C *, and COO are special 
cases of the solution A *. 

We begin the proof with the integration ofthe Einstein
Maxwell field equation (2.1) for the canonical forms estab
lished in Sec. 3. The first step in the integration is to impose 
the Petrov type D condition 

'PI = 'P3 = 0 (4.1) 

on the tetrad (3.37). This condition is equivalene l to the exis
tence of a Maxwell field of the form (3.8) the integrability 
condition for which is given by Eq. (3.14). Because of the 
Eqs. (3.41a) and (3.41c) the condition (4.1) may be expressed 
as 

€z[(€tP - €zm)-Ipw]w = €I [(€tP - €zm)-I mx L· (4.2) 

In order to exploit this condition and the field equations 

<Poo = <POI = <Poz = 0, (4.3) 

to determine the tetrad functions m and p and the function T 
appearing in the conformal transformation (3.39) it is con
venient to consider the same possibilities as those used in the 
proof of Theorem 1. 

Case A: €1€2 ~o: Since €I and €z can be given any non
zero values by form preserving coordinate transformations 
there is no loss of generality in assuming 

€I = €2 = I, (4.4) 

in which case Eq. (4.2) can be rewritten as 

(p - mlPww - P;v = (p - m)mxx + m;, (4.5) 

where by (3.34) 

Pwmx ~o. (4.6) 

Repeated differentiation of the Eq. (4.5) yields 

(4.7) 

where C is a separation constant. There are three possibilities 
to consider. 

Subcase AI: C = o. Integration of the differential equa
tions (4.7) yields 

p(w) = cIWZ + c1w + c3' 

m(w) = dlx1 + dzX + d3, 

(4.8a) 

(4.8b) 

wherecj and do i = 1,2,3 are constant. Substitution of these 
expressions into (4.5) gives 

d l = - C I , c~ + d~ = 4c1(C3 - d3 ), (4.8c) 

which together with (4.6) imply that CI ~O. When the above 
expressions forp and m are introduced into the tetrad (3.31), 
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we may set C j = - d l = I, Cz = dz = c3 = d3 = 0 by an ap
propriate coordinate transformation. 

We conclude that in the Subcase A 1 a coordinate sys
tem exists in which the parameters € I and €l and the func
tions p and m in the tetrad (3.37) are given as follows: 

€I = €l = I, p(w) = w2
, mIx) = - xz. (4.9) 

Subcase A2: C = W Z ~ o. Integration of the differential 
equations (4.7) yields 

p(w) = C I sinh(ww) + Cz cosh(ww) + C3• 

mix) = d 1 sin(wx) + dz cos(wx) + d3 , 

(4.1Oa) 

(4.1Ob) 

where Cj and do i = 1,2,3 are constant. Because ofEq. (4.5) 
these constants must satisfy 

d3 =C3 , c~ -ci =di +d~. (4.11) 

By means of the translations 

w-w + wo, x-x + X o (4.12) 

we may set c I = d l = 0, which implies c/ = d/. 
There are two possibilities to consider. 
(a): Cz = dz. In this case the functions p and m have the 

form 

p(w) = 2c1 sinhz(!ww) + C4 , 

mix) = - 2cz sinZ(!wx) + c4 , 

(4. 13a) 

(4.13b) 

where C4 = Cz + C3• When these expressions are substituted 
into the tetrad (3.37) and the coordinate transformation 

u-!w[(2cz - c4)u - C4V], V->¥IW(V + u) 

w_2w-J tanh-Iw, x-+2w- 1 tan-Ix 

(4. 14a) 

(4. 14b) 

is made one obtains a tetrad ofthe form (3.37) in whichp and 
m have the form (4.9). 

(b): Cz = - dz. In this casep and m may be expressed as 

p(w) = 2cz sinhz(!ww) + C4, (4.15a) 

mix) = - 2c2 cos2(!wx) + C4. (4.15b) 

When these expressions are substituted into the tetrad (3.37) 
and the coordinate transformation (4.14) is made where the 
second member in (4. 14b) is replaced by x-+(2/w)arc-
cot( - x), one again obtains a tetrad of the form (3.37) in 
whichp and m have the form (4.19). 

We conclude that in the Subcase A2 a coordinate sys
tem exists in which the parameters €I and €2 and the func
tions p and m in the tetrad (3.37) are given by Eq. (4.9). 

Subcase A3: C = - W2~O. Integration of the differen
tial equations (4.7) and substitution of the solutions into Eq. 
(4.5) implies thatp and m have the form 

p(w) = d j sin(ww) + dz cos(ww) + c3, (4. 16a) 

mIx) = cI sinh(wx) + Cz cosh(wx) + C3, (4.16b) 
where Ci , i = 1,2,3 and do i = 1,2 are constants satisfying 

c~ -ci =d~ +d~. (4. 16c) 

We note that the functionp and m above are identical to the 
functions m and p, respectively, given by the Eqs. (4.10). In 
view of this fact one arrives at the same conclusion in this 
subcase as in the Subcase A2 by an argument identical to that 
already given. 

It follows from the results of the above subcases that in 
the Case A a coordinate system exists in which the functions 
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m andp appearing in the canonical tetrad (3.37) have the 
form (4.9). This result agrees with that previously obtained 
by Debever 72 in the case f = 1. 

It remains to determine the form of the function Tin 
this case from the field equations (4.3) which, in view of the 
Eqs. (3.4Id), (3.4Ie), (3.4If), the type D condition (4.5), the 
explicit forms for p and m, and the values for €I and €2 given 
in (4.9), take the form 

Tww =0, Txx =0, wTw -xTx =0, 

(w2 + x2)Twx = xTw + wTx· 

(4.17a) 

(4.17b) 

The Eqs. (4.17a) imply that T has the form 

T(w,x) = b,wx + b4 , (4.18) 

where b, and b4 are arbitrary constants not both zero, which 
identically satisfies the Eq. (4.17b). When the expressions for 
m andp given by (4.9) and the above expression for T, assum
ing b4 #0, are introduced into the tetrad (3.39) where", is 
given by (3.38) we may set b4 = I, by an appropriate rescal
ing of the coordinates. If in addition b, #0, we may set 
b, = I, by a further rescaling of the coordinates. We note 
that there is no loss of generality in the assumption b4 #0, 
since the coordinate transformation u~ - v, v~ - u, 
w~lIw, x~lIx, which preserves the form of the tetrad, 
induces the transformation bl~b4' b4~bl' 

The results of this case may be summarized as follows: 
In the Case A there exists a system of coordinates in which 
the parameters € I and €2 and the functions p and m appearing 
in the canonical tetrad (3.37) are given by the Eqs. (4.9) name
ly 

€, = €2 = I, p(w) = w2, mix) = - x2, (4.l9a) 

and the function T in the conformal transformation (3.39) 
has the form 

T(w,x) = b,wx + I, (4.19b) 

where b, is constant. 
The form of the conformal transformation (3.39) im

plied by the Eq. (4.19b) is equivalent to that given earlier by 
Debever. 73 It's also worth noting that the metric (2.5a) with 
f = 1 and€" €2'P, m, and Tgiven bytheEqs. (4.19) isequiva
lent to that used by Plebanski and DemianskC4 as the start
ing point of their integration procedure. 

Case B _: € I = 0, €2 # O. Under these assumptions the 
Eq. (4.2) reduces to 

Pww = 0, (4.20) 

which has the solution 

p(w) = C2W + C3 , (4.21) 

where C2 and c3 are constants which because of the inequality 
(3.33b) satisfy C2#0. By virtue of this inequality we may set 
C3 = 0, by the form preserving translation w~w + woo It 
thus follows that p thas the form 

p(w) = c2w. (4.22) 

The functions m and Tare determined by the field equa
tions (4.3) which, because of the Eqs. (3.4Id), (3.4Ie), (3.4If), 
(4.22), reduce to 
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Tw = 0, (4.23a) 

4T- ' T"x - (m-'m"f + c~m-2 - 2(m- lm"),, = O. 
(4.23b) 

J. Math. Phys., Vol. 25, No.6, June 1984 

In order to obtain suitable explicit solutions to the above 
equations we use that the fact that nonzero function m ap
pearing in the tetrad I-form (3.37c), namely, 

lP = (lI'-'2) [ - €2- I VI/2(x)(m(x))-I(€2 du + p(w)dv) 

+ W- 1/2(x)dx], (4.24) 

is arbitrary in the sense that independently of its form it may 
be transformed to a constant function by an appropriate 
form preserving coordinate transformation of the form 
x~k (x). We use this freedom to choose m to be a solution of 
the differential equation 

2(m- ' m"),, + (m- l m,,)2 - c~m-2 = O. (4.25) 

The general solution of this equation is 

mix) = d lx
2 + dzX + d3 , (4.26a) 

where the do i = 1,2,3 are constants satisfying 

d~ - 4d l d3 = - c~. (4.26b) 

This equation and the inequality C2#0 imply that d ld3 #0, 
from which it follows that we may set d2 = 0, by the transla
tion x~x + Xo' Thus m has the form 

mix) = d lx
2 + ld ,-'cL (4.27) 

where (4.26) has been used. When this form ofm andp given 
by Eq. (4.22) are substituted into the tetrad I-form (4.24) we 
may set d I = I, by rescaling the coordinate u. It follows that 
in the Case B_ a coordinate system exists in which the func
tions p and m in the tetrad (3.57) have the form 

p(w) = 2kw, mix) = x2 + k 2, (4.28) 

where k = !c2 is constant. 
It remains to determine the function T which satisfies 

the Eq. (4.23a) and by virtue of (4.23b) and (4.25a) the equa
tion Tx" = O. 

It follows from these equations that T must have the 
form 

(4.29) 

where b3 and b4 are constants not both zero. The Eqs. (4.28) 
and (4.29) imply that the function", given by Eq. (3.39a) is 
independent of w. It thus follows from the first transforma
tion in (3.30) and the operator (3.4Oa) that in the CaseB_ the 
spin coefficienes 

p=O. (4.30) 

When the functions p and m given by (4.28) and the 
function T given by (4.29) are substituted into the tetrad 
(3.38) where", is given by (3.39) we may set b3 = 0, if b4 #O, 
by an appropriate bilinear transformation x~(ax + b )I 
(cx + d). We may further set b4 = 1, by rescaling the coord i
nates u and v. There is no loss in generality in assuming b 4 # 0 
since the inversion x~ lIx, which preserves the form of the 
tetrad after a suitable rescaling of u and v, induces the trans
formation b3~b4' b4~b3' 

The above results may be summarized as follows: In the 
Case B _ there exists a system of coordinates in which the 
parameters €I and €2 and the functionsp and m appearing in 
the canonical tetrad (3.58) are given by 

€I = 0, €2 = - 1, p(w) = 2kw, mix) =x2 + k 2
, 

(4.3Ia) 
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where k is constant and the function T in the conformal 
transformation (3.38b) has the form 

T(w,x) = 1. (4.31b) 

Case B +: £2 = 0, £1 =/= 0. By arguments similar to those 
employed in the Case B _ it may be shown that 76 

7=0, (4.32) 

and that there exists a system of coordinates in which the 
parameters C 1 and C2 and the functions p and m appearing in 
the conical tetrad (3.38) are given by 

ci = 1, £2 = 0, p(w) = x 2 + 12
, mIx) = 21x, (4.33a) 

where I is constant and the function T in the conformal 
transformation (3.59b) has the form 

T(w,x) = 1. (4.33b) 

Case C: £1 = 1, £2 = O,p(w) = 1, mIx) = 0. In this case 
the type D condition is satisfied identically and the field 
equations (4.3) reduce to 

T ww = Twx = Txx = 0, 

which has the general solution 

T(w,x) = b2w + b3x + b4 , 

(4.34) 

(4.35) 

where bi' i = 2,3,4 are constant. The translations (4.12) in
duce the transformations 

b2--b2 , b3--b3, bc +b4 + wOb2 + xOb3 , (4.36) 

which give rise to the following subclassification 77: 

Subcase C *: b2b3 =/=0. It follows from (4.36) that we may 
set b4 = ° which implies by (4.35) that 

(4.37) 

The transformation formulas (3.30) by virtue of the above 
form of T imply that in the Subcase C* 

p = p=/=O, 7 = - 7=/=0, (4.38) 

which equations provide an invariant characterization of 
this subcase. When the function T given by (4.37) is intro
duced in the tetrad (3.38) via the Eq. (3.39b) we may set 
b2 = b3 = 1 by rescaling the coordinates. It thus follows that 
we have 

T(w,x) = w + x. (4.39) 

Subcase C _ : b2 = 0, b3 =/= 0. As in the previous subcase 
we may set b4 = ° which implies that 

T(w,x) = b3x, (4.40) 

where we may further set b3 = 1, by a coordinate rescaling. 
By an argument similar to that in the Subcase C * we find that 
in the Subcase C 

p = 0, 7 = - 1'=/=0. (4.41) 

Subcase C + : b2 =/= 0, b3 = 0. In this subcase we may also 
set b 4 = ° yielding 

T(w,x) = b2w, (4.42) 

where in addition we may set b2 = 1 by a coordinate rescal
ing. By an argument similar to that given previously we have 
in the Subcase C + 

p = p=/=O, T = 0. (4.43) 

Subcase Coo: b2 = b3 = 0, b4 =/=O. It follows that 

1967 J. Math. Phys., Vol. 25, No.6, June 1984 

T(w,x) =b4 , (4.44a) 

where we may set b4 = 1 by rescaling. It also follows that in 
the subcase COO we have 

P=7=0. (4.44b) 

The above results may be summarized as follows: In the 
Case C there exists a system of coordinates in which the 
parameters c 1 and £2 and the functions p and m in the canoni
cal tetrad (3.58) are given by 

£1 = 1, E2 = 0, p(w) = 1, mIx) = 0. (4.45a) 

The function Tin the conformal transformation (3.59b) has 
the following forms: 

Subcase C*: T(w,x) = w + x, (4.45b) 

Subcase C_: T(w,x)=x, (4.45c) 

Subcase C+: T(w,x)=w, (4.45d) 

Subcase Coo: T(w,x) = 1. (4.45e) 

The next step in the integration involves the solution of 
Maxwell's Eqs. (2.1 b) which may be written as 

+ 
dF =0, (4.46a) 

where by the Eqs. (3.8) and (3.9) the self-dual Maxwell field 

+ --
F =BZ 2 (4.46b) 

is expressed in terms of the conformally related tetrad de
fined by the Eqs. (3.10) and (3.12). Since 

(4.47) 

+ 
the Eq. (4.46a) for an F of the form (4.46b) is equivalent to 

(4.48) 

which implies by virtue of (3.13) that 11 has the form 

11 = Boei
'1fl, (4.49a) 

where Bo is a complex constant and YJ is a real-valued func
tion satisfying 

dYJ = ifJ. (4.49b) 

Because of the Eqs. (3.3), (3.5), (3.25), and (3.37), the last 
equation may be written as 

dYJ = Z -1(£lmx dw + £zPw dx), (4.50) 

from which it follows that 

YJ u =YJ v =0. (4.51) 

In order to complete the integration of Eq. (4.50) it is again 
necessary to treat separately the cases delineated in the proof 
of Theorem 1 and used earlier in this section. 

Case A: Because of the Eqs. (4.19a) the Eq. (4.50) re
duces to 

dYJ = 2(w2 + X2)-I(wdx - x dw), 

which in view of(4.51) has the general solution 

YJ = i[ln(w - ix) -In(w + ix)J + bo, 

(4.52) 

(4.53) 

where bo is a real constant. It follows from this equation and 
from Eq. (4.49a) that in the Case A the 11 appearing in the 
self-dual Maxwell field (4.46b) has the form 78 
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B = Bo(w + ix)/(w - ix), (4.54) 

where Bo is a complex constant. 
Case B_: On account of the Eqs. (4.31a) the Eq. (4.50) 

may be written as 

dflJ = - 2k(x2 + k2)-1 dx, (4.55) 

which has the general solution 

flJ = i[ln(x - ik) - In(x + ik)] + bo, (4.56) 

where bo is a real constant. This equation implies that in the 
Case B _ the function B appearing in the self-dual Maxwell 
field (4.46b) has the form 

B = Bo(x + ik )/(x - ik ), (4.57) 

where Bo is a complex constant. 
Case B+: The Eqs. (4.33a) imply that the Eq. (4.50) may 

be expressed as 

dflJ = 2/(w2 + /2)-1 dw, (4.58) 

which has the general solution 

flJ = i[ln(w + if) -In(w - il)] + bo, 

where bo is constant. It results from this equation that in the 
Case B + the B appearing in the self-dual Maxwell field 
(4.46b) has the form 

B = Bo(w - i/ )/(w + if), (4.59) 

where Bo is a complex constant. 
Case C: By the Eq. (4.45a) the Eq.(4.50) reduces to 

dflJ = 0, (4.60) 

which implies flJ is constant. It thus follows that in the Case 
C the function B appearing in the self-dual Maxwell field 
(4.63b) has the form 

(4.61) 

where Bo is a complex constant. 
The final step in the integration procedure is the solu

tion of the remaining field equations which are 

f/>II = Bli, (4.62) 

A = iA. (4.63) 

where B (which may be zero) is the function appearing in the 
self-dual Maxwell field (3.8) and A is the cosmological con
stant, in order to determine the functions U and V. The study 
of the first of these equations requires an explicit form for the 
function B appearing therein which may be obtained from 
the Eq.(4.49a) using the conformal invariance of the Max-

+ 
well 2-form F namely the fact that 

This equation implies that 

B = eZ,pB, 

on account of the transformation law 

22 = e2,pZ2 

(4.64) 

(4.65) 

(4.66) 

induced by (3.10). If we now replace.B in (4.65) using (4.49a) 
and I/J employing (3.38), the Eq. (4.62) takes the form 

8BoBoT3 
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=/(TZUww -2E I Tpw Uw - 2ZTwUw +2E I TUpww 

+ 4EI UPw Tw) - TZVxx - 2E2Tmx Vx 

+ 2ZTx Vx + 2E2TVmxx + 4E2 Vmx Tx, (4.67) 

where the terms involving Tww and Txx in (3.41g) have been 
replaced using the first two of the Eqs. (4.3) and the corre
sponding expressions for f/>oo and f/>02 given by the Eqs. 
(3.41d) and (3.41e). 

We now turn our attention to the Eq. (4.63) which may 
be written as 

24ZA = I[ - T 2Uww + 6TTw Uw + 4U(TTww - 3Tw 2)J 
- T 2Vxx + 6TTx Vx + 4V(TTxx - 3Tx 2), (4.68) 

where the first two of the Eqs. (4.3) and the corresponding 
Eqs. (3.41d) and (3.41e) have been used to eliminate the terms 
involving the derivatives of p and min (3.41j). It follows from 
this equation and the fact that there exists a coordinate sys
tem in which the functions p, m, and T have the following 
forms: 

p(w) = CI W
2 + C2W + C3, 

mIx) = d lx
2 + dzX + d3, 

T(w,x) = blwx + b2w + b3x + b4, 

(4.69a) 

(4.69b) 

(4.69c) 

where Ci , di , i = 1,2,3, and bi> i = 1,2,3,4 are constant, 
shown earlier in this section for every solution in :D, that the 
functions jU and Vare polynomials of the fourth degree in 
the variables w andx, respectively. The property that coordi
nates can be chosen such that all the metric functions are 
rational functions thereof has been previously noted and ex
ploited by Carter/9 Debever,80 Plebafiski and Demianski,81 
and Weir and Kerr82 in their respective integration proce
dures. We may establish it for the functionsjU and Vby 
taking third derivatives of the Eq. (4.68) first with respect to 
wand then with respect to x which procedure in view of 
(4.69) yields the equations 

as(fU) = 0 asv = 0 (4.70) 
Bws ' Bxs 

from which the result follows. We thus may write 

jU(w) =/4W4 + 13W3 + 12w2 + ftw + 10' (4.71) 

V(x) =g4x4 +g3x3 +gzX2 +glx + go' (4.72) 

where}; and go i = 0,1,2,3,4, are constant. 
The integration is completed by substituting the above 

expressions forjU and Vinto the Eqs. (4.67) and (4.68) in 
order to determine the relations satisfied by the constants 
appearing therein. Again and for the last time it is necessary 
to treat separately the cases considered in the proof of 
Theorem I and earlier in this section. 

Case A: Because of the Eqs. (4.19), (4.71), and (4.72) the 
Eqs. (4.67) and (4.68) imply 

13 = blgl, g2 = - h, g3 = bJI' 

h - g4 = 2b 12 BoBo, 10 - go = 2BoBo' 

(4.73a) 

(4.73b) 

h + b/go = - p., b/lo + g4 = - j A. (4.73c) 

The Eqs. (4.73b) and (4.73c) form a consistent system of lin
ear equations in the quantities/o,h, go, andg4 whose solution 
may be written as 

14 = - b//o + 2(b l
2BoBo - i A ), go =/0 - 2BoBo, 
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(4.74) 

where/o is an arbitrary parameter. When the Eqs. (4.73a) 
and (4.74) are taken into account in the Eqs. (4.77) and (4.72) 
and the substitution br .. ...a is made, we obtain precisely the 
expressions for jV and V given by the Eqs. (2.7c) and (2.7d), 
respectively. Furthermore that the expressions for E), Ez, m, 
p, T, and iJ given by the Eqs.(4.19) and (4.54) when substitut .. 
ed in (2.5) yield the same expressions for the metric and self
dual Maxwell field after the transformation u-+!u, as that 
which is obtained from the Eqs. (2.7). We thus conclude that 
the general solution in the Case A is given by a metric and 
Maxwell field of the form (2.5), where the functions appear
ing therein are given by the Eqs. (2.7). 

Case B _: A procedure similar to that employed in the 
preceeding case yields the relations 

/3 =!t = g3 = 0, go = k % + k 4A - 2BJio, (4.75a) 

gz= -(h+2k 2A), g4= -jA, (4.75b) 

where/o./) ./z, and g) are arbitrary parameters. The resulting 
expressions forjV and V have exactly the same form as those 
given by the Eqs. (2.8c) and (2.8d), respectively. ~e also re
mark that the expressions for E), E2, m,p, T, and B given by 
(4.31) and (4.57) yield the same expressions for the metric and 
self-dual Maxwell field as the corresponding quantities given 
by (2.8b) and (2.8e) after the substitutions v-+ - v and 
x-+ - x and appropriate parameter sign changes have been 
made. We conclude that the general solution in the Case B _ 
is given by a metric and Maxwell field of the form (2.5), 
where the functions appearing therein are given by the Eqs. 
(2.8). 

Case B +: In this case we obtain the following relations 
between the parameters: 

J;=g3=g4=0, /0=IZgz+f2A+2B;Bo, (4.76a) 

/z = - (gz + 2/ 2A), /4 = - jA, (4.76b) 
wherelI, go, gl> andgz are arbitrary parameters. These rela
tions yield expressions for jV and V which have the same 
form as those given by (2.9c) and (2.9d). Furthermore, one 
obtains the same expressions for the metric and self-dual 
Maxwell field by substituting in (2.5a) and (2.5b) for E), E2' m, 
p, T, and B from the Eqs. (4.33) and (4.59) as one does by 
using the Eqs. (2.9) and making the substitution 1-+ -I. We 
conclude that the general solution in the Case B + is given by 
a metric and Maxwell field of the form (2.5) where the func
tions appearing therein are given by the Eqs. (2.9). 

Case C: In this case we have a coordinate system in 
which the Eqs. (4.45a) hold. However, we have to consider 
separately the four subcases already determined correspond
ing to the different possible forms of T given in the Eqs. 
(4.45). 

Subcase C *: The relations obtained in this subcase are 

It = 2BJio, go = - (/0 + j A ), (4.77a) 

(4.77b) g) =/)' gz = - h, g3 = J;, g4 = - 2BJio, 

where/o,/),/z, and/3 are arbitrary parameters. The func
tions jU and V thus have the form 

1969 

jV(w) = 2BJiow4 + /3W3 + f2WZ + f)w + fo, (4.78) 

V(x) = - 2BJioX4 + J;X 3 - /zXz + fIx -/0 - j A. 
(4.79) 
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When one substitutes fOrE), Ez, m,p, T,jV, V, and B from the 
Eqs. (4.45a), (4.45b), (4.78). (4.79), and (4.61) in the expres
sions (2.5) for the metric and Maxwell field and performs the 

substitutions u-+ - Ji,v, v = - ulJi" x-+1/x, and 
Bo-+ - Bo, one obtains the same solution as that which 
arises from the Eqs. (2.10). We conclude that the general 
solution in the Case C * is given by a metric and Maxwell 
field of the form (2.5) where the functions appearing therein 
are given by the Eqs. (2.10). 

Subcase C _: We obtain the following relations between 
the parameters: 

/3 =!t =g) =0, go= -jA, gz= -/z, 

g4 = - 2B;Bo, (4.80) 

where/o,f)./z, and g3 are arbitrary parameters. It follows 
that the functionsjV and V have the form 

jV(w) =/zwz + IIw +/0, (4.81) 

V(x) = - 2B;BoX4 + g3x3 - /zXz - ! A. (4.82) 

When substitutions are made for E I> Ez, m, p, T,jV, V, and B 
from the Eqs. (4.45a), (4.45c), (4.81), (4.82), and (4.61) in the 
expressions (2.5) for the metric and the Maxwell field and the 
substitutions u-+ - v, v-+ - u, x-+1/x are made one ob
tains the solution B 0_ given by the Eqs. (2.8) with k = 0. We 
conclude that the solution C O

_ is a limiting case of the solu
tion B 0_ when k = 0, a fact previously noted by Carter in 
the case/ ;60. 

Subcase C +: The relations in this subcase are 

II = g3 = g4 = 0, /0 = - j A, fz = - gz, 

!t = 2BJio, (4.83) 

where go. g), and go are arbitrary parameters. It follows that 
the functions jU and V have the form 

jU(w) = 2B;BoW4 + /3W3 - gzwZ - j A. (4.84) 

(4.85) 

The solution which results from the substitution of the above 
expressions in the Eqs. (2.5) and the use of the Eqs. (4.45a), 
(4.45d), and (4.61) followed by the substitutions u-+ - u, 
w-+1/w,J;-+/) is the solution that arises from the Eqs. (2.5) 
and (2.9) when I = O. We conclude that the solution Co+ is a 
limiting case of the solution B 0+ when I = O. 

Subcase Coo: We have the relations 

J;=!t=~=~=~ ~~ 

/z = 2BJio - A, gz = - (2B;Bo + A), (4.87) 

where/o./), go, and g) are arbitrary parameters. It follows 
thatjV and V have the form of (2.llc) and (2.11d). respec
tively. Moreover the expressions for E), Ez• m,p, T, and B 
given by the Eqs. (4.45a), (4.45e), and (4.61) agree with the 
corresponding expressions (2.11) except for the sign of Bo. 
We thus conclude that the general solution in the Subcase 
COO is given by a metric and Maxwell field of the form (2.5) 
where the functions appearing therein are given by the Eqs. 
(2.11). 

The classes of solutions enumerated above exhaust the 
solutions in the class ;t). 

The solutionA' * of Theorem 2 is obtained from the solu-
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tion A * defined by the Eqs. (2.7) by the coordinate transfor
mation 

u = bc- 1 [Ii + sec r csc r(F cos2 r - k 2 sin2 r)v], 
(4.SSa) 

v = bc- 1 sec r csc yii, (4.SSb) 

w = b (cw cos r + k ), 
x = b -1(CX sin r + l), 

(4.SSc) 

(4.SSd) 

where b, c, k, I, and r are arbitrary parameters restricted for 
the present by the requirement that the transformation be 
nons in gular. The relations between the new parameters and 
the old are given by 

L = b 4 [ a2(2BoBo - 10) - j A ], 

/3 = ab 3g1 + 4kL, 
/2 = b"fz + 3ab 3kgl + 6k 2L, 

c/I cos r = bll + 2b 2kl2 + 3ab 3k 2gl + 4k 3L, 

(4.S9a) 

(4.S9b) 

(4.89c) 

(4.S9d) 

c'lo cos2 r =/0 + bkll + b 2kl2 + ab 3k 3g1 + k,%, 
(4.Sge) 

g4 = - (a% + j A), (4.S9f) 

g3 = abll + 41g4, 

g2 = - b 21z + 3ablfl + 61 Zg4, 

(4.S9g) 

(4.S9h) 

Z -g I = 0, A = 6a BaEo, 

from which it follows by (2.7d) that 

V (x) = - 2BoBo(aZx4 + 1) < 0. 

(5.3) 

(5.4) 

This is an impossibility83 since by Theorem 2 the function V 
must be positive in order that the metric have the assumed 
minus two signature. Moreover, it may be verified by direct 
calculation the null orbit metric and Maxwell field (2.5) de
fined by the Eqs. (2.7b), (2.7e), and (5.4) do not satisfy the 
Einstein-Maxwell Eqs. (2.1). 

Case B 0_ : The Eq. (2.Sc) implies 

10 =/l =/2 = 0, (5.5) 

from which it follows by (2.Sd) that V has the form (2.15c). 
We thus have obtained the null orbit solution (2.15) where by 
(2.Sg) 

I/Iz = ilk - iX)-3 [ - Sk 3A + 3igl 
+ 12BoBo(k + iX)-I], (5.6) 

is nonzero implying a type D solution if k 3 A 1= ° or g 11= ° or 
BoI=O. By setting k = ° in (2.15) we obtain the null solution 
denoted by C o_ ,0' 

Case B 0+ : The Eq. (2.9c) implies 

(5.7) 

cgl sin r = b 3g1 - 2b zlfz + 3abl
2/1 + 4/

3
g4, (4.S9i) from which it follows by (2.9g) that 

c2go sinz r = b % - 2b 4BoBo + b 31g1 - b zl"fz 

+ abl 3/1 + 14g4, (4.S9j) 

Eo = b zBo' (4.S9k) 

When one eliminates the quantitiesJ: and gi from the above 
equations one obtains the relations (2.6h) and (2.6i) and the 
expression (2.6j) where the tildes have been dropped. TheA * 
metric and self-duaI2-form will clearly be a solution of the 
Einstein-Maxwell field equations for all values of the pa
rameters for which the transformation (4.SS) is nonsingular. 
Moreover, by the analyticity of the metric and Maxwell ten
sor components in the parameters the field equations will 
continue to hold even for parameter values for which the 
transformation (4.8S) is singular. Thus theA * metric and 2-
form will be a solution for the range of parameter values 
indicated in Theorem 2. 

5. NULL ORBIT SOLUTIONS 

These solutions may be determined by setting I = ° in 
each of the main special cases listed after Theorem 2, the 
results of which are given below. 

Case A *: The Eq. (2.7c) implies the following relations 

when/=O: 

ag I = 0, fo = II = f2 = 0, A = 3a2(2BoBo - fo)· (5.1) 

Subcase (a): a = 0. In this case, it is easily seen that one 
obtains the solution (2.14), for which by (2.79) 

1/1
2 

= !(w - iX)-3[ig l + BoBo(w + iX)-I]. (5.2) 

This quantity is nonzero implying the solution is of type D if 
gl 1=0 or Boof-O. 

Subcase (b): aof-0. The Eqs. (5.1) imply 
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1/12 = 0. (5.S) 

The Eqs. (5.7) and (5.S) imply that theB 0+ null orbit solution 
is flat. 

Case C *: The Eqs. (2.lOc) yield the relations 

10 =/1 =/z =J; =Bo = 0, (5.9) 

which by Eq. (2.Sg) implies 

(5.10) 

which in turn implies that the solution is conformalIy fiat. It 
follows from the above equations that the only non vanishing 
curvature component is the cosmological constant A. Thus 
the C * null orbit solution is a space of constant curvature. 

Case Coo: The Eqs. (2.11c) imply 

(5.11) 

which equations are easily seen to yield the solution (2.17). 
By Eq. (2.11g) this solution is type D if A of-0. 

Since the classes of solutions A *,Bo_ ,B o+ ,C*,andC oo 

exhaust the class S) the solutionAo given by (2.14), B 0_ ,0 and 
C o_.o given by (2.15) and COO given by (2.17) constitute the 
only null orbit solutions in S). 

6. PROOF OF THEOREM 4 

When one substitutes in the Eq. (2.29) with m = ° for 
the metric tensor, the vector potential, the curvature scalar, 
and the function t/! from the Eqs. (2.5a), (2.5c), (2.31), and 
(3.41j), respectively, one finds after considerable algebra that 
the nonseparable terms have the form 

N (w,x) = r,.ei(aU + PV)t/!l(w)t/!z(x)T 3(w,x)Z -l(W,x)O (w,x), 
(6.1a) 
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where 

o (w,x) = Z 2(W,x) { jU(W) [(E"!p'(wW + (E"lm'(x)f - 2E" I Z (W,x)P"(W)] + V(x) [(E"2m'(X))2 + (E"7P'(W))2 + 2E"2Z (w,x)m"(x)] J. 
(6.1b) 

In the above expression the factor T 3 Z - 1 is not of concern 
since it appears in every term of the equation and hence can 
be removed by division. Thus the real obstruction to separa
bility is the last factor 0 in the expression. A sufficient condi
tion (which may not be necessary) for the existence of coordi
nates w and x such that this vanishes is that the type D 
condition (2.32) or (4.2) is satisfied by the metric (2.5a). To see 
this, it is required to consider the same cases used in the proof 
of Theorem 2. 

Case A: It follows from the type D condition (4.5) that a 
coordinate system exists in which E"l' E"2'P and m are given by 
(4.9) from which it follows easily that 

O(w,x) = 0, (6.2) 

proving the result in this case. 
Case B _: It follows from the typeD condition (4.25) and 

the remaining coordinate freedom in x that a coordinate sys
tem exists in which E"l = 0, E"2 = - 1, andp and m are given 
by (4.36). The separability condition (6.2) follows immediate
ly. 

Case B +: By an argument similar to the preceding case 
it may be shown that the condition (6.2) is satisfied on ac
count of the Eqs. (4.33a). 

Case C: A coordinate system exists for which 
E"I = 1, E"2 = 0, p(w) = 1, mix) = 0, (6.3) 

from which (6.2) follows at once. 
This completes the proof of Theorem 4 in the case 

m = ° since, because of the type D condition, the Eq. (2.29) 
has the separable form 

ei
(au+/3v)T

3
Z-

I {jUtP2tPi' + VtPltP; 

+ [jU' - i(l - J2)g-2(ap - E"j3)]tP2tPi 

+ VtPltP~ + [g-4U -I(ap - E"j3 )(f(a/3 - E"j3) 

- ~eH) - ~ig-2(1 - F)ap' 

+ eHU-Vg-4eH - g-2(a/3 - E"j3)) 

+ i U " - V-1(E"J] - am)(E"J] - am + eG) 

- eGV -I(E"J] - am + eG) + iV"] tPltP2J = 0, (6.4) 

where g is given by (3.27). If m #0 it is clear from the above 
and the form (2.31) that the equation is separable iff the func
tionZT -2 has the form (2.22) that is iffEq. (2.19) is satisfied, 
where we recall that Z is given by Eq. (3.57d). 

This completes the proof of Theorem 4. 
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The exact solutions for perfect fluid plane symmetric cosmological models with cosmological 
constant are derived. It is also shown that under an appropriate transformation the A = 0 and 
A #0 cases are mathematically equivalent. 

PACS numbers: 04.20.Jb, 98.80.Bp 

I. INTRODUCTION 

For certain purposes spherical, plane, and hyperbolic 
static symmetries can be handled in the same foot if a gener
alized line element is considered (see, for instance, Ref. 1). 

The aim of this article is to study Einstein gravitational 
field equations with cosmological constant for the men
tioned symmetries when a perfect fluid is assumed to be the 
source of the gravitational field. The field equations for the 
generalized metric are obtained in Sec. II. In Sec. III we con
vert by an appropriate transformation the usual three-di
mensional phase space2 into a two-dimensional one that is 
known to be more suitable for qualitative method analysis.2

,3 

The exact solutions for plane symmetry are derived in the 
fourth section. Finally a brief discussion of the results is giv
en in the fifth section. 

II. FIELD EQUATIONS 

The line element considered here is 

dr = g2(X)dW2 - dx2 - f2(X)[dy2 + F(yjdzl], (2.1) 

which represents the most general static line element admit
ting spherical, plane, or hyperbolic transformations depend
ing on whether F(y) = sin2 y, 1 or e2Y, respectively. 

The field equations to be studied are 

(2.2) 
with 

(2.3) 

T",y = (p + p)u", uy - pg",y, (2.4) 

and A is the cosmological constant. In expression (2.4) p and 
p are, respectively, the energy density and pressure of the 
fluid whose flow lines are tangent to the unit vector 
u'" = (l/g)8b. 

with 

The nonzero components of the curvature are 

Roo = gg" + 2(glf)g'f', 

R 11 = - g" Ig - if" If, 

R22 = (R33IF) = E(F) - 1'2' - ff" -If IgV"g', (2.5) 

E(F)=(~r - ~ = { ~: 
-1, 

for F=sin2 y, 
for F= 1, (2.6) 

for F= e2Y, 

prime and dot meaning x and y differentiation, respectively. 
Also we have 

2 g" fN f,2 f'g' 
R= - -E(F)+2- +4- +2- +4-. 

f2 g I P Ig 
(2.7) 

The field equations (2.2) for the metric given by (2.1) 
become 

IN 1'2 1 27 + 72 - pE= -p-A, 

1'2 f'g' 1 72 +2 fg - pE=P-A, (2.8) 

f" gN f'g' - + - + - =p-A. 
I g fg 

The compatibility of the system (2.8) is ensured if the 
Bianchi identities G "''';" = 0 are satisfied, Le., 

(p + p)(g'lg) + p' = o. (2.9) 

Equation (2.9) represents the equation of hydrostatic 
support. 

III. DIMENSIONAL REDUCTION OF PHASE SPACE 

In a recent publication2 Collins devised a sophisticated 
change of variables under which the field equations (2.8) for 
E = 1 are converted into a three-dimensional autonomous 
system. The extension to E = 0, - 1 is trivial and is repro
duced in what follows. 

By multiplying the first of the equations (2.8) timesf2j' 
and integrating over x it is found that 

1'2 = E - m(f)!f, (3.1) 

where 

Define 

M = m12f, D = !p/2, P = !pI2, 

A. = !Af2, t = In! 

When the equation of state is 

p = (y- 110, 
the system (2.8) becomes 

(3.2) 

(3.3) 

1973 J. Math. Phys. 25 (6), June 1984 0022-2488/84/061973-02$02.50 © 1984 American Institute of Physics 1973 



                                                                                                                                    

dD = D [2E_M(5r -4)_rD + ~], 
dt E - 2M r - 1 r - 1 

dM 
- =D+). -M, (3.4) 
dt 

d)' =2). 
dt ' 

from which a qualitative analysis on the footsteps of Ref. 2 
follows. 

As it is asserted in Ref. 2 the system (3.4) (with 
E = 1)" ... generalizes that considered previously, wherein 
A = 0 (so). = 0)."3 

However, without loss of generality, A can be put al
ways equal to zero. 

In fact the redefinition of the pressure and the energy 
density as 

p=p-A, p=p+A (3.5) 

transforms Eq. (2.8) and (2.9) into an equivalent system with 
A =0. 

Now twirls can be dropped keeping in mind that the 
A =1= 0 case is already included. The system is now treatable as 
it was done in Ref. 3 for E = 1. 

The property herein demonstrated is not a peculiarity 
of the symmetries but of the Tp-v given by (2.4) as can be easily 

proved. 

IV. EXACT PLANE SYMMETRIC SOLUTIONS (E = 0) 

When E = 0 Eq. (3.1) reads 

/,2 = - m(f)lf (4.1) 

Combining the last expression with the second Eq. (2.8) 
(for E = 0) and with Eq. (2.9) one obtains 

m 2m dp 1 - - + ---- =p. (4.2) 
f3 f2 df p +p 

As m = m(f) and 

1 dm(f) 
p = f2 --;;;- , (4.3) 

Eq. (4.2) is a differential equation for p = p(f). Moreover it is 
always possible to define a function G = G (f) as follows: 

G (f)=:m(f)lp(f). (4.4) 

Then (4.2)-(4.4) yield 

1 dp (f2+dGldf)(f3+G) 
P df = G (f3 - G) 

(4.5) 

which can be integrated at once if G is given. 
In fact, 

(f) = ex (f (f2 + dG Idf)(f3 + G) dlf) (4.6) 
p Po P G (f3 - G ) , 

where Po is an integration constant. 
From p = p(f) thus determined p(f) can be readily ob

tained ifEq. (4.3) and (4.4) are used: 

p(f) = )2 (p ~~ + :~ G ). (4.7) 

The expressions (4.6) and (4.7) for p(f) and p(f) consti
tute the parametric equation of state. 
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Equation (2.9) can be directly integrated for g after p(f) 
and p(f) have been found: 

( f dPldf ) g(f) = go exp - p + p df , (4.8) 

go being an integration constant. 
Finally to recover the original variable x we proceed as 

follows: when G (f) is given and consequently p(f) is deter
mined through (4.6), m(f) can be constructed from the rela
tion (4.4). Besides, Eq. (4.1) can be integrated giving 

x = f ~ - m{f) df, (4.9) 

which determines implicitly the metric coefficient fin terms 
ofx. 

V. DISCUSSION 

A crucial step in the integration of the field equations is 
constituted by the definition of the function G (f). As it was 
demonstrated, once G is fixed, p and p can be determined so 
that G contains the equation of state. For instance if G is 
selected to be proportional tof3 (constant of proportionality 
a different from 0, 1 )p(f) andp(f) are found to be proportion
al to f' (varying a, r can take any value). Consequently the 
equation of state is of the form p = (r - 1)p. It can also be 
found that in this casef (and therefore p and p) decreases as 
x- 2. 

It is possible to argue that other functions rather than G 
can be accommodated to make Eq. (2.8) and (2.9) solvable. 
However this does not happen to be the case. The other func
tions we have at hand are p and p. If P = p(f) is fixed, then 
Eq. (4.2) becomes a generalized Riccati equation.4 Converse
ly, when p = p(f) is given, Eq. (4.2) can be identified as an 
Abel equation of the first kind.4 Both types of equations are 
solvable only in few special cases (i.e., for few p or p choices) 
so integration can be carried out just for exceptional selec
tions.4 

On the other hand the procedure exhibited here allows 
one to solve the field equations (2.8) and their compatibility 
condition (2.9) with three quadratures [see (4.6), (4.8), and 
(4.9)]. 
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Solutions of Einstein equation for fluids with heat flow are obtained, generalizing the results of 
Bergmann. 
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1. INTRODUCTION 

Consider Einstein's equation of general relativity for a 
fluid with heat flow having energy-momentum tensor 

TaP = ~ + p)vav P _ pqaP + qavP + qPva , (1) 

where qa va = 0, with the line element 

dS 2 = A 2dt 2 - B 2(dr + r dO 2 + r sin20 d¢J 2) (2) 

where A and B can be functions of t and r. 
Einstein's equation with (1) and (2) have been reduced 

by Bergmann' to 

A H + 2(F'/F)A' - (PH /F)A = 0, (3) 

where F = B -, and dots and primes denote differentiation 
with respect to t and x = r, respectively. Bergmann found a 
simple solution with A = 1. Weare looking here for general 
solutions. The radial component of the heat flow is given by 

q = (G~2)(!)'. 
where G is the constant of gravitation. 

2. SOLUTIONS 

Case l:A H = 0: 

... A' = Q(t) 

Equation (3) becomes 

and 

2QF' - QXFH - PF H = O. 

A = Q (t )x + P (t ). 

(4) 

(5) 

Integrating and dividing throughout by (Qx + P)4, we 
get 

( 
F ), + h (t) _ 0 

Qx+P (QX+P)4 - . 

Further integration yields 

F = h /3Q + (Qx + P)3 L, 

i.e., 

B = F -, = [h /3Q + (Qx + P)3 L ] - " (6) 

where h, Q, P, L are all functions of t. 
Equations (5) and (6) can be used to find the value of q. 
Case 2: A H ¥= 0: By Eq. (3) F' ¥= 0 so that one can express 

A as 

A =A(F,t); A ' = AFF' .' A H = A FFF,2 + A FF". 

(7) 

So Eq. (3) for this case reduces to 

AFF + 2AF/F dF' 
--=..:'----=--- dF + - = O. 

AF-A/F F' 

Integrating 

or 

f [AFF + 2AF/F] dF + log F' = ea(tj 

AF -A/F 

f [AFF + 2AF/F] dx exp dF =a(t)-. 
AF-A/F dF 

Integrating once again, we get 

f [ f (AFF + 2AF/F )] 
exp AF -A /F dF dF= a(t)x +P(t). 

(8) 

If A is given as a function of F and t, then the integral 
can be evaluated and hence the solution can be obtained. 
Nevertheless, for a particular case simple solutions are ob
tained as follows. 

Consider F" = mF, where m is a function of time alone. 
So Eq. (3) can be written as 

UtI F" 
- = 2 - = ± k 2 (function of time), 
U F 

where 

U=AF, 

U"=±k2U. 

Solutions of Eq. (11) are given below: 

(9) 

(10) 

(11 ) 

(i) U = C, ekx + D, e - kx, when m is positive (m = k 2); 
(ii) U = C, cos(kx) + D, sin(kx), when m is negative 

(-m =k2); 

and 

(iii U = qx + r, when m is zero. 
(i) When m is positive, 

2F H/F=k 2 fromEq. (9); 

F = C2ekx1fi + D
2
e - kxlfi. 

Again, from (10) and (i) 

AF= U=C1ekx+D\e- kx, 

Cekx+De- kx 
A= ' , 

C
2
ekx1fi + D

2
e - kxlfi' 

(12) 

(13) 
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where C1, Dl> C2, D2, and k are all functions of time. 
Equation (13) can be used to evaluate q. 
(ii) When m is negative ( - m = k 2), 

2F"IF= _k 2 [fromEq.(9)], 

. '. F = C3 cos(locl {l) + D3 sin (loci {l). 

Again, 

(14) 

loc dA + kA dx + C dA = I(t ) dx. 

Integrating again, we get 

A = I(t)x +g(t) +B =F-1 = 1 
k (t )x + C (t ) k (t )x + C (t ) 

Equation (17) can be used to find the value of q. 

(17) 

AF= U = C1 cos(loc) + Dl sin(loc) from Eq. (10) and 
3. CONCLUSION 

Summarily, the present paper gives the complete set of 
solutions ofEq. (3) either explicitly or implicitly. For A " = 0, 
solutions have been obtained explicitly and are given by (5) 
and (6). For A "#Osolutionsaregivenimplicitlyby (8). How
ever, some explicit solutions can be obtained for 

(ii), 

A = C1 cos(loc) + Dl sin(loc) 

C3 cos(locl{l) + D3 sin(locl{l) 

and 

B=F- 1 = , 
C3 cos(locl{l) + D3sin(locl{l) 

where C1, D 1, C3, D3 , and k are all functions of time. 

i.e., 

Equation (15) can be used to evaluate q. 
(iii) When m is zero (i.e., k 2 = 0) 

... 2F" IF= 0 from Eq. (9), 

F" = 0, F' = kIt), 

F= k(t)x + CIt). 

Substituting this in Eq. (3), we get 

loc ~(dA) + C ~(dA) + 2k dA = O. 
dx dx dx dx dx 

Integration yields 

1976 J. Math. Phys., Vol. 25, No.6, June 1984 

(15) F" = ±!k 2F [Eq. (13)], for F" =!k 2F [Eq. (15)], and for 
F" = 0 [Eq. (17)]. 

It has already been stated that the solution of(3) give the 
solutions of Einstein equation for the metric (2) and energy
momentum tensor (1), where B = F -I and q is the heat flow 
given by (4). Having obtained these solutions, it remains to be 
shown that they are physically acceptable. Certain energy 
conditions have to be satisfied, especially, that the energy 
density be positive everywhere. 
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Among several authors, who studied massive and massless scalar meson fields in general 
relativity, attempts to obtain a complete set of solutions for a conformally flat metric e"'(dx l

' 

+ dx2' + dx3
' - dx4

') were made by Ray for massive and massless mesons and Gursay for 
massless mesons. Both of them concluded that", must be a function of Ko(xl' + x 2

' + x 3
' _ x 4

') 

+ KIXI + KzX2 + K3X3 + K4X4 whereKO,KI> K2,K3,K4 are all constants. Both Ray and Gursay, 
however, overlooked an important particular case, which is studied here. As a by-product certain 
equations obtained by Auria and Regge in connection with "Gravitational theories with 
asymptotic flat instantons," are solved under less restrictive assumptions. 

P ACS numbers: 04.20.Jb 

I. INTRODUCTION 

In general relativity the field equations for a scalar me
son field are given by 

Rp.v - ~ gp.vR = - [¢.p. ¢.v - ~ gp.v (¢.a ¢ .0 - m 2¢ 2)] , 
(1.1) 

where K = 1 and ¢ is the meson field and m is the meson 
mass and ¢.p. = a¢/axp., and so on. Equation (1.1) can be 
rewritten as 

Rp.v = - ¢.p. ¢.v + ! gp.v m2</J 2. 

For a conformally flat metric 

gp.v = e"'7Jp.v' 

where 

7Jp.v = 0 for,u¥v, 
1 for,u = v = 1,2,3, 

= - 1 for,u = v = 4. 

Rp.v takes the form 

Rp.v = "'.p.v - !"'.p. "'.V + !7Jp.vx , 
where 

(1.2) 

(1.3) 

X = "'.11 + "'.22 + "'.33 - "'.44 +!f.1 +!f.2 + !f.3 - !f.4' 
(1.4) 

The coupled equations (1.2)-(1.4) form the complete set 
of equations for a scalar meson field in a conformally flat 
space in general relativity. In order to simplify these equa
tions and to study the properties of their solutions Rayl not
ed that for ¢ = const the solution of the above-mentioned set 
of coupled equations is found quite simply, while for 
¢ ¥const, the coupled equations lead to 

(e - "'12).p. = 7JP.p. + pQ.p.' 

I e - ",12", - P + Q :/ 'P.p. - 7J.",.p. P"".p.' 

271.""" + 71 = S (¢ )71 . .", 

2P . ."", +p =S(¢)P."" 

where 71 = 7J(¢ ) and p = p(¢ ) and2 

(1.5a) 

(1.5b) 

(1.6a) 

(1.6b) 

p=AXI +A 'x\ (1.7a) 

Q= !B(x l
' +X21 +X31 _x4') 

+ BIXI + BzX2 + B3X3 + B4x
4, (1.7b) 

whereA, A', B, B I, B2,B3, B4 are constants. From (1.5) Rayl 
obtained 

2 exp( _ ~)(P . ." 71 _ p) = f'(Q) , 
2 71", exp(f(Q )/2) 

(1.8) 

where E = S7J d¢17J.", and/is a function of Q. 

Since the left-hand side ofEq. (1.8) is a function of ¢ and 
the right-hand side of Eq. (1.8) is a function of Q, it was 
argued by Rayl that from Eq. (1.8) one gets ¢ = ¢ (Q). How
ever, it is obvious from Eq. (1.8) that there arises another 
possibility which is 

2exp(- ~)(P"'7J _p) = f'(Q) =K', (1.9) 
2 71", exp(f(Q )/2) 

where K ' is a constant. In this case ¢ need not be a function of 
Q. In the present paper we shall see whether this previously 
left out possibility of ¢ not being a function of Q leads to 
some new solutions. Also we explore whether the results 
obtained here can be suitably modified so as to be applied in 
the case of gravitational instantons (Sec. III). 

II. NEW SOLUTIONS FOR SCALAR MESON FIELD 

In search of solutions that may have been left out by 
Rayl we require that 

7J.,p ¥O and p.",17J . ." ¥const. (2.1) 

Also 

(2.2) 

The reason for making these requirements is that, ifEq. (2.1) 
is not satisfied from Eq. (l.5b), one gets 

¢ = ¢ (KP + K'Q), 

where K and K J are constants. 
In view of Eq. (1.7), the above equation is essentially of 

the same form as ¢ = ¢ (Q). Similarly ifEq. (2.2) holds from 
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Eq. (1.5b) one gets <P = <P (Q). Since all the solutions of the 
form <P = <P (Q) are already given by Ray, 1 there is no need to 
look for such solutions. Now from Eq. (1.5) one can write 

¢= ¢(P, Q), 

(e - rP!2).P = YJ, 

<P = ,p (P, Q), 
(e - ¢!2).Q = p, 

!e -- rP!2A, = 71 !e - rP/2A, = P 
2 'f'.p '/.'" , 2 'f'.Q .Q' 

,p = const surfaces are given by 

YJ", dP+p", dQ=O. 

Integrating, treating,p as constant, 

YJ",p +p",Q=A",. 

From Eqs. (2.1) and (2.2) we get 

(YJp +pQ)fL =A",,pfL + (e-¢!2)w 

(2.3) 

(2.4) 

Integrating and absorbing the constant of integration we get 

YJp +pQ=A +e- rP12 . (2.5) 

Differentiating Eq. (2.4) with respect to P, we get 

(YJ",,,,p + p",,,,Q - A",,,,),pp + YJ", = O. 

From Eq. (2.3) we obtain 

(2)."'01 + A) - (2YJ",,,, + YJ)P - (2p"'<h + p)Q = O. 

From Eqs. (1.6) and (2.2) we get 

2).",,,, +A=S'(,p0<h' (2.6) 

From Eqs. (1.6) and (2.6), YJ, p, and A are found to be the 
solutions of the same ordinary linear second-order differen
tial equation, and since in view ofEq. (2.1) YJ andp are linear
ly independent, there exists D and D / such that 
A = YJD + pD / where D and D / are constants. 

From Eqs. (2.4) and (2.6) 

YJ",(P-D) +p",(Q-D') =0, 

YJ(P-D) +p(Q -D') = e-¢12. 

Now Eq. (1.9) gives 

2e- EI2(p",YJ/YJ", -p) =K'. 

(2.7a) 

(2.7b) 

Substituting YJ and YJ", from Eq. (2.7) and simplifying we get 

erP12 =(2/K'(D'_Q))e- E12. (2.8) 

Now differentiating Eq. (2.7a) with respect to,p and using 
( l.5b) we get 

! e - ¢12 + (P - D )YJ 01'" = (D / - Q) P 4>4>' 

Now substituting e-¢/2 from Eq. (2.8) we have 

[ 
K/eE12 ] 

(P-D)YJ",,,, = (D' - Q) p",,,, - -4- . 

From Eqs. (2.9) and (2.7) we get 

K ' E12/4 YJ",,,,P,,, = YJ",P",,,, - YJ", e . 

Let 

P - D = P' and Q - D / = Q / 

so that 

a =P//Q/, 

where 

P/ =AXI +A 'x4-D 
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(2.9) 

(2.10) 

(2.11a) 

(2.11b) 

(2.11c) 

and 

Q / = !B(x 1' + x 2
' +x3' _ x 4 ') 

+ B1Xl + B~2 + B3X3 + B4X4 - D /. (2.11d) 

Also 

(2.11e) 

Now, 

,p P' P' 
,p'fL = Q,fL - Q'2 ,paQ~· 

Comparing the above equation with Eq. (1.5b) and noting 
that P and P / differ by a constant and likewise Q and Q " we 
get 

2e1bl2YJ<h = ,paIQ', 

2erP/2p", = - (P'IQ '2),pa' 

The general scalar meson field equation is 

_ 2e'N2(e - rP/2) = _ A, A, + 1 g m2A, 2 
J.1.v o/Il'f/v 2 ttl' 0/' 

From Eq. (2.12a) we get 

(2.12a) 

(2.12b) 

(2.13) 

Q' F 
( - 1/'/2) _ fLV a (Q' + Q ' + Q / ) e fLV -F - F2 fLaV VafL afLl' 

Q'a"al' ( F;, ) + 2 2- -Faa' (2.14) 
F F 

where 

F= ~ = Q'erP/2 . 
2YJ", 

Case I: Let f.1 #- v. Equation (2.13) becomes 

[Q/( F;, ) Q/ 2] 
afL a v F2 2 F - Faa - 2F,p a 

F 
= F~ (Q ~av + Q :afL + Q /afLv )' 

From Eq. (2.11) we get 

(aQ ')fL l' = P ~l' = 0 (for f.1 #- v) 

which gives 

Q~av + Q :afL + Q/afLV = 0 (for f.1#-v). 

From Eq. (2.16) we get 

~(2 F;, _ F ) _ ~ A, 2 = O. 
F F aa 2 'f' a 

(2.15) 

(2.16) 

(2.17) 

Case II: Letf.1 = v. Using equations (2.13) and (2.17) it 
can easily be shown that the field equation for f.1 = v turns 
out to be 

Fa F 2m2,p 2 
-(A -Ba) =B +. (2.18) 
F 4Q' 

Now, sinceA, B, m are constants, Fand,p are functions of a 
and Q' is not a function of a. So Eq. (2.18) can hold only if 
m = O. So Eqs. (2.18) and (2.17) give 

F= C/(A -Ba), 

,p = 2v2log(A - Ba), 

where 

A. K. Sanyal and D. Ray 

(2.19a) 
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p' Axl +A 'X4 -D 

a =Q-= !B(xl' +X2' +x3' _x4') + BlXI +B~2 +B~3 +B4X4 -D' 

and A, B, C are all constants. 

(2.19b) 

III. APPLICATION TO THE CASE OF GRAVITATIONAL 
THEORIES WITH ASYMPTOTIC FLAT INSTANTONS 

In a recent paper in connection with "Gravitational 
theories with asymptotic fiat instantons" Auria and Regge3 

have sought to obtain a conformally fiat solution of 

R/w - !gl'vR = § (al't/Javt/J - !gl'virt/Jaat/J) - §gl'vM(t/J), 
(3.1) 

where 

t/J;: = FjM lat/J, 

where the metric is in the form (+ + + +). Auria and 
Regge3 assumed 

gl'v = e"'(dxl' + dx2' + dx3' + dx4'), (3.2) 

where 

(3.3) 

However, proceeding as in the paper by Rayl and the present 
paper, it is easy to see that for solutions ofEq. (3.1) of the 
formEq. (3.2)unlessM(t/J) = 0, "'can beexpressedasafunc
tion of either Xl' + x2' + x3' + x4' or 
KlXI + K~2 + K3X3 + K4X4 where K l, K2, K3, K4 etc. are 
constant. However, if'" is a function of 
KlXI + K~2 + K3X3 + K4x

4, it is obvious that the solution 
cannot be asymptotically fiat. Hence", must be a function of 
Xl' + x 2' + x 3

' + x4'. So Eq. (3.3) is not an assumption but 
can be obtained automatically from other conditions. 
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IV. CONCLUSION 

In summary, we find that Ray's conclusion that for 
massive and massless scalar meson fields in general relativity 
with a conformally fiat metric e"'(dxl' + dx2' + dx3

' - dx4
') 

that one must have", as a function of Ko(x l' + x 2' + x 3
' 

- x4
') + KlXI + K~2 + K3X3 + K4x

4, is true except that 
another solution given by Eq. (2.19) is also possible for mass
less mesons. It should be noted that the case of massless 
mesons was also studied by Gursay4 and he also overlooked 
the above possibility. However, the calculations presented 
by Gursay4 are too sketchy for us to find where the oversight 
occurred. Furthermore we find that the above result has sig
nificant application in the study of the "Gravitational theor
ies with asymptotically fiat instantons" by Auria and 
Regge,3 i.e., Eq. (3.3) is not an assumption but it naturally 
follows from Eqs. (3.1) and (3.2). 

'D. Ray, J. Math. Phys. 18, 1899 (19771. 
2In the work of Ray,' the expression for P was given by 

P =! A (x" + x2' + x" - x"1 + A,x' + A~2 + A,x' + A,x'. 

But this expression for P can be reduced to the form given by Eq. (1. 7al by 
suitable choice of coordinates. 

'R. D'Auria and T. Regge, Nucl. Phys. B 195, 2, 308 (19821. 
'M. Giirses, Phys. Rev. DIS, 2731 (19771. 

A. K. Sanyal and D. Ray 1979 
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The form of the isometric, homothetic, and conformal Killing vectors for algebraically special 
metrics which admit a shear-free congruence of null geodesics is obtained by considering their 
complexification, using the existence of a congruence of null strings. The Killing equations are 
partially integrated and the reasons which permit this reduction are exhibited. In the case where 
the congruence of null strings has a vanishing expansion, the Killing equations are reduced to a 
single master equation. 

PACS numbers: 04.20.Me, 04.20.Cv 

I. INTRODUCTION 

The mathematical difficulties which appear when deal
ing with the equations of general relativity, in the case of the 
algebraically special metrics which admit a shear-free con
gruence of null geodesics, become manageable. Among the 
different approaches used in the study of this class of me
trics, a very powerful one is that based on the concept of null 
strings, which arises when one considers their complexifica
tion. In fact, this concept and the spinorial formalism allows 
one to analyze and to integrate the equations for this wide 
class of metrics with relative ease. As an example, the reduc
tion of the Einstein vacuum field equations to a single differ
ential equation for one function and the reduction, in the 
case of vacuum, of the Killing equations, including the case 
of homothetic Killing vectors, to a single equation can be 
obtained by this approach (see Refs. 1,2 and 3,4, respective
ly). 

In this paper the equations for the isometric, homothe
tic, and conformal Killing vectors of any algebraically spe
cial metric which admits a shear-free congruence of null geo
desics along the repeated principal direction of the Weyl 
tensor are partially integrated under the only further restric
tion that the conformal curvature does not vanish. In the 
case in which the congruence of null strings has a vanishing 
expansion and the energy-momentum tensor of the matter 
has a constant trace and is suitably aligned to the con
gruence, the Killing equations are reduced to a single master 
equation. In Sec. II, a brief description of the coordinate 
systems and the induced bases to be used is given. In Sec. III, 
the partial integration of the Killing equations is presented, 
while in Sec. IV, the integrability conditions on those equa
tions are considered. Finally, in Sec. V, a single master equa
tion is obtained which determines the possible Killing vec
tors for the particular case mentioned above. The formalism 
and notation used in this paper are those of Ref. 5. All the 
spinorial indices are manipulated according to the conven
tion tPA = €AB1f!1, 1f!1 = tPA~B, and similarly for dotted in
dices. 

II. PRELIMINARIES 

The coordinate systems to be used are adapted to the 
foliation that every space-time of the class under considera
tion possesses. If IA/BaAB is a geodesic, shear-free field of 

null directions,6 then the system of differential equations 7 

/ A g4B = 0, (2.1) 

defines a congruence of two-dimensional totally geodesic 
null surfaces (null strings). When, additionally, IA[iJaAB is a 
repeated principal null direction of the Weyl tensor, there 
exist coordinates c/,pA such that the metric has the form 2 

g = 2rP -2 dqi ® (dPA + QABdqB), (2.2) 
s 

where rP satisfies 

/BVAi:)B = /A/BaBe InrP, (2.3) 

and QAB is a symmetric object. Thus, the set of vector fields 

a 
alA =/i-. =~2JA' 

apA 
(2.4) 

a2A =/irP2 (~ - QAB~) -/irP2DA' 
aqi apB 

constitutes a null tetrad. 8 The connection one-forms for this 
tetrad and the components of the curvature can be found in 
Ref. 2. In terms of the coordinates qi,pA, the null strings are 
defined by dqi = O. 

In place of the coordinates qi one can use any other pair 
of independent functions q,A which are constant on the null 
strings. Therefore, q,A = q,A (~) and, in order to preserve the 
form of the metric (2.2), the coordinates pA must be replaced 
by 

p,A= _p-IT-IBApB+~, 

where (T - lAB) is the inverse of 

(T A
iJ )= (aq'A), 

aqB 

~ and P-rP 2/rP '2 are functions of qi only. 

III. REDUCTION OF KILLING'S EQUATIONS 

(2.5) 

(2.6) 

Let K = -!K ABa AB be a vector field. The covariant 
derivatives of K can be decomposed into their irreducible 
components as 

V R .4Ks B = ERS AB + IRs~B + €RS/ AiJ - 2X€RS~B, 
(3.la) 

where 
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E AB V (AK B) RS = (R S)' 

I V AK lAB - IVR(AK B) 
RS =! (R SJA' - 2 R' 

- IVRAK· X- -S RA' 

(3.lb) 

(3.lc) 

(3.ld) 

The quantities E RSAB are the spinorial components of 
the traceless part of K( 1';") and X = AK I' ;1' • 

The vector field K is a conformal Killing vector if K( 1';") 

is proportional to gl'''; therefore K is a conformal Killing 
vector when E RSAB = O. The vector field K is an homothetic 
or an isometric Killing vector when, additionally, X is a non
zero constant or zero, respectively. The set of equations, 
E RSAB = 0, will be referred to as Killing's equations. If these 
equations are fulfilled, then K will be called, generically, a 
Killing vector. 

Using the Ricci and Bianchi identities one finds that 

!V(ARV/'EcD)RS = C(ABRSECD)RS +KRSVRSCABCD 

+ 4/s(ACsBCD) - 4XCABCD' (3.2) 

where CABRS and CABCD denote the spinorial components of 
the traceless part of the Ricci tensor and of the self-dual part 
of the conformal curvature tensor, respectively. Referring 
now all the quantities to the null tetrad (2.4), taking 
A = B = C = D = I in Eq. (3.2) one obtains that 
aRa5(¢ 2E"RS) = 0, which implies that E"RS is of the form 

E"RS = ¢ -2a(R US)' (3.3) 

Thus, the first triple of Killing's equations, E IIRS = 0, has 
the solution Us = - 2(aps + lJs ), where a and lJs are func
tions of t/ only. 

Assuming that the equations E IIRS = 0 have been inte
grated, taking A = B = C = I, D = 2 in Eq. (3.2) it follows 
that, a Ra SE12RS = 3Vltp -2C"22aS(¢ 2KI S). Hence, in order 
to fulfill the second triple of Killing's equations, E 12RS = 0, 
it is necessary to have 

C"22aS(¢ 2KI
S) = O. (3.4) 

If the condition (3.4) is satisfied, then E i2RS can be written in 
the form 

E 12RS = a(RSS) ' (3.5) 

and the equations E 12RS = 0 imply that SA = - SPA + E A' 
where sand EA are functions of rt only. 

Assuming now that E"RS = E 12RS = 0, taking 
A = B = I, C = D = 2 in Eq. (3.2) one finds that 

j¢ 2aRa5(¢ -2E22RS ) = 2.J2¢ -2C1222aS(¢ 2K/) 

+ 2KRSaRSC1l22 - 8XC"22' 

Hence, the last triple of Killing's equations require that 

.J2¢ -2CI222aS(¢ 2K/) + KRSaRSC1l22 - 4XC"22 = O. 
(3.6) 

If the condition (3.6) is fulfilled, then E22RS can be written in 
the form 

E22RS = ¢ 2a(RRsl' (3.7) 

and the equations E22RS = 0 have the solution RA 
= - 2(VPA +.::1A), wherevand.::1 A arefunctionsoft/only. 

Equation (3.2) gives two additional conditions. Assum
ing E ABRS = 0, one of these is given by 
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0= V(l RV/E22 )RS =.J2¢ -2C2222aS(¢ 2K/) (3.8) 

+ terms which vanish ifC1l22 = C I222 = O. 

From Eqs. (3.4), (3.6), and (3.8) it follows that if as (¢ 2K/) is 
different from zero, then CABCD = O. In the forthcoming, the 
discussion will be restricted to the case in which as(¢ 2K/) 
=0. 

A straightforward computation yields Ell RS 

= -f24> -2aR(¢ 2KI
S). Comparing with (3.3) one has, UA 

= -f24> 2KIA . Hence, the first triple of Killing's equations 

implies that KIA = - -f24> - 2(ap A + lJ A)' Then, one finds, 

as(¢2K/) = 2-f2a; thus, ifCABcD #0, 

(3.9) 

Similarly, by a direct computation one has E 12 RS 
= (lI.J2)[a<RK/) + D(R¢ 2K/) + ¢ 2K/a<RQS)C]' Then, 

substituting Eq. (3.9) one obtains, 

E i2
RS = a<R [(1I.J2)K/) + lJcQS)C _ lJc'spC] , 

where.s -a;a</. Therefore, the solution of the second triple 
of Killing's equations yields 

K2A = .J2(lJCQCA + MA ), (3.10) 

where, following Ref. 4, 

MA=lJC,ApC-SPA +EA· (3.11) 

Hence, the Killing vector K has the form 

A A a K=M aA +lJ -., 
art 

(3.12) 

and 

X= -~s-K[1n¢], (3.13) 

whereK [/l denotes the directional derivative of the function 
lalongK. 

In order to complete the set of Killing's equations, one 
finds thatE22

Rs = .J2¢2[DIRK/) _ ¢ 2K
1
(RDc QS)C 

+ K2 cacQ RS]. Then, using (3.9) and (3.10) one gets 

!¢ -2E22
RS = K [QRS] + SQRS + 28c.(RQS)C + MIR,S). 

(3.14) 

This expression can be written in the form given in (3.7) only 
after the condition (3.6) has been satisfied. Under the present 
assumptions, condition (3.6) reduces to 

K [C"22] = - 2XC1l22, 

equivalently, in view of Eq. (3.13), 

K [¢ -2C1l22 ] = M -2C"22' 

(3.15a) 

(3.15b) 

Thus the integration of the third triple of Killing's equa
tions requires additional information concerning the form of 
the metric. However, in the rest of this section and in the 
next, some general relations will be established using the 
form of the Killing vector given by (3.12). 

The Lie derivative along K of the members of the tetrad 
(2.4) are given by 

(3.16a) 

and 

X' KaU = [K,a2A ] = (2K [In ¢ ] lJ,1 - lJc,A )a2C 
- !(E22A C + ¢ 2MR,R8~naIC' (3.16b) 

G. F. Torres del Castillo 1981 



                                                                                                                                    

where Eqs. (3.12) and (3.14) have been used. Equation (3.16a) 
means that the flow generated by K preserves the foliation of 
the space-time given by the null strings. This fact depends on 
the assumption that CABCD does not vanish. 

To close this section, the transformation laws of the 
objects introduced in the integration of Killing's equations 
will be given. Since 8A = K [rt] and MA = K [pA] [see 
Eq. (3.12)], from (2.5) and (2.6) one finds that if q,A, p,A is 
another set of coordinates, then the components of K with 
respect to the basis induced by the primed coordinates are 
8'A = K [q'A] = 8Caq,A laqc, that is, 

8,A = T A
C8c, 

and similarly 

(3.17) 

(3.18) 

Expressing M' A in an analogous form to that given for 
MA in (3.11), using (3.17), (3.18), and (2.5) one gets 

S' =S+8A(Inp).A (3.19) 

and 

, T-IB [ -I + r;:c(TiJ ) EA = A P EB U BaiJ.C 

+ 8C.B T
iJ caiJ] + S 'aA· (3.20) 

These transformation properties can be used to simplify the 
equations, for example, by eliminating S or E A' however, 
such possible simplification will not be elaborated here (for 
some applications of these transformations see Refs. 3 and 
4). 

IV. INTEGRABILITY CONDITIONS 

It is shown in Ref. 9 that the integrability conditions for 
the Killing equations may be written as 

LRSTA=V RAlsT + 2KuACuRST + 2K(R tICST)tIA 

+ ~ER(SCT)UtIAK utI - (R 16)ER(sKT)A 

+ 2ER (SV T )AX =0, (4.1) 

MRSTU==KpA VPACRSTU - 4XCRSTU + 4Iv(RC VSTU ) = 0, 

and similar equations for the objects with dotted indices. 
These conditions restrict the form of the functions 8 A'S, and 
(~ , which appear in the Killing vector [Eq. (3.12)]. Evident
ly, a direct computation of the conditions (4.1) would be very 
lengthy. However, this computation can be abbreviated by 
using the Ricci identities which give 

L RSTA = VIR BEST)BA - jER(S VBCET)BCA' (4.2a) 

M RSTU = !V(RAVSBETU) - C(RSABETU)AB (4.2b) 

[cf., Eq. (3.2)]. 
The main simplification that is obtained by determining 

the integrability conditions by means of (4.2) comes from the 
fact that, with K given by (3.12), EIIAB and E\2AB are zero. 
Hence, one finds that 

1982 

LilIA = LII2A. = L211A = 0, 

L122A. = .,fiE22A.BaBln ¢, 

L212A. = (l/.,fi)¢4aB(¢ -4E22A.B), 

L222A =..r2¢ 21 ¢ 3DB(¢ -3E22A.B) - E22BCaBQCA)' 
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MI122 = i ¢ 2a Aa B(¢ -2E22A.B), 
(4.3) 

MI222 = !¢21¢2DA [¢2aB(¢ -4E22AB )] 

+ 2[ ¢ 3DB(¢ -3E22AB ) 

- E22
BCaBQcA ]~ In ¢ ) - C12

ABE22A.B, 

M2222 = (l/.,fi)¢2[¢3DA(¢ -3L222A ) +L222A ac QCA] 

- ¢ 7(DcQ CA )aB(¢ -3E22A.B) - C22
ABE22A.B. 

Substituting the expression for E22A.B given by (3.14) 
and using the commutation relations (3.16) one obtains 

(l/.,fi)L212A. = - E22A.BaBln ¢ + ¢ 21K [aBQAB ] 

+ 8B,BA +~,;,. + 8c,AaBQBC), (4.4a) 

(l/.,fi)L222A. = -E22A.B¢DB¢+rI2K[D BQAB] 

+ 2(8c.c + s)DBQAB + 28c,;,.DBQBC 

- (S.c pC - EC.c )aBQAB 

+ S ,BQAB + S,;,.C pC - EC,AC ), (4.4b) 

while the condition MII22 = 0 amounts to Eq. (3.1Sb). 

v. APPLICATIONS 

The results obtained in the previous sections can be ap
plied directly to find the Killing vectors of any given real 
metric which admits a shear-free congruence of null geodes
ics defined by a repeated Debever-Penrose vector or any 
complex metric which admits a congruence of null strings 
defined by a repeated Debever-Penrose spinor. Following 
the procedure outlined in Ref. 2, the given metric can be 
brought to the form (2.2); which allows one to identify the 
coordinates ~, pA and the structural functions ¢ and QAB' 
Then the use of the integrability conditions and Eq. (3.14) 
leads to the explicit form of the allowed Killing vectors. 

Conversely, one can obtain the general form of the met
ric which admits a given Killing vector. In view ofEq. (3.17), 
the Killing vectors admitted by this class of metrics can be 
classified according to whether 8 A vanishes or not. In the 
case where 8 A is nonzero, by an appropriate change of co
ordinates, it can be made equal to a constant, e.g., 8 A = 8 ~ 
and simultaneously, Sand EA can be made equal to zero [see 
Eqs. (3.17), (3.19)-(3.20)]. Then the last triple of Killing's 
equations [Eq. (3.14)] amounts to QAB,i = 0 and from (3.13) 
it follows that X = - (In ¢ ),i . 

When 8 A is zero, the function S is an invariant. In the 
subcase where S does not vanish, EA can be eliminated and 
from (3.14) and (3.13) it follows that Q;"B 
= PAB - f(ln S ).(A PBI' where each PAB is a homogeneous 

function of pi! of order 1 andfis a function such that ~a A f 
= 1, e.g.,J =! In[(pi)2 + (piI2], and 

X = S(~a;,. In ¢ - ~). Finally, in the subcase wheresis 
zero, EA can be made equal to a constant, e.g., EA = 8 ~. 
Then from (3.14) and (3.13) one obtains ai QAB = 0 and 
X = - ai In ¢. In general, these metrics will be complex. 

In the remaining part of this section it is shown that in 
the case where the congruence of null strings has a vanishing 
expansion, i.e., I AV Bcl A = 0, the Killing equations can be 
reduced to a single master equation, assuming that the scalar 
curvature is a constant. 
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As a consequence of the condition I AV BC I A = 0, t/J can 
be chosen as equal to one [see Eq. (2.3)] and, with respect to 
the basis (2.4), C11AB = O. Therefore, in order to satisfy the 
Einstein field equations, the trace of the energy-momentum 
tensor of the matter must be a constant and, denoting by 
TABCD the spinorial components of the traceless part of the 
energy-momentum tensor referred to the basis (2.4), the 
components TllAB must vanish. Then the remaining compo
nents are of the form 2 

T12AB = (l/81T)JAJ BTo, 

T22AB = - (l/81T)J(A TBI' 
(5.1) 

where To and TA are some functions made out of the matter 
field, and QAB is given by 

QAB = -JAJBO-J(AGBI -'iL(APBI -(RI12)PAPB' 
(5.2) 

whereR denotes the scalar curvature (assumed constant), LA 
= LA (qR), GA is such that 

(5.3) 

and 0 is a function that must satisfy a single second-order 
partial differential equation with quadratic nonlinearities. 2 

In the case under consideration, C1\22 = R 112 = con
stant, therefore condition (3 .I5a) amounts to 

RX=O. (5.4) 

Notice that witht/J = 1, from (3.13) it follows thats = - 2X' 
After imposing (5.4) one can write E22RS in the form given in 
(3.7). Substituting (5.2) into (3.14) and using (3.11), (3.13), and 
(3.16a) one finds that RA can be taken as 

-!RA =JA(K[O] + (3s+20R,R)OJ +K[GA] 

+ (2S + OR,R)GA + OC,AGC 
+ (2L . OR. + 20R L· . 

j R ,C j C,R 

+ S,C + (R 16)Ec + !OR,RC )pCp A - !OC,DA pCpD 

+ ('iLcEA - EC,A)PC + jLcEcPA' (5,5) 

Then the last triple of Killing's equations gives RA 
= - 2(VPA +LlA), wherevandLl A arefunctions ofqR only. 

Since JAJA = 0 and using (3.16a) on evaluating JAR A, one 
obtains 

4K[To] + 4(t + OR.R)To + (2LRoR,A +20RL A,R 

+ 3t-· + (R 12)E + 20R .. \...4 ~,A A ,RA JP 

- 2L CEc - Ec'C = 2v, (5.6) 

Hence, in order for K to be a Killing vector, the matter field 
must satisfy the constraint 

JCJBK [To] + (S + OR,R )JcJETo = O. 

Writing Eq, (5.6) in the form 

aA (K [GA J + (2t + OR,R )GA + OC,A Gc + j(2LRoR,C 

+ 20RL c.R + 3S,c + (R 12)Ec + 2DR,RC)PCPA 

- (L cEc + !Ec'C + V)PA J = 0, 

(5.7) 

it follows that there exists a function A such that the expres
sion between braces is equal to - J AA. Thus, substituting 
into (5.5) one gets 
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JA!K [0] + (3S + 2DR,R)O -LlB pB 

- (!EB,c - !LBEc)PBpC - iOB,cD pBpCpD - A J = 0 

from which it follows that the directional derivative of the 
key function 0 along any Killing vector K must obey the 
master equation 

K[O] = -(3S+20R.R)0+A +iOA,BCpApBpC 

+ (!EA,B -1LA EB )PApB + LlA pA + 1/, (5.8) 

where 1/ is a function of qR only. 
Consideration of the integrability condition leads to 

some additional relations. From (5.2) one has 

JBQAB = - 2JATo - L A - (R 14)pA. (5.9) 

Substituting this expression into (4.4a) and using (3.16a) one 
finds thatL212A vanishes if and only if Eqs. (5.4) and (5.7) are 
satisfied. Regarding the conditions L222A = 0, from Eqs. 
(3.11 b), (3.32), and (3.34b) of Ref. 2 one gets 

DoQAO = TA + N A + !(LB'O + JETB + 2D oJiJ TO)PA, 
(5.10) 

where NA = NA (qR). Then, using (5.9) and (5.2) in (4.4b) one 
obtains 

1 B B - fi L222A = 2K [ TA] + 2(0 ,0 + S ) TA - 2D B,A T 

+ 2(SpB - ~).BJATo 
- S,AB po + jL'A S,B I pB 
+ S,B(JAJBO + J IA GBI ) 

+ [OC(LiJ,B + JETo + 2D BJB To) 

- (R 14)EC l.c PA 
+ 2(00 N· ). + 2[: N· - 2D .. N B + ~ .. A ,B ~. A B,A ,AB 

- ~,BLA + (LB'O + JETB 
+ 2D BJO To)EA . (5.11) 

Thus, the conditions L222A = 0 require 

JIAK [TBI] + (OC'C + S )JIA TB) - OC,(AJOI T
C 

+ (SpC - EC),cJAJiJ To - !lS,AO 

- S,C(JAJOJCO + JCJ(AGBI ) - ~L(AS,BI 1 = 0, 
(5.12) 

which implies the existence of a and b A' functions of qR only 
such that 

2K[TAJ +2(OB,B +S)TA -2DB,ATB 

+ 2(SpiJ - ~),iJJA To - S,AB pB + 'iLIA,BI pB 

+s,B(JAJiJO+JIAGBI)=apA +bA. (5.13) 

Comparing (5.11) and (5.13) one concludes that 

b · = - 2( "B N· ) . _ 2[: N +."'. N B - ~ . A U A,B ~. A L.UB,A ,AB 

+ f!l,BLA - (LiJ,B + JETB + 2D iJaB To)EA (5.14) 

and 

a= - [OC(LB,B + JETB +2D BJBTo)-(RI4)EC],c 

=K[JiJTiJ] +Oc,cJBTiJ, (5.15) 

where Eq. (5.6) has been used [this last equality also follows 
from (5.13)]. 
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It is perhaps worthwhile to point out that for two of the 
three possible kinds of Killing vectors found at the beginning 
of this section, there exists a symplectic structure such that K 
is a Hamiltonian vector field and the null strings are Lagran
gian submanifolds. Indeed, when ~A ¥O there exist coordi
nates such thatK = ~c·ApcaA + ~Aa/at/. Defining{()=dpA 
I\dt/, one sees that the inner product of K and (() gives 
K J{() = d (~c pC). In the case where ~ A = 0 = S, there exist 
coordinates such that K = EoAaA, with EoA constant. Then 
K J (dPA 1\ dt/ ) = d (EOA t/). Clearly, in both cases, dp A 
1\ dt/ is a symplectic two-form which vanishes on the tan
gent space of the null strings. 
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A new gauge and tetrad invariant equation governing the coupled electromagnetic-gravitational 
perturbations for the Kerr-Newman metric and involving a closed 2-form is obtained. Operating 
on this equation with the complex vectorial formalism as developed by Crossman, we have found 
three equations for the gauge and tetrad invariant quantities X IB (=3t/12A tPOB - 2tPIA t/1IB)' 
X - IB(=3t/12AtP2B - 2¢IAt/13B)' and XOB (=3t/12A tPIB - 2tPIAt/12B + 2tP ~~2~ iA 1/2~IB)' 

PACS numbers: 04.40. + c, 97.60.Lf 

I. INTRODUCTION 

The main problem in analyzing small perturbations of a 
Kerr-Newman solution arises from the coupling between 
the electromagnetic and the gravitational fields. This prob
lem does not arise for the Kerr solution: Teukolsky, I using 
the Newman-Penrose formalism, has found a "master" 
equation governing scalar, electromagnetic, and gravita
tional perturbations in the given background. This equation 
is invariant under infinitesimal tetrad rotations (tetrad invar
iant) and under infinitesimal coordinate transformations 
(gauge invariant). Teukolsky's equation is satisfied indepen
dently by four gauge and tetrad invariant perturbed quanti
ties: the Weyl scalars t/10B and t/14B and the Maxwell scalars 
tPOB and tP2B (the subscript capital B denotes first-order per
turbed quantities). Moreover it is a separable equation in the 
Boyer-Lindquist coordinates, i.e., the radial and the angular 
behavior of the perturbation is described by two different 
equations obtained from the master equation by means of a 
separation of variables. 

In the following we will call an equation satisfied by 
only one perturbed quantity a "decoupled equation." In this 
sense, for example, Teukolsky's equation is a decoupled 

equation for tPOB' tPIB' t/10B' t/14B' 
In the Kerr-Newman solution, the electromagnetic 

perturbations are coupled to the gravitational perturbations 
via the energy-momentum tensor of the electromagnetic 
field in Einstein's field equations and via the term ( _ g)l12 
which appears in Maxwell's equations, as written in the usu
al tensorial form [( - g)lt2. F /Lv],,, = O. 

Until now attempts to find decoupled and separable 
equations for gauge and tetrad invariant perturbed quanti
ties have been unsuccessful. Many efforts have been made in 
this direction following different approaches and forma
lisms: Chandrasekhar2

•
3 using the Newman-Penrose for

malism has obtained a set of coupled equations for the gauge 
invariant quantities 

<Po = t/10B' <PI = t/1IB p/i, 

K = kB/(p)2/i, S = uBP/(p)2, 

where p = r - ia cos 8 and k Band u B are two perturbed 
spin coefficients (from now on a bar means complex conjuga
tion). 

Lee4 has derived a set of equations that couple the pure
ly gravitational quantities t/1oB and t/14B to the variables 

X IB = 3ifJ2A tPOB - 2tPIA t/1IB 

X -IB = 3t/12AtP2B - 2tPIAt/13B' 

t/10B' ifJ4B' XIB' X _ IB are gauge and tetrad invariant. In a 
recent paper LeeS has shown that in a limiting case where 
both the charge and the angular momentum of the black hole 
are small (a<:M, e<:M) it is possible to obtain decoupled and 
separable equations for X IB and X _ lB' Crossman,6 using the 
gauge and tetrad freedom, has derived decoupled equations 
for tPOB' tPIB' tP2B' The equations for tPOB and tP2B are separa
ble. 

A different approach has been adopted by Fackerell. 7 

Using the Cahen-Debever-Defrise8 complex vectorial for
malism as developed by Crossman 9 he has found a gauge and 
tetrad invariant equation for electromagnetic and gravita
tional perturbations. This equation has the form dA = 0, 
where A is a 2-form. Operating on this equation with the 
generalized operators of exterior differentiation introduced 
by Crossman, Fackerell, and Crossman 10 have found a set of 
decoupled equations for the gravitational quantities t/1IB' 
t/12B' and t/13B' using the gauge and tetrad freedom. The equa
tions for t/1IB and t/13B are separable. However, the gauge 
which allows the decoupling of the equations for the electro
magnetic quantities tPOB' tP2B' tPIB is different from that 
which allows the decoupling of the equations for the gravita
tional perturbations t/1IB' t/12B' and t/13B' 

In this paper, using the complex vectorial formalism, 
we derive a new equation governing the coupled electromag
netic-gravitational perturbations. It is both tetrad and gauge 
independent and it has the form dA = 0, where A is a 2-
form. II Following Fackerell we call this equation a "conser
:ation" equation in analogy with the conservation of charge 
In electrodynamics that is stated locally by the law d • J = 0, 
where J is the charge current form. 12 Jordan, Ehlers, and 
Sachs 13 have obtained a conservation equation valid for all 
uncharged type D geometries 

d(~~3Z~) = O. 

They have shown that there are conserved quantities asso
ciated to this equation (for example in the case of the 
Schwarzschild metric this equation leads to the definition of 
the covariant mass). However, the problem of finding con
se:ved quantities associated to our conservation equation 
wIll not be treated in this paper, whose aim is to investigate 
the possibility of finding gauge and tetrad invariant, decou-
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pled and separable equations using the complex vectorial 
formalism and the Crossman generalized operators. 

Operating on our conservation equation with the Cross
man operators, we obtain three gauge and tetrad invariant 
equations for XIB, X _ IB' and XOB' where we have defined 
XOB = 3tP2A<PIB - 2<PIA tP2B + 2<p ~~2¢ i::.i 1I2¢IB' 

These equations are not separable in the Boyer-Lind
quist coordinates for two reasons: The first is that some oper
ators appearing in our coupled equations are not purely radi
al or purely angular operators. The second is that here the 
situation is quite different from the Reissner-Nordstrom 
perturbations. In that case Chandrasekhar l4 has shown that 
it is possible to separate a set of coupled equations for <Po, <PI' 
K, S, by virtue of known relations existing among the angu
lar functions belonging to the spin-I and the spin-2 fields. In 
the case of axial symmetry, on the contrary, the angular 
functions belonging to different spins are not simply related. 

The equations for X IB and X _ IB in the limiting case of 
small charge and angular momentum, reduce to the corre
sponding ones obtained by Lee. 

It is interesting to note that the quantities X IB' X _ IB' 
X OB are gauge and tetrad in varian t linear combinations of the 
quantities (<POB,<PIB,<P2B) and (tPIB,tP2B,tP3B)' Therefore, the 
set of equations we have derived includes, in a gauge and 
tetrad invariant formulation, the two sets of equations that 
Crossman and Fackerell have obtained in two different 
gauges for the perturbed Weyl scalars and for the perturbed 
Maxwell scalars. The reason we are interested in equations 
of the form dA = 0 is that the formalism developed by Cross
man, applied to these equations, automatically leads to de
coupled and separable equations for the components of A, if 
A is a self-duaI2-form (see Sec. V). The requirement that A be 
self-dual must be satisfied if we do not want to use the gauge 
and the tetrad freedom, but it is a difficult condition to sa
tisfy because in the Kerr-Newman geometry, both the Max
well 2-form and the curvature 2-forms have anti-self-dual 
components, in contrast with the Kerr case where, for exam
ple, the Maxwell 2-form is self-dual. In Sec. II of this paper 
we shall introduce the complex vectorial formalism in the 
Debever later version and the Crossman generalized opera
tors. In Sec. III we derive our conservation equation and in 
Sec. IV we discuss its invariance under tetrad rotation and 
coordinate transformations. In Sec. V the equations for 
XIB' X - IB' XOB are derived. 

II. COMPLEX VECTORIAL FORMALISM 

We consider a null tetrad !II-', nl-', ml-',;nl-'j satisfying 
the usual conditions 

II-'nl-' = - ml-';nl-' = -1, II-'ml-' = nl-'ml-' = 0, 

and 

gl-'V = II-'nv + n 1-'1 V _ ml-';nV _ ;nl-'m V
• 

The real vectors II-' and n I-' are chosen along the repeated 
principal null directions of the Weyl tensor. Following Deb
ever we write the basis I-forms 

f) 1= nl-' dxl-', f)2 = II-' dxl-', 

f)3 = -;nl-' dxl-', f)4 = 7]3 
and the self-dual basis for the two-forms 
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Zl =f)1/\f)3, Z2=f)I/\f)2_f)3/\f)4, 

Z3=f)4/\f)2, 

where self-dual means that their Hodge duals identically ful
fills 

Let UI, U2, U3 be the spinor connection I-forms ex-
pressed in terms of the spin coefficients 

UI = kf) I + rf) 2 + uf) 3 + pf) 4, 

U2 = Ef) 1+ yf)2 + pf)3 + af)4, (2.1) 

U3 = rrf) 1+ vf) 2 + fJf) 3 + A,f)4. 

Then, the first equations of structure are 

dZ I = -2u2/\ZI_U3/\Z2, 

dZ 2 = 2ul /\Z 1_ 2u3/\Z3, 

dZ 3 = 2u2/\Z3 + UI /\Z2, 

and the second equations of structure are 

~I = dUI - 2u2 /\u l , 

~2 = dU2 + UI /\U3' 

~3 = dU3 + 2u2/\ U3, 

where ~a are the complex curvature two-forms 

~a = CabZ b + i RYab Zb + EabZ b 

(2.2) 

(2.3) 

Cab and Eab are, respectively, the Weyl and the Ricci tensor 
projected on the null tetrad, R is the Ricci curvature scalar, 
and Yab is the metric of the tridimensional complex space of 
the 2-forms 

[

1/10 1/11 

Cab = 1/11 1/12 
1/12 1/13 

o 
_1 

4 

o 
The Bianchi identities are given by 

d~1 = 2U2/\~1 - 2UI/\~2' 

d~2 = U3/\~1 - UI/\~3' 

d~3 = - 2U2/\~3 + 2U3/\~2' 
and the source-free Maxwell's equations are 

dF=O, 

where 

F= <PaZ 1+ <PIZ2 + <P2Z3. 

The electrovacuum field equations are 

<Pab = <Pa¢b' 

(2.4) 

(2.5) 

(2.6) 

These are the relevant equations we are going to use in the 
following. We will operate on them with the formalism de
veloped by Crossman. 

Crossman introduces a generalized operator of exterior 
differentiation 

O;~G = [d-(p+ 1)u2 /\ -(r+ 1)0"2/\ 

+ q(pf) I _fJf)2 + rf)3 -rrf)4)/\ 

+ s( pf) I _ [if) 2 - iTf) 3 + rf) 4) /\ ] G, 

V. Bellezza and V. Ferrari 

(2.7) 
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where G is a p-form. 
Besides the useful generalization of the directional de

rivatives are 

D ~ = D - (p + l)f" + pq - (r + 1)€ + sp, 
Li;~ = Li + (p + l)y - qJl + (r + IJr - s,u, 

c5~ =c5-(p+ IV3+q7+(r+ l)a-s1T, 

8~ =8 + (p + l)a - q1T- (r+ I)P+sT. 

(2.8) 

We remember that if/is a O-form 
d/ = DfO I + LifO 2 + c5fO 3 + 8fO 4. 

In the case of type D charged geometry and with our choice 
of the tetrad it results that 

k=U=A =v=O, 

'Po = 'PI = 'P3 = 'P4 = 0, 

tPo = tP2 = o. 
Crossman introduces generalized wave operators N c•s 

given by 

N 'P [D - 2 - I Li - I ° c.s = 2(s - I) - (s + c) . - (I + 2s) s - c - I 

8-2 -I 8-1 ° 
- 2(s-l) -(s+c)· -(1+2s) (s-c-I) 
- (s - 1)(2s - 1 )'P2 ] 'P. (2.9) 

For charged type D metrics, Nc.s is related to Ns.s by 
N 'P=A.(c- s)/2N [A.(s-c)/2'P] (2.10) 

c,s 'f' 1 s,s 'f' 1 , 

where N s•s is separable and it is the charged generalization of 
Teukolsky's spin-weighted operator. 

III. EQUATIONS FOR ELECTROVACUUM 
PERTURBATION 

We now consider the first-order perturbation of the null 
tetrad /ll',n I',m I',m I'J expressed in terms of the unper
turbed tetrad (from now on a sUbscript capital A denotes the 
unperturbed quantities and B the first-order perturbed ones) 

I G = LI/;: + L2n;: + L3m;: + 13m;:, 

nJ: = Nil:; + N2n;: + N3m:; + N3m:;, 

mG = MIl:; + M2n;: + M3m;: + M4m:;, 

(3.1) 

where L I, L2, N I, N2 are real functions and L 3, N3, M I , M2, 
M3, M4 are complex functions of the local coordinates. From 
these expressions of the perturbed tetrad it is possible to 
write the perturbed basis for I-forms 

e1 = -Lle~ -Nle~ -Mle~ -Mle~, 

e~ = -L2e~ -N2e~ -Mi}~ -M2e~, (3.2) 

e~ = -L3e~ -N3e~ -M3e~ -M4e~, 

and 2-forms 

1987 

z1 = -(LI +M3)Z~ -!(MI +N3)Z~ -M4Z~ 
+~(MI-N3)Z~ +NIZ~, 

Z~ = - (M2 + 13)Z~ - ~(LI +N2 +M3 +M3)Z~ 
- 3 - -

- (MI +N3)ZA + (L3 -M2)Z~ 

- ~(LI +N2 -M3 -M3)Z~ + (N3 -MdZ~, 
(3.3) 

Z~ = - ~(M2 + l3)Z~ - (N2 + M3)Z~ + L 2Z ~ 
- -2 -3 

+ !(M2 -L3)ZA -M4Z A· 
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We have then the basis to write the first and the second per
turbed structure equations and the perturbed Bianchi identi
ties. 

In order to derive our conservation equation let us start 
considering the following perturbed 2-form: 

2 - 2 P=31J12A FB +2<PIAFB -2tPIA(~2B +!1JI2A Z B), (3.4) 

where FB is the perturbed Maxwell's 2-form and ~2B is the 
perturbed second curvature 2-form (2.3) 

FB =tPOBZ~ +tPIBZ~ +tP2BZ~ +tPIAZ~, 

~2B = IJIIBZ~ + 1J12BZ~ + 'P3BZ~ + 1J12AZ~ 
+ tPlOB Z ~ + tPllBZ~ + tP12BZ~ + tPllAZ~, 

The components of Pare 

P=XIBZ~ +XOBZ~ +X-IBZ~ -2tPIIAtPIBZ~ 
- 2tP i~2¢ IA 112¢IBZ ~. (3.5) 

being 

X IB = 3'P2A tPOB - 2tPIA IJIIB , 

XOB = 3'P2A tP1B - 2tPIA 'P2B + 2tP ~~2¢ IA 1/2¢IB' (3.6) 

X -IB = 31J12A tP2B - 2tPIA 1J13B · 

Now our purpose is to compute the external differential of P, 
but to do this some further equations are needed. We first 
define two I-forms 

r=PAe~ -JlAe~ +7Ae~ -1TAe~, 

F=PAe~ -JlAe~ -7Ae~ +1TAe~. 
(3.7) 

From Eqs. (2.3) and (2.5) in the stationary state it results that 

dlJl2A = 31J12A r + 2tPllA F, 

dtPIA = 2tP 1A r. 
(3.8) 

We will use in the following the perturbed Maxwell's equa
tions (2.5) written with the generalized operator 

(3.9) 

and the Fackerell conservation equation 

0:::: _°1 [(~2B + !'P2AZ~) + tPlAFB - tP :;~FB] = O. 
(3.10) 

Besides we note that 

a ::: : ~ 'P = (d + nr A )IJI. (3.11) 

Let us compute the external differential of the first part of 
(3.4): from (3.9) and (3.8) it results that 

a ::::H3'P2A FB +2tPLFB] 

= 91J12A r AFB + 6tPllAF AFB + 8tP iAr AFB; 

then from (3.10) we obtain 
10 2 -

0::: I 3 [3'P2AFB + 2tP IAFB] 

= 6¢IIA F AFB + 2tP iAr AFB. 

For the second part of P, using (3.9) and (3.10) we find 

0:::: _°3 PtPJA [~2B + !'P2AZ~] J 

= - 2tP iAr AFB + 2<P ~~2¢ :~2r AFB. 

Adding (3.12) and (3.13) we have 
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For the Kerr-Newman metric it results that 

= 
PA JiA 1TA 1"A 

Then 
- - 1/2-
F= (tPIA/tPIA) F, 

and from (3.14) and (3.16) 

(3.14) 

(3.15) 

(3.16) 

0=: _°3 ( P) = 4¢; U(tP :~2F AFB + ¢ :~2r AFB)' (3.17) 

But from (3.8) 

and 

tP ~~20 =:g [tP :~2FB + ¢ :~2FB] 
= 0 =: _03tP ~~2[ tP :~2FB + ¢ :~2FB]' 

Finally we conclude that 

0= :°_3 [P - 4¢; ~~2(tP :~2FB + ¢ i:4 112FB)] = O. (3.18) 

We note that in the case of Kerr tPlA = ° and the equation 
(3.18) becomes 

0=:0_3P=0. (3.19) 

But in this caseP= 3tJ12A FB and from (3.8) and (3.19) we 
obtain 

0=: _033tJ12AFB =3tJ12A O =:gFB =0 

which are the Maxwell equations. 
In order to write Eq. (3.18) in a more convenient way we 

note that taking tP ~~2 off the operator 0 = : _°3 and writing P 
in components we obtain 

o =: _03ItP~~2[tPi:43/2P-4(¢:}FB +tP:~2FB)]J 
=0 =:g[tPi:43/2(xIBZ~ +XOBZ~ +X-IBZ~) 

_ 2 tPlB A.. Z 2 _ 2 ¢IB A. Z 2 
A. 112 'f'IA A A.. 112 'f'IA A 
'f'IA 'f'IA 

- 4(¢ :~2FB + tP :~2FB)] = O. 

Being 

(tP :12)B =! (tPIB/tP :~2) and tPIAZ~ = FA 

if we define a 2-form X B whose components are X IB' X OB' and 
X -IB' Eq. (3.18) becomes 

o=:H tP i:4 3/2XB - 4(¢ :12F + tP :12FB)] = 0, (3.20) 

which is the conservation equation we were looking for. 

IV. PROPERTIES OF THE CONSERVATION EQUATION 

We now subject the perturbed tetrad to infinitesimal 
rotations and to infinitesimal translations. A general rota
tion of the tetrad can be considered as made up of three 
classes of rotations 

1988 

(1) IB-IB' mB-mB + aIA,nB- nB + amA + amA, 

(2) nB-nB, mB-mB + bnA, IB-IB + bmA + bmA, 
(4.1) 
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(3) IB-A -I/A, nB-AnA, mB----ri! ;"mA, 

where a and b are two infinitesimal complex functions and A 
and (T are two infinitesimal real functions. From the defini
tion of the Maxwell and Weyl scalars we have the following 
rules of transformation: 

tJI 'oB = tJlOB ' 

tJI;B = tJl4B , 

tJI;B = tJl2B , 

tJI iB = tJl3B + 3atJI2A , 

tP 'oB = tPOB + 2btPlA' 

tP;B = tPZB + 2atPlA' 

tP;B =tPIB' 

(4.2) 

where the prime indicates the quantities computed in the 
rotated frame. 

From (4.2) it is easy to check that bothxB and 
(¢ :12F + tP :12F)B are invariant under infinitesimal tetrad 
rotations. Thus Eq' (3.20) is tetrad invariant. We can still 
perform an infinitesimal coordinate transformation at every 
point in space-time 

x'I'=xI'+51', 

where 

51' = XI!.: + Yn!.:+Zm!.:+Zm!.: 

and X, Yare real functions and Z is a complex function. 
Under this coordinate tranformation each perturbed quanti
ty QB is changed in Q ~ in this way 

(4.3) 

where LsQA is the Lee derivative in the 5-direction of the 
unperturbed quantity QA' From (4.3) it follows that if a 
quantity is constant or zero or ifit is a product of Kronecker 
functions in the stationary state, it will be invariant under 
coordinate translations, namely it will be gauge invariant. 

Thus tJlOB ' tJllB , tJl3B , tJl4B , tPOB' and tP2B are gauge invar
iant while 

tJI;B = tJl2B -3tJ1ZA(PAX-f.lAY+1"AZ-1TAZ) 

- 2tPIIA(PA X -f.lA Y -1"A Z + 1TAZ) 

tP;B =tPIB -2tPIA(PAX-f.lAY+1"AZ-1TAZ), (4.4) 

We immediately seefrom (3.6) thatXIB and X _ IB are gauge 
invariant. 

Besides, being from (3.15) 

PAX - JiA Y - 1TAZ + 7AZ 

= (¢IA/tPIA)1I2(PA X -f.lA Y -1"A Z + 1TAZ) 

it follows that XOB is also gauge invariant. Thus the 2-form 
X B appearing in Eq. (3.20) is gauge invariant. 

Let us consider now the second 2-form in (3.20) namely 
(¢ :12F + tP :12F)B' Under coordinate translations, FB trans
forms as 

F~ =FB + 0 =:g [tPIA(ye ~ -xe~ - ze~ + Ze~)], 
from which 
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(¢ :12p + ~ :12F)~ 
= (¢ :12p + ~ :12F)B + !¢ :~2~IAO =:~ 
X(ye~ -xe~ +ze~ -Ze~) 

+¢IA~:~20 =:~(ye~ -xe~ -ze~ +ze~) 

- ¢ :~2~IA [(PAX - f1A Y - 'TAZ + 1TAZ)Z~ 
+(PAX-f1AY+'TAZ-1TAZ)Z~]l. (4.5) 

It is evident that the second 2-form appearing in Eq. 
(3.20) is not gauge invariant and the part gauge dependent of 
this 2-form is isolated in (4.5) within curly brackets. But if we 
apply the operator of external differential to this term we 
find, with straightforward calculations, that the result is 
zero. Thus we can conclude that the equation 

GIB = !~IA¢ :~2([3 -M2) + ~ :~2[ ¢OB - ¢IA(M2 + [3)] I, 

O=:H ¢ i::t 312XB - 4(~ :I2F + ¢ :12P)B] = 0 

is both tetrad and gauge invariant. 

v. EQUATIONS FORXIB,XOB'X ~1B 

In order to obtain the equations for X IB' X OB' and X ~ IB 
it is convenient to write Eq. (3.20) in this form 

0= :g¢ i::t312[XIBZ~ + XOBZ~ + X ~ IBZ~] 

=40 =:g[GIBZ~ +G2BZ~ +G3BZ~ +c.c.], 
(5.1) 

where c.c. indicates complex conjugation and GIB , G2B , G3B 
and their conjugates are the components of the perturbed 2-
form (¢ :12p + ~ :12F)B' 

G2B = ! ~ :~2 [¢IB - !¢IA (LI + N2 + M3 + M 3)] - !¢ :~2~IA (LI + N2 - M3 - M 3) + !(¢IA /~ :~2)~IB I, 
G3B = ! ~IA¢ :~2(N3 - Md + ~ :~2[ ¢2B - ¢IA(MI + N3)] I. 
The 2-form appearing on the left-hand side of equation (5.1) is a self-dual form, while the 2-form on the right-hand side is 

not. 
Operating on Eq. (5.1) with *0 = : ~02 * and only considering the self-dual part of the resulting equations we obtain the set 

of equations for XIB' XOB' and X ~ 18 

N I.I [¢ 1::t 3/2XIB] = 4!NI,1 GIB + ()~02=i{)= i ~/GIB 
+ D ~ 2 ~ I D ~ 3 ~ I-G _ (D ~ 2 ~ I{) ~ I ~ 2 + £ ~ 2 ~ I D ~ I ~ 2)-G I 

o ~ 2 ~ I 0 3B 0 ~ 2 ~ IOU 0 ~ 2 ~ I 0 2B' 

[No.o + 1J12A ] [ ¢ i::t 2X DB ] = 4! [No.o + 1J12A ] ¢ IA I12G2B 
_ 1 [Ll ~ 2 ~ I{) ~ 3 ~ I + () ~ 2 ~ ILl ~ 3 ~ I] A. ~ 1I2G _ I [D ~ 2 ~ 18 ~ 3 ~ I 

2 ~ 2 0 ~ I I ~ 2 0 ~ I I 'I' IA IB '2 - 2 0 ~ I I 

+ 8 ~ 2 ~ ID ~ 3 - I] A. ~ 1I2G 
~ 2 0 ~ I I 'I' IA 3B 

+ 1 [D - 2 ~ ILl - I ~ 2 + Ll - 2 ~ ID - I ~ 2 + () ~ 2 ~ 18 ~ ~ I - 2 
2 ~21 ~II -2 0 ~I I -2 0 -I I 

+ 8 ~ 2 ~ I{) - I ~ 2] A. ~ I12G I 
-- 2 0 ~ I I 'I' IA 2B' 

N [ A. ~512 ] 4!N A. ~IG + A ~2~IA ~3 ~IA. ~I-G 
~ I. - I 'l'IA X ~ 18 = ~ I. ~ 1'1' IA 3B .'-I 0 0.'-1 ~ I -- 2'1' IA IB 

+ 8~2~18~3~1A. ~IG _ [Ll ~2~1£~1 ~2+£~2-IA ~I ~2]A. ~I-G 
o 0 ~ I ~ 2'1' IA 3B 0 0 U ~ I 2 U 0 0.'-1 ~ I 2 'I' IA 2B' 

+ [¢IB - ~¢IA(LI +N2 +M3 +M3)]Z~ 

+ [¢2B -¢IA(M1 +N3)]Z~1 
-0 ~IO!G' Zl +-G' -ZI +-G' -Z3 I 
- ~ 10 IB A 2B A 3B A , 

(5.2) 

(5.3) 

As we said in Sec. II, the operator N s•s is separable but 
the other operators appearing in the previous equations are 
not separable in Boyer-Lindquist coordinates in the Kerr
Newman metric. It is clear from Eq. (5.2) that ifGIB , G2B , 
and G3B , namely the anti-self-dual part of the two-form 
(~:!2F + ¢ :12p)B' were zero, the three equations would be 
decoupled and separable. In fact if A is a self-dual closed two
form, it is possible to show that the self-dual components of 
the equations 

where the right-hand side 2-form has only anti-self-dual 
components 

*0 = : ~02 *0 = : gA = 0 

are three decoupled equations for the three components of A: 

Nl.1 [AI] = 0, 

(N1.o + ¢2A HA 2 ] = 0, 

N __ 1.1 [¢2AA3] = O. 

Therefore, we are in the same situation as if we had used the 
equation dF = 0 to obtain decoupled and separable equa
tions. In fact Eq. (3.9) written in components is 

o =:g{[¢OB -(M2+L3)¢IA]Z~ 
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G iB = ¢IA (L3 - M 2), 

GiB = - ¢IA(L 1 +N2 -M3 -M3), 

G 3B = ¢IA(N3 - Md· 

Operating on (5.3) with *0 = : ~02 * we obtain a set of 
equations that are exactly the same as Eqs. (5.2) when we 
replace the set of quantities (x IB' X DB' X ~ IB) with 
{ [¢OB - (M2 + 13)¢IA ] , 
[¢IB-!¢IA~I+N2+M3+Mill' _, _ 
l!P2B = ¢IA (MI + N3)] j, the set(GIB , G2B , G3B ) with (G iB' 
G iB' G 3B) and we put GIB = G2B = G3B = O. 

It is however evident that Eq. (3.20) has a different in
formation content from Eq. (3.9), because it involves, via 
X IB, X DB' X IB, both Weyl's scalars and Maxwell's scalars. 
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The first and the third equations (5.2) reduce to those 
obtained by Lee in the case of small charge and angular mo
mentum (e<M, a<M), being all the terms on the right-hand 
side quadratic or more both in e and a, when written in 
Boyer-Lindquist coordinates. 

VI. CONCLUDING REMARKS 

In this paper we have derived a new gauge and tetrad 
invariant equation for the Kerr-Newman metric, involving 
first-order perturbed quantities. We think that the problem 
of decoupling and separability of the perturbation equations 
could be solved by finding a 2-form A, whose components 
involve gauge and tetrad invariant perturbed quantities (as 
X IB' X OB' X - IB' if;oB' if; 4B), that satisfies the conservation 
equation dA = 0 and that is self-dual. Our equation can be 
used for further investigations of the problem in the follow
ing way: It is necessary to find further conservation equa
tions and properly combine them with our equation, Facker
ell's equation, and Maxwell's equation, in such a way that 
the anti-self-dual part of the resulting 2-form cancels. Once 
the requirement of self-duality is satisfied, Crossman's for
malism will automatically lead to decoupled and separable 
equations for the components of A. 
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We study dimensional reduction in (d + n)-dimensional space-times, with or without torsion, 
which admit n commuting Killing vectors. The field content of theories in (d + n) dimensions 
reduced to d dimensions are completely worked out. The equations of motion satisfied by these 
fields are also derived explicitly. 
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I. INTRODUCTION ~here ii:B are the gauge fields (connection coefficients) and 
X AB are the representations (in general reducible) of the gen
erators ofthe group GL(d + n,R ). 

Dimensional reduction provides an attractive frame
work for a possible geometrical unification of gravity with 
gauge theories of internal symmetry. To this end, a number 
of suggestions, based on the generalization of Kaluza-Klein 
theory,l already exists in the literature. 1-4 From the contents 
of these works, it is clear that dimensional reduction is not a 
unique and universal procedure. Moreover, the extent to 
which one can take any such scheme seriously depends cru
cially on the definiteness and clarity of the initial assump
tions and their relation to the final results. 

The main objective of this article is to report a formula
tion of dimensional reduction for (d + n I-dimensional space
times, with or without torsion, which admit n commuting 
Killing vectors. This is the generalization to arbitrary n of 
our previous works for n = 1 and n = 2. In our approach to 
dimensional reduction, a number of interesting features arise 
which are worth noting. One of these is the appearance of an 
SO(n) symmetry which was absent in the initial theory. It is 
the anlog of the global symmetries which arise in supergra
vity theories. Another interesting feature is that the cosmo
logical constant does not appear in the dimensionally re
duced set of equations which we obtain, if it were zero in the 
initial (d + n)-dimensional theory. 

II. BASIC ELEMENTS OF DIMENSIONAL REDUCTION 

In some applications, such as in Einstein-Cartan theory 
and supergravity, the torsion tensor is, in general, not zero, 
so that we must deal with nonsymmetric connections. To 
accommodate such possibilities, we will introduce vielbein 
fields and covariant derivatives in a way which is familiar 
from the gauge theory approach to gravity and supergra
vity. 6 This language makes our formalism accessible to a 
larger number of physicists. There is no sacrifice of rigor, 
however. The mathematically minded reader will note that 
our starting point is to introduce a connection in a (d + n)
dimensional manifold via the corresponding bundle oflinear 
or orthonormal frames. 

We consider a (d + n)-dimensional manifold M, which 
is characterized by the structure group GL(d + n,R) or one 
of its subgroups. We specify a connection in M by the covar
iant derivative 

Da = aa + ii:BXAB , 
( 1) 

a = O, ... ,d + n - 1, A,B = O, ... ,d + n - 1, 

a) Supported in part by Department of Energy under Contract No. DE-AS-
2-76ER02978. 

Here and in what follows the "caret" on top of any 
quantity indicates that it corresponds not to a dimensionally 
reduced manifold but to M itself. When no ambiguity arises, 
the caret will be omitted. For definiteness, we assume that M 
has one time and d + n - 1 spacial dimensions. We also in-

A 

troduce a set of (d + n )-bein matrices, K :, with their corre-
sponding inverses, K ~, satisfying the orthonormality condi
tions 

KA AKA a £A K" AKA b £b 
a B=UB' a A=Uao (2) 

One can then express the metric on M in the form 

(3) 

where rtAB are the components the Minkowskian metric 
with signature ( + , - , ... , - ). For many purposes, it is more 
convenient to express t~ covariant derivative (1) in a new 
basis with components X A given by 

(4) 

One advantage of using the basis I XA J is that the compo
nents of both the metric tensor and the Levi-Civita tensor 
will become constants. The commutators of the elements of 
the set IXA J are given by6.7 

AA A AA AA 

[XA,xB] =K~KHR~t>XCD - T~bXC] 
_A CD'" AC A 

=R ABXCD - T ABXC, (5) 
ACD ~ whereR AB and lAB are, respectively, the components of the 

A 

curvature and torsion tensors in the basis I X A J . 
Up to this point we have introduced a number of struc

tures on M to describe its intrinsic differential geometry. To 
proceed with dimensional reduction, we now assume that 
there are n independent everywhere spacelike Killing vec
tors k S on M. In other words, we assume that metric tensor 
of M has an n-parameter group of isometries. In this paper 
we further assume that these isometries are abelian, i.e., that 
the corresponding Killing vectors commute. The nonabelian 
isometries will be dealt with elsewhere. 8 Depending on the 
basis we work in, we represent the components of the Killing 
vectors by li;A J or Ii saJ, where 

jsA=K:jsa. (6) 

The presence of n Killing vectors is the signal that n of 
the d + n coordinates which parametrize the manifold Mare 
redundant and that it might be possible to utilize the action 
of the symmetry to obtain ad-dimensional formulation of an 
initially (d + n}-dimensional theory. This would then consti-
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tute a dimensional reduction from aId + n)-dimensional 
manifold M to a d-dimensional manifold S. A method of 
carrying out this procedure was given by Geroch4 in his four
to three- and four- to two-dimensional reductions. His for
malism can easily be restated to apply to more general di
mensional reductions: One starts by dividing M into orbits 
under the desired isometry. Two points p and q belong to the 
same orbit if there exists a curve from p to q the tangent to 
which at any point is a linear combination of Killing vectors 
js. Thus, the orbits are spacelike n-surfaces. The elements of 
the manifold S are then taken to be the collection of all such 
orbits in M. As pointed out by Geroch, it is not possible to 
regard the manifold S as a hypersurface in M except when 
the n-manifold spanned by the Killing vectorsjs is orthogo
nal to a d-manifold in M. It is more natural to regard S as a 
quotient space of M by the action of the isometry group. In 
fact, let t/J be a mapping from M to S which assigns to each 
point p of M the orbit t/J( p) passing through p. Then, one can 
establish a one-to-one correspondence4 between the tensor 
fields on S and tensor fields on M, which satisfy the following 
two conditions: 

A .A c.:;:B 
jSAT1::::~ = ... =lSBT1::::~ =js T~:::D 

jf;-DTA ... B 0 = ... = ~ C.··D = , j= 1, ... ,n (7) 

2'T = 0, j = 1, ... ,n, (8) 
'I; 

where 2' is the symbol for "Lie derivative," and the condi
tion (8) states that the Lie derivative of the tensor T along the 
direction specified by the Killing vectorjs vanishes. The 
requirements (7) and (8) ensure that the intrinsic geometry of 
S is patterned after M and yet is self-supporting in the sense 
that, once established, it need not make any reference toM as 
long as the corresponding isometries are exact. Moreover, 
since various tensor operations commute with the map t/J 
from M to S, to set up theories which make sense in S, it is not 
necessary to restrict the range of indices to those natural to S, 
so that we can retain manifest covariance with respect to M. 
From this point of view, the creation of manifold S is a secon
dary notion which helps visualize unified theories in (d + n) 
dimensions, which satisfy the conditions (7) and (8). 

We now proceed with dimensional reduction. Consider 
the n X n matrix of scalar fields with elements 

A.jk =jsA kSA =jsa kSa ' j,k = 1, ... ,n. (9) 

It is easy to verify that the n(n + 1)/2 fields A.jk satisfy the 
conditions (7) and (8) and are therefore scalar fields on S. 
Similarly, consider the quantity 

K~ =K~ _ltA(A. -I)jk kSa ' (10) 

From (6) it follows that iSAK~ = isaK~ = 0, for all compo
nents K ~. Since K ~ also may be chosen to satisfy the condi
tion (8), it is a mixed tensor (vielbein) on S. From A.jk and K ~ 
one can then construct the following tensors on S: 

h b - K AK b _ r:b j f;- (~ - I) k f;-
a- a A-Ua-~b/L rjk ~a' 

h B -KBKb _ r:B jf;-B(~ -I) kf;-A - b A - U A - ~ /l, jk!>A' 

h - K AK B _ A j f;- (~ - I) k f;-ab -1JAB a b -gab - !>a /l, jk !>b' 
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(11 ) 

(12) 

(13) 

(14) 

These expressions define the components of the metric and 
the Kronecker delta on S. 

We now tum to the requirements demanded by the 
structure of isometries. The requirement of commutativity 
implies that forj,k = 1, ... ,n 

jsAXA kSB - kSAXA jsB = ksCjsDT~D' (15) 

where T~D is the torsion tensor. Moreover, since by the de
finition of an isometry the Lie derivative of the metric tensor 
in the direction of the Killing vectors vanishes, we must have 

.A kf: ......... k k C [ A D A. D 
XA ~B+XB SA= 5 1JADTBC+1JBDTAC)· (16) 

For vanishing right-hand side, this reduces to the familiar 
Killing equation. Finally, following Geroch, we introduce 
the covariant derivative on S in terms of the covariant deri
vative on M in the following way: 

X T B ... C - h Lh M ... h Nh B .. ·h ~X T I ... J (17) A D···E - A DEI J L M···N· 

Since our connection on M is, in general, non symmetric, the 
connection on S will also be nonsymmetric, in general. 
Moreover, since the nonsymmetric part of the connection is 
related to the torsion tensor, this tensor must be compatible 
with the covariant derivative (17) on S. One way to ensure 
this is to require that the torsion tensor of M be a tensor on S, 
i.e., 

k AA C k BA C 5 TAB = 5 TAB = 0, 5t'T= O. (18) 
I; 

This is in line with some of the field theoretic applications, 
e.g., to supergravity, which we have in mind. With condi
tions (18), it is straightforward to check that expression (17) 
satisfies all the requirements of a covariant derivative on S. 

In terms of ! X A l, the components of curvature and 
torsion of S are given by 

[XA,xB] =R~~XCD - T~BXC' (19) 

Using (17), one can then uniquely express these in terms of 
the components of curvature and torsion of M, the scalars 
A.jk' and the covariant derivatives ofj~: 

A 

R LM h C h Dh L h M [R JI AB = [A B [J I J CD 
- 2(,1. -1)kj(XC kS I)(XD js J) 

- 2(,1. - t))kj(X Iks J)(Xc lSD)) , 

h fA h ~ J = ~(h ~ h ~ - h ~h ~). (20) 

III. SPECTRA AND EQUATIONS OF MOTION 

The ultimate objective of any dimensional reduction is 
to formulate (d + n)-dimensional theories in such a way that 
in the limit of exact symmetry, they would have the appear
ance of a d-dimensional theory. So, we must go one step 
further and express the covariant derivatives of the Killing 
vectors in terms of fields which are intrinsically on S. Thus, 
consider the antisymmetric field strength tensors 

A···B = [ '(d _ 2)'] -Ie ..A···BC···DEF If;- ... mf;- X jf;-w] n. . <'I ... mf: ~c ~D E ~F, 

(21) 
A,B = O, ... ,d + n - I,. j,l,m = 1, ... ,n, 

where ~ ... F is the (d + n)-dimensional Levi-Civita tensor 
(constant in the basis we work in), and EI ... m is the Euclidean 
n-dimensional Levi-Civita tensor. Clearly, there will be n 
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such (d - 2)-forms which satisfy the conditions (7) and (8) 
and which are, therefore, tensors on S. Starting from the 
definition (21), one can show that 

XIjSJ 
= ( _ l)d + n -I [U (n!)] -IE/ ... mEA ... BG ... HlJ(i)1"·B /SG ... mSH 

-(A-I)/m/S[lXJJAmj' (22) 

A = det(Aij); (23) 

the (A -I)/m are elements of the matrix inverse to (Aij): 

(A -1)/mAmk = D/k (24) 

and 
I A I A I A \.1 (25) 
SIIXJ JAmj = !(SIXJ - SJXIY"mj' 

In the dimensionallly reduced theory the (d - 2) forms 
given by (21) may play the role offield strength tensors asso
ciated with gauge fields coupled to gravity. It is therefore of 
interest to know their curls and divergences. We define the 
generalized curl by the expression 

X [H (i)L ... M ) = ( _ l)d + n - I [(n + 1 )!(d - l)!] - I 
; A 

X ~L ... MI ... J X G A···B E GA ... BI ... J (i)j • (26) 

Then, after a lengthy computation, one can show that 

Similarly, 

From this, it follows that in the special case of vanishing R ~ 
and of vanishing torsion our (d - 2)-forms are curl-free. 
Also, 

X AB···CD = (A -I) [AB ... CDX A . +! AB ... CDX A ] A (i); mk (i) m A k; 2(i); A mk 

+ (i)AB ... CDTF +!( _ l)d(i)AFIB"'CTDJ (28) ; FA 2 ; AF' 

One would expect that in the dimensionally reduced theory 
each of the scalar fields A ij satisfy a Klein-Gordon equation 
with a source. We find that this is indeed the case. In fact, a 
straightforward application of the formulas we have derived 
above shows that 

X AXAAjk 
=(-I)d+n-l(d_2)U -I(i). (i)c- .. D_2jE'DRF kE' ;C-··D k !> D!>F 

+ (A -1)mq(XBAqj)(XBAmk) - !(A -1)pq(XAApq)(XAAjd. 
(29) 

Our final task is to obtain expressions for the Ricci ten
sor and the scalar curvature of the manifold S. By definition, 

(30) 

where R ~';[ is given by Eq. (20). Making use ofEq. (22), one 
obtains the following expression for the Ricci tensor of S: 
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R ';[ = h ~h 7R ~ + ~(A -1)kjXMXBAkj 

+ l(XMAkj)(XBA k) I) 
+ ~(_ l)d+n-l[d _ 2)!]A -I(A -I)kj 

X [h ';[(i)jA ... D(i)t"·D - (d - 2)(i)jBA ... D(i)~A ... D] 

+ !1JMA (A -1)kjT!BXEAkj' (31) 

Similarly, 

R = hftR';[ 

= R -jS-D(A -I)jk kS IR ~ + !(A -1)jkXAXAAjk 
+ ( _ l)d + n - I [(d _ 2)!]A -IA p~ 1(i): ... E(i): ... E 

+ l(XAApq)(XAA ~ I). (32) 

IV. DISCUSSION 

We now turn to a discussion ofthe results and their 
possible significance. Interpreted in the most straightfor
ward manner, Eqs. (27), (28), (29), and (31) are the main re
sults of our dimensional reduction. To see this, suppose that 
in (d + n)-dimensional the source-free Einstein-Cartan 
equations R ~ = 0 are satisfied. One can also postulate a 
suitable set of equations for the torsion tensor. Then, the 
above four d-dimensional equations determine the dynamics 
of the scalar fields Ajk' (d - 2)-forms, (i)t" .. E, and the gravita
tional field h AB' Its nongravitational sector is highly nonlin
ear, and the interactions of scalar and gauge fields are not of 
the minimal type. The field content of the reduced theory is 
fixed by the intrinsic geometry and the symmetries of the 
initial theory. There are n field strengths or (d - 2)-forms 
and !n(n + 1) scalar fields. There is a natural global SO(N) 
symmetry associated with the matter field sector of the re
duced theory, which was not present in the initial (d + n)
dimensional theory. It provides an explicit example of how 
such symmetries arise in supergravity theories.3

,9 There are 
also n-abelian local gauge symmetries. 

Our results are to be compared and contrasted with 
other recent approaches to dimensional reduction \0: (a) Our 
Killing vectors represent the isometries not of some subman
ifold of M but of the entire (d + n )-dimensional manifold. As 
a result, their scalar products determine the scalar fields and 
their twists the gauge fields of the reduced theory. (b) As long 
as the isometries are exact, there will be no dependence on 
the extra dimensions and no need for harmonic expansions 
in those variables. (c) The dependence on the extra n-coordi
nates can be associated with the breakdown of the initial 
symmetry of the metric tensor g. This could be triggered, 
e.g., by some sort of spontaneous symmetry breaking. It 
could also happen because of the anomalies which arise 
when the theory is quantized. (d) There is no cosmological 
constant in the reduced set of equations if there were none 
present in the (d + n-dimensional theory. (e) Since we have 
an explicit set of equations for the dimensionally reduced 
theory, then such questions as the ground state solution, its 
stability, etc., can be unambiguously determined for a given 
set of boundary conditions. 
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Stochastic convergence of the saturation coverage of one-dimensional 
arrays of p-bell particles 
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This paper considers the first two moments ofR ( P,N) = A ( P,N)I N,A (P,N) denoting the random 
number of unoccupied sites of a one-dimensional array of N compartments saturated by randomly 
placed p-bell particles ( p> 2). It is shown that, as N ....... 00, the mean of R ( P,N) approaches a (non
zero)limitL (P ) while its variance tends to zero thus yielding the stochastic convergence ofR (P,N) 
to L ( P). L ( P ) is explicitly determined and its behavior for large P is also studied. 

PACS numbers: 05.50. + q, 02.50. + s, 82.65.Jv, 68.20. + t 

1. INTRODUCTION 

In this paper we will be concerned with the following 
model. 1.2 A linear array of N identical compartments is 
ceaselessly bombarded by particles which occupy P (P>2) 
contiguous lattice sites. These so-called p-bell particles are 
assumed to contact in a spatially random manner and to 
stick only if striking P (adjacent) vacant compartments. 
Thus, as time elapses, the number of unoccupied compart
ments diminishes until finally being left only fragments of 
1,2, ... , P - 1 vacant compartments (see Fig. 1). As soon as 
this saturation situation arises, the total number A ( P,N) of 
unoccupied lattice sites may be determined. 

Due to the nature of the model, A ( P,N) is a random 
variable. Its mean a( P,N) has been seen2 to satisfy the recur
sion relation 

a(p,N) = N - P a(p,N -1) 
N- P+ 1 

2 
+ a(p,N - PI, N>P+ 1, 

N- P+l 
with initial conditions a( p, 1) = 1, 

(1) 

a( P,2) = 2, ... ,a( p, P - 1) = P - 1, a( P,p) = 0 and in the 
case P = 2 it has been found I that 

lim a(2,N)lN = exp( - 2). 
N-<x> 

Making use of (1) we will show in Sec. 2 that L ( P ), the 
average fraction of vacant compartments of an infinite one
dimensional lattice space saturated by P-bell particles, is 

L (P) = lim a( p,N )IN 
N-oo 

= 1 - pe-P(I.fJ) 11 eP(z,fJ) dz, (2) 

where 

P(z,P) = 2 dx 1Z1-xfJ-I 

o I-x 

"To whom the correspondence related to this article should be sent. 

= 2 z+-+ ... +_z __ , z>O. ( 
z2 fJ-

I
) 

2 P-l 
(3) 

In Sec. 3 we will discuss the physically interesting case 
of large polymers, i.e., the case of large p. More precisely, 
starting out from (2) we will establish that L *, the average 
fraction of occupied sites at saturation, is 

lim L(P)=I-L*, 
fJ- 00 

(4) 

where 

(00 { (' 1 - v } 
L * = Jo exp - 2 Jo - v

e 
dv dt. (5) 

It is worthwhile to mention that Renyi3 has shown that 

lim F(x)lx = L *, (6) 
x_ 00 

where F (x) is the mean number of unit intervals placed ran
domly (without intersecting each other) in the interval (O,x). 
A connection between Renyi's continuous and the present 
discrete model has been observed recently by Maltz and 
Mola.4 They have gotten the relation 

lim L (P) = 1 - lim F(x)lx 
(3-oo X-oo 

(7) 

by theoretical considerations. 
In Sec. 4, we shall be concerned with v( P,N), the mean 

of A 2( P,N). Transforming a difference equation for v( P,N) 
into a first-order linear differential equation for the generat
ing function of the v(P,N), N = P + l,p + 2, ... , we find 
from the analytic expression of its solution, by way of a Tau
berian argument, that 

N = 12 

13+"F1!f+f!1e±+F1+£!1 K=4 

13+1 13+1 13+1 IK=3 

I I 13+1 I 14+1 I IK=2 

FIG. I. Three of all possible saturated arrangements when trimers are 
placed on a linear array composed of 12 compartments. 
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lim v({3,N)/N 2 = L 2( (3). 
N~ 00 

(8) 

This together with (2) shows that, as N becomes large, 
the variance of A ( {3,N)1 N approaches zero, symbolically 

lim YarrA ({3,N)lN) = O. 
N~ 00 

The stochastic convergence of A ( {3,N )IN to L ( (3), i.e., 

lim P(IA ({3,N)lN-L({3)1 >E)=O, E>O, (9) 
N~ 00 

is an easy consequence of Eqs. (2), (8) and Chebychev's ine
quality: for any fixed E> 0 

P(IA ({3,N)lN -L ({3)1 >E)<E-2E([A ({3,N)/N -L ({3W) 

= E- 2[V( {3,N)/N 2 - 2L ({3)a({3,N)lN + L 2( (3)], 

and (9) follows from Eqs. (2) and (8). 

2. CALCULATION OF L(P') 

Starting with the recursion relation (1) and with a corre
sponding one for N - a( (3,N), the average number of occu
pied sites of a {3-bell particle saturated 1 X N array, and utiliz
ing a Tauberian argument (as we will do in Sec. 4) we have 
shown5 [for the definition of P (z, (3), see Eq. (3)] 

L ( (3 ) = lim a( (3,N) 
N~oo N 

(10) 

and Eq. (2), respectively. Clearly, as a consequence, the ex
pressions on the right-hand sides of Eqs. (2) and (10) are 
equal. Adopting a different method we will reproduce the 
result given by Eq. (2). 

As (3 remains fixed in what follows we shall use the 
notation aN=a( (3,N). 

Setting 

S N = aN - aN _ 1> N> 2, S 1 = 1, 

and thus obtaining 

aN =SI +S2 + ... +SN' N>I, 

we first observe that Eq. (1) may be written as 

2(N - (3) a({3,N - (3) 
S N = (N _ (3 + 1) (N - (3) 

(N - 1) a({3,N - 1), N> {3 + 1, (11) 
(N - (3 + 1) (N - 1) 

as well as 

1 
SN= N- {3+I [SI+ S2+'" +SN_P 

-(SN_P+I +SN-P+2 + ... +SN_I)]' 

N> {3 + 1. (12) 

Performing the limit (N - 00) on both sides of Eq. (11) 
we find from Eq. (2) that 

L ({3) = lim SN' (13) 
N_ 00 

From Eq. (12) we deduce 
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2 
SN-SN 1= (s p-s ) - N - {3 + 1 N- N-I , 

N> {3+ 1. 

Setting 

rN = SN - SN _ I' N>2, r l = 1 

or equivalently 

SN = r l + r2 + ... + rN' N> 1, (14) 

which in tum implies 

2 
rN= - (rN_ 1 +rN_ 2 + ... +rN- p+ 1 ), 

N-{3+1 

N> {3 + 1 

or 

N- {3-2 2 
r - r + r N-N-{3+1 N-l N-{3+I N-P, 

N>{3+ 2. (15) 

Now multiplying both sides ofEq. (15) by (N - (3 + 1) 
? - P and summing over N = 2{3 to 00 leads to 

00 

I (N - (3 + 1) rN ?- P 
N~2P 

or 

00 

= z I (N - (3) rN _ 1 ? - p - 1 

N~2P 

~ 00 

-2 I rN __ 1 ?-P+2zP- 1 I 
N~~ N~~ 

H'(z) - rp - 2rp+ 1 z 

= z[ H'(z) - rp - 2rp+ 1 z(I - 0(2)] 

r ZN-2P +l 
N- P 

-2[H(z)-zrp -rrp+ 1(I-op2 )] +2zP- 1H(z), 
(16) 

where we set 

00 

H (z) = I r N ? - P + 1 

N~P 

and OP2 = 0 if {3 #2, 0P2 = 1 if {3 = 2. 
Taking into account that rp = - {3 and rp+ 1 = {3 (see 

TABLE I. The initial values of ai' Si' r i , Vi' andpi' 

0 
1 
2 
3 

fJ-l 
fJ 

fJ+l 
fJ + 2 

2fJ- 1 

a i 

1 
2 
3 

fJ-l 
o 
1 
2 

fJ-l 

Si 

1 
I-fJ 

1 
1 

r i 

1 
0 
0 

o 
-fJ 
fJ 
o 

o 

Vi 

1 
4 
9 

Pi 

0 
0 
1 
4 
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Table I), then Eq. (16) reduces to the first order linear differ
ential equation 

l-ztl-I 
H'(z)+2 H(z) = -(3 

l-z 

with initial condition H (0) = 0 whose solution is [for the de
finition of P(z,{3) see Eq. (3)] 

3. THE CASE OF LARGE PARTICLE SIZE 

H(z) = - {3e - Plz.tli f ePlx.tll dx. (17) 

From the definition of the generating function H, from 
Table I, Eqs. (13) and (15) we learn that 

L ( (3 ) = 1 + H (1), 

which in combination with Eq. (17) yields Eq. (2). 

As mentioned in the Introduction Renyi's continuous model3 has been found4 to be-in some sense-a limit ofthe 
present lattice model. As a consequence, Eq. (7) has been established. Owing to Eqs. (6) and (7), Eq. (4) is proved true. 
Nevertheless it is interesting to see how Eq. (4) comes out proceeding from Eq. (2): 
[MT I 

l-L({3)= {3 i exp{P(x,{3)-P(I,{3)J dx 

= {3 exp - 2 - z dz dx due to Eq. (3) i l { 111 tI-1 } 

o x l-z 

= exp - 2 - z dz dy by substituting y = {3x itl { i l 
1 tI-1 } 

o yltl 1 - z 

= itl 
exp{ - 2 itl

-
y 

[ 1 - (1 - ; r- I

] ~ dV} dy by substituting z = 1 - vl{3 

= itlexP{-2i'[I-(1- ;)tI-I]~dV}dt bysubstitutingt={3-y 

and sending{3 to infinity one gets the expressionL * stated in 
Eq. (5). The values of L ({3), (3 = 2,3, ... range from 
e- 2 = 0.135 ... , to 0.251 ... = 1 - L *. 

4. THE ASYMPTOTIC BEHAVIOR OF v( (3,N) 

In this section we shall be concerned with the limit rela
tion stated by Eq. (8). We shall break up its proof into a 
number of steps. 

Throughout this section we will write aN and v N instead 
of a( (3,N) and v( (3,N), respectively. 

A. Preliminaries 

We shall need the following two lemmas. Their easy 
proofs will be omitted. 

Lemma J: For a real-valued function, continuous on 
[0,1], the following holds: 

r I(t) 2 dt _..fl.!.L as st!. 
Jo (1 - t) 1 - s 
Lemma 2: Let (c n );;' = I be a sequence of real numbers 

such that cn;;'O for any integer number n, and limn ~ 00 cnln 
= c< 00. Then 

. -3 n c2 

hm n L CkCn _ k =-. 
n~oo k=1 6 
The proof of the succeeding result may be found, e.g., in 

Feller. 6 

Tauberian theorem lor power series: Let C n ;;.0 and sup
pose that C (s) = };;;'=ocn snconvergesforO,s< 1. IfLvaries 
slowly at infinity [L varies slowly at infinity if, for every fixed 
x>O,lim,~ 00 L (tx)lL (t) = l]andO, r< 00 then each of the 
two relations, 
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and 

C(S)_(I-S)-rL(_I_) asst! 
l-s 

n-I n'L(n) L Ck - as n - 00, 
k=O r(r+ 1) 

implies the other. 

B. A recursion relation for vN=v( (3,N) 

We will make use of the following well-known result on 
conditional expectations.6 The mean of a random variable X 
can be expressed as the mean of a conditional expectation 
given a random variable Y, symbolically 

E(X)=E[E(XIY)]. 

Setting X = A 2( (3,N) and defining the random variable 
Y- Y({3,N) by 

Y = k, if the first {3-bell particle getting stuck to the 1 X N 
array occupies sites k, k + 1, ... , k + {3 - 1 (counted 
from the left), k = 1,2, ... , N - {3 + 1. 

Y = 0, otherwise 
we obtain for N;;. {3 

VN = E [A 2( (3,N)] = E [E (A 2( (3,N) I Y)] 

N- tI+1 
= L E(A 2({3,N)IY= k)P(Y= k) 

k=O 

N- tI+ I 
L E(A 2({3,N)IY= k), 

k=1 N-{3+1 

where the last equality is due to the assumption that the (3-
bell particles strike in a spatially random manner. Now, 
Y==Y({3,N) = k, k = 2,3, ... ,N - P, means that our initial 
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1 XN array is subdivided into a 1 X(k - 1) array and a 
1 X(N - k - P + 1) array. Thus 

1 (N - Ii 
VN = r E([A(P,k - 1) 

N-P+l k=2 

+ A(P,N-k- P+ lW)+2E[A 2(P,N- P)])' 

where A ( P,k - 1) and A ( P,N - k - P + 1) are indepen
dent since placements of any kind being realized on the right
hand array, say, do not affect the odds of the occupation 
process of the left-hand array at all. Clearly, given Y = k 
(with k> P + 1), the (overall) probability that, for example, 
the sites i, i + 1, ... , i + P - 1, i E { 1, ... ,k - P J, of the left
hand 1 X (k - 1 I-array will be occupied by some p-bell parti
cle is altered by every placement of a particle onto the right
hand 1 X (N - k - P + 1 I-array; however, when for the first 
time a position on the left-hand array is to be occupied, the 
(conditional) probability that the sites i, i + 1, ... i + P - 1 
will be chosen is equal to 1/(k - P) independent of what has 
happened on the right-hand array. Symbolically, 

Pk (XL = ilB R )=PdXL = i) = _1_, 
k-P 

i E { 1,2, ... ,k - P J, 
where B R is any event which refers exclusively to the right
hand array (e.g., A (P,N - k - P + 1) = 0), XL is the ran
dom variable giving the left-hand position of the first p-bell 
particle placed on the left-hand array and where the sub
script k of P k indicates that we are dealing with a conditional 
probability, given Y = k. Now observe that the upper argu
ment may be iterated, i.e., equally well applicated succes
sively to sub-subarrays of the 1 X (k - 1 )-subarray, to yield 
the desired result 

PdA (P,k - 1) = r,A ({J,N - k - P + 1) = s) 

= PdA (P,k - 1) = r) 

xPdA (P,N - k - P + 1) =s) 

with r .s>0. From this fact we get 

I [N - Ii 
VN = r (Vk - I + 2ak - I 

N-P+l k=2 

X 0 N _ k _ Ii + I + V N - k - Ii + I ) + 2v N - Ii ] 

or 
2 (N-Ii N-li-I ) 

VN = r vk + r akaN_ k _ li , 
N-P+l k=1 hi 

N>P+ 1 (18) 

with initial conditions listed in Table I. 

c. The generating function of SN-S{ /l,N) 

Let 
~ ~ 

G(s) = r aN~- Ii+ I, A (s) = r ON~' (19) 
N=Ii+1 N=I 

and 
Ii-I 

Q(s,P) = r nsn. (20) 
n=l 

To get an analytic representation of G we multiply both 
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sides of Eq. (1) by (N - P + 1) ~ - Ii, sum over N = P + 1 
to 00 and obtain the first-order linear differential equation 

2s P - I 2 
G 'Is) - -- G (s) = -- Q(s, P), 

l-s l-s 

whose unique solution satisfying the initial condition 
G(O) = 0 is 

G(s) = 2(I_s)-2e-P(S,Ii) 

Xl (1- t)Q(t,p)eP(t,li)dt. 

Now consult Table I to confirm that 

A (s) = Q(s,P) + sp-IG(s). 

D. The generating function of v N==v( P,N) 

(21) 

(22) 

Let P N be the coefficient of? in the Taylor series repre
sentation of A 2, where A is the generating function of the aN 
introduced in Eq. (19). Then, clearly, 

N-I 
PO= PI =0, PN = r 0kON_k, N>2, (23) 

k=1 

and Eq. (18) may be rewritten as 

2 (N-Ii ) 
VN = N-P+l k~1 Vk+PN-li' 

N> P + 1, 

or equally well as 

(N - P + l)vN - (N - P)VN_ I - 2vN_ Ii 

= 2( P N _ Ii - P N _ Ii _ d, N> P + 1 

(24) 

(25) 

with initial values to be found in Table I. Multiplying both 
sides ofEq. (25) by? - Ii and summing over P + 1 to 00 leads 
to the first-order linear differential equation 

for 

2s 1i - 1 

V'(s) - -- VIs) = R (s) 
l-s 

~ 

VIs) = r vN?- Ii+ t, 
N=Ii+1 

where we put 

2 Ii-I 
R (s) = 2A 2(S) + -- r n2sn. 

l-s n=1 

(26) 

(27) 

The unique solution of Eq. (26) obeying the initial con
dition V (0) = 0 is 

VIs) = (1 - s)-2e - P(S, Ii) f R (t)(1 - t )2eP(t,li) dt. (28) 

E. The behavior of V{s) as s f 1 

Substituting R in Eq. (28) and recalling Eqs. (20H22) 
and (27) we obtain 

VIs) = (1 _S)-2e - P(s.li) 

X 1'12[(1- tIt 1i-IG(t)FeP(t,li) +F(t)} dt, 

where F(t) = 0(1/(1 - t f) as t f 1. Putting 
(29) 
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f(t)= f 2(1-x)Q(x,p)eP
(X, f3l dx, 

it follows from Eqs. (21) and (29), as s 1 1 

V(s) = 2(1 - sj-2e -P(s,f31 f e- P(t,f31 

[
tf3-1 ]2 

X --f(t) dt + 0(1/(1 - S)3). 
1 - t 

An application of Lemma 1 then yields 

V(s)~2(1-s)-3 f 2(1)e- 2P (I,f3I, as s 11. 

F. An application of the Tauberian theorem 

(30) 

(31) 

From Eq. (31) and the Tauberian theorem for power 
series we conclude 

N N3 I vk~-p(1)e-2P(I,f31 as N-+ 00. (32) 
k= 1 3 

G. The asymptotic behavior of vN =v( P,N) 

As stated in Eq. (10) 

aN~Nf(l)e-P(I,f31 as N -+ 00. (33) 

Hence Lemma 2 together with Eqs. (23) and (33) implies 

1999 J. Math. Phys., Vol. 25, No.6, June 1984 

N 3 

PN~-f2(1)e-2P(I,f31 as N -+ 00, 

6 

which in turn, in combination with Eqs. (24) and (32), gives 

(34) 

Recalling Eqs. (10), (20), and (30) one sees that Eq. (34) 
coincides with Eq. (8), the relation we wanted to prove. 
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An explicit formula for the finite part of the Casimir energy of a scalar field <p (x,t ) defined on a 
smooth, compact two-dimensional Riemannian manifold X without boundary is derived. The 
formula involves the metric tensor on X and its derivatives. 
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I. INTRODUCTION 

In this paper we will obtain an explicit formula for the 
finite part of the Casimir energy! of an arbitrary smooth 
surface X without boundary. By the Casimir energy of a sur
face we mean the following: Let the Laplacian on Xbe - V2 

and let the eigenvalues and eigenfunctions of - V2 on X be 
A ~ and Un (x), respectively, i.e., 

(1.1) 

The Casimir energy E R is then defined to be the regularized 
sum: 

(1.2) 

The methods used to calculate (1.2) have involved either 
knowledge of all the eigenvalues An 2 or knowledge of the 
Green's function G (x,y,UJ),3 where 

(1.3) 

A Green's function method capable of dealing with arbitrary 
regions with boundaries has been discussed by Balian and 
Duplantier.4 These authors were also able to obtain an ex
plicit formula for the Casimir energy at high temperature 
involving one global parameter. In this paper an equally ex
plicit formula for (1.2) in the case of a region without bound
ary will be obtained. The case of a region with a boundary is 
more complicated, and it is not clear that the methods of this 
paper can be generalized to deal with boundaries. 

Our explicit formula for the Casimir energy is: 

ER =~Ii~id2XJoo dsJoo d7 
(21T) x - 00 - 00 

X f: 00 ds e'SC_ 4(X,s,7, - is), (1.4) 

where C_ 4(X,s,7, - is) is an explicit function of the metric 
tensor gij of X and its derivatives (see Sec. IV and Appendix 
C). Thus once the surface X is given and the Laplacian is 
defined on X then E R can be computed in terms of g ij and its 
derivatives. In Sec. II we explain our method. This involves 
the pseudodifferential calculus. In Sec. III we briefly review 
the portions of the pseudodifferential calculus that we need. 
In Sec. IV we obtain our explicit formula, and in Sec. V we 
briefly summarize our results. 

II. THE METHOD 

We will proceed in a formal manner. The meaning of 
our expressions will become clear in terms of the pseudodif-

ferential calculus which we briefly review in the Sec. III. 
Let us introduce P = + ( - V2)1/2 as a positive elliptic 

operator on X. It is possible to prove that P has a discrete 
spectrum An = (A ~ )112 with corresponding orthonormal ei
genfunction Un (x). It has been proved by Duistermaat and 
Guilleman5 that 

(21T)"ep (t,x) - I T(n - K )UJk (x).t (k - n) 

where 

K#n+lm 

00 

+ I 
I~ I 

00 

(_ 1)/+ I 

-'------'-- UJ n + 1m (x)t I In t 
l! 

+ I VI(X)t I, for nO, 
I~O 

m 

(2.1) 

(2.2) 

UJk ,vk , are smooth functions ofx and n represents the dimen
sion of the smooth compact boundary less manifold X. On 
the other hand, 

ep(t,x) = _1_. ( t -Ssp (s,x)T(s) ds (2.3) 
(2m) JRes~c 

with sp (s,x)-};m [l/(Am)' llum (xW holds for c sufficiently 
large. From this formula it can be shown quite easily5 that 
the terms in (2.1) correspond to the poles of sp (s,xjF (s). In 
particular, the logarithmic terms correspond to terms where 
the poles of sp (s,x) and r (s) coincide to produce a double 
pole, while the V k (x) terms are related in a one-to-one way to 
thevaluesofsp(s,x)ats = - k [after taking off of the pole of 
sp(s,x) if necessary]. The fact that the singularity of sp(s,x) in 
general consists of simple poles at s = n - k, k = 0,1,2, ... , 
with residues equal to (21T) - n UJk , k = 0,1,2, ... , follows from 
a result of Duistermaat and Guilleman,5 which we quote: 

Theorem 2.1. sp (s,x) has a meromorphic extension to 
the complex plane having only simple poles at s = (n - k) 
with residues equal to (21T) - nUJk , k = 0,1,2,. ... Moreover, 
SP (s,x) is of at most polynomial growth on each half-space 
Re s;;'c excluding neighborhoods of poles. 

We can thus define the regularized value of SP (s,x) at 
s = - 1 to be VI(X), i.e., 

(2.4) 

As we have shown elsewhere6 E R represents the finite part of 
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the Casimir energy. Our aim will thus be to find an asympto
tic expansion for ep (t,x) and determine the coefficient v1(x) 

III. REVIEW OF PSEUDO-DIFFERENTIAL CALCULUS7 

In this section we briefly review those portions of the 
pseudodifferential calculus that we need in order to calculate 
vl(x). We recall that a linear differential operator is a polyno
mial expression 

P(x,D) = L aa(x)D~, (3.1) lal<m .. 
where we utilize the multi-index notation, i.e., 

D~ = (~)Ial (~)al (~)a, ... (~)aN, (3.2) 
I aX I aX2 aXN 

when x ERN and the coordinates of X are (X I ,X2, ... ,xN)' We 
will also use the notation 

N 

lal== L ap al-a1la21 ... a NI, 
i= 1 

when (al>a2, ... ,aN) are all integers. The class off unctions on 
which the operators of interest to us act will be defined7 as 
follows. Consider the class of function 
S (Rn) = ! u E COO (RN);V(a,n) 3 constants Ca.n with 
Iff ul <Ca,n(1 + x) - n), Forsarealnumberandu E S define 

(J )112 

lIulis = u(s)2(1 + Isl2)'df . (3.3) 

The space Hs (RN) defined to be the completion of S (RN) in 
the norm Iluli s is the space of the functions on which our 
operators of interest will act. u(s) is the Fourier transform of 
u(x), and is defined as 

u(x) = f eiXft(s) d t (3.4) 

Using (3.4) the action ofP (x,D ) given by (3.1) on (3.4) is clear
ly 

P (x,D )u(x) = f fl'p(x,S )u(S )d f, (3.5) 

wherep(x,s) = l:lal<naa(x)Sa,p(x,S), is called the symbol of 
the linear differential operator P (x,D) and is written as 
a1P) = p(x,S)· A pseudo-differential operator (""'DO") can 
now be defined as an operator whose symbol pIx,s ) need not 
by a polynomial. We have the following definition: 

Definition 3.1: pIx,s ) is said to be a symbol of order m, 
written p E sm , if 

(l)p(x,S) is Coo in x and S, 
(2) pIx,s ) has compact x support, 
(3) for all a,/3, there is a constant Ca,p such that 

ID~DPp(x,)I<Cap(1 + Is I)m- P• 

Definition 3. 2:P (x,D ) = fe ix pIx,s )u(S) dN Sisapseudo
differential operator of order m if p(x,S) is a symbol of order 
m. A useful equivalence relationS on the class of symbols can 
be introduced by defining ql-q2' ql - ql E sm for all m, 
positive or negative. According to a theorem ofSobolev7 

(q 1 - q2) represents on operator which acting on a function u 
changes into a Coo function ("infinitely smoothing"). We 
now state the following theorem that we will need in the next 
section. 
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Theorem 3.1: Let gj E S mJ, where mj decreases to - 00 

and we suppose that the support of qj (x,S ) in x is contained in 
some fixed compact set for allj. Then there is a unique 

The crucial property of pseudodifferential operators that we 
need for computations will now be stated in the form of a 
theorem. 

Theorem 3.2: Let "'K denote the class of pseudodifferen
tial operators restricted to functions with support in a fixed 
compact set K. For P E '" K' let P * be defined by 
(P *u,{}) = (u,P{}) [inner product on L 2, where 
(u,{}) = fu(x)'J' (x)dN x]. Then 

(I) PE "'K~P* E "'K and u(P*)-l:aD~(iD~)p*/al, 

where (p(x,S ))* = pIx,s ), where a1P) = p, 
(2) P,Q E "'K~PQE "'K and a1PQ) = a1P)oa1Q) 

= l:a [D~ p] «(iDx)aq ), where a1P) = p, u(Q) = q. 

For our calculations we will be interested in pseudodifferen
tial operators which, besides being closed under composition 
and adjoint, also contain invertible elements. There are the 
elliptic pseudodifferential operators and are defined as fol
lows: 

Definition 3.3: A symbol pIx,s ) E sm is said to be elliptic 
if pIx,s ) -I exists and there is a constant such that 
pIx,s ) -I < C (1 + Is I) - m , for large S. A pseudodifferential 
operator is said to be elliptic if its symbol p is elliptic. The 
following lemma which we quote is useful. 

Lemma 3.1: Ifp(x,S) E sm is elliptic andp-l(x,S) exists 
for Is I ;;'c, then p-I(X,S) can be extended in a Coo way to 
q(x,S) E S- m so thatpq-qp-l. 

We also have the following theorem. 
Theorem 3.3: If P is an elliptic operator, then there is a 

unique pseudodifferential operator Q such that PQ - 1-QP. 
As our final bit of information regarding pseudodiffer

ential operators we introduce the following definition: 
Definition3.4:Letsm =p(x,S,A ):pisCoo inxandS has 

compact x support, analytic in A for A E C - R + and 
ID ~D ~ pi <Cap (1 + Is I + 1,.1, IlIm)m -Ial, then Pis said to be 
a pseudodifferential operator of order m depending on the 
parameter A if a1p ... ) = pES;. 

The theorems and properties of pseudodifferential op
erators with symbol p E sm stated by us extend without a 
murmur to psuedodifferential operators with symbol 
pES;. This concludes our review of the calculus of pseudo
differential operators. 

IV. CALCULATING V1(x) 

In this section we apply the formalism of the pseudodif
ferential calculus reviewed in Sec. III to determine the coeffi
cient vl(x) for a compact, two-dimensional, smooth Reiman
nian manifold X without boundary. We suppose the 
Laplacian - V2 on X, in terms oflocal coordinates (X I ,x2) 
takes the form 
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A 2 V2 G 8
Z 

= - = - 11 (XI,X?)--
- 8xi 

82 az 
- GdXt,x2)-a a - G22(X t,X2)--

XI x 2 ax~ 
1 a + GI(X I ,X2) ---:- - + G2(X I ,X2) 
I aX I 

1 a x ---:-- + GO(X I ,X2), (4.1) 
I axz 

where GI1,GI2,G22,G]2,G2,GO are smooth funtions of (X I,X2 ). 

In Appendix A, GII ,G22 , etc., are explicitly related to the 
metric tensor glj of X. The symbol of the operator A 2 is given 
by 

o-(A 2) = GIIs 2 + G12ST + G22r + GIT + GzS + Go, 
(4.2) 

where S,T are the Fourier transform variables of U(X I,X2 ) de
fined by the equation 

f
oe foe ix1e iX2i'''' 

U(X I,X2 ) = _ 00 ds __ 00 dTe -e U(S,T). (4.3) 

Our procedure for determining the coefficient vl(x) will in
volve the following steps. 

1. We will determine the symbol of the operator A, a(A ), 
which has the property that a(A )oa(A ) = a(A 2). This will be 
done by assuming that aiA) can be written as ~k-=l bK(x,s), 
where bj (x,s, T) is an element of S j , j t - 00. In view of 
Theorem 3.1, this representation of a(A ) is unique, modulo 
infinitely smoothing terms. 7 

2. Once aiA ) has been obtained, we then proceed to de
termine the inverse of aiA - AI). Again this involves intro
ducing o-(B,). ) = ~CK(X,s,T,). ) such that 
aiA - AI)o~CK(x,s,T,).) = I. The operator thus determined 
is again unique in view of Theorems 3.1 and 3.3. 

3. Finally writing e - tA = (1I21Ti)fc [e - tA I(A - AI)] 
XdA and replacing (A - I)-IU(X) by Sa(B,). )eiX

''; d 2S' an 
asymptotic expansion for e - tA is obtained involving only 
powers of t. No logarithmic terms appear in this procedure. 
The coefficient oft I is provisionally identified with vl(x). By 
referring to the work of Wodzicki8 the absence of logarith
mic terms is explained and the determination ofvl(x) is com
pleted. 

Let us now proceed to determine a(A ). By using the 
pseudodifferential calculus product law, we can write 

o-(A )oa(A ) = I aK(x,s,T) 
K= 2.1.0 

with 

o-(A) = I bj(X,S,T). 
)=1 

This gives the set of equations: 

bl(X,S,T)bj + I (X,S,T) + f [Dtbk(x,s,T)] 

III <li+ 11 
k - lui + {= 2 + j 

x [(iDx)Ub{(x,s,T)] = az+j(x,s,T), 

where 

j = 0, - 1, - 2, .. ·. 
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(4.4) 

(4.5) 

Thus 

bl==bl(x,S,T) = + (GIIS2 + GlzST + G22r)1/2, (4.6) 

b =b (x f:' T) _ GIS + G2T 
0- 0 ,~, - (G

I1
S 2 + GlzST + G

22
r)II2' (4.7) 

b -b f:' Go b~ 
-1= _I(X,~,T)= - --

bl b l 

- [D ~bd [(iDx )Ibo], (4.8) 

1 
Lz = b_z(X,S,T) = (-)-

b l 

X (2bob_ 1 + [D ~bd [(iDx )Ib_tl 

+ [D ~bo][(iDx )Ibo] 

+ [D~bo][(iDx)2bo]/2!, (4.9) 

etc. The explicit form of b_ l ,b_ 2 in terms ofGII ,G22, etc., is 
given in Appendix B. 

We next determine the inverse of the operator (A - AI ). 
We write 

(4.10) 

and, for j ¥ 1, hj (x,S, T,). ) represents the symbols generated by 
using (3.?), (3.8), (3.9), ... starting with bl . Thus"fK= IbK rep
resent a pseudodifferential operator depending on a param
eter A as can easily be established. 

Our problem is to determine the symbols C K chosen to 
be homogeneous in S' T, and A. of degree K so that 

00 

o-(A - Al)o I C _ I _ j = 1. (4.11) 
j=O 

This implies the following: 

C_ 1 = lIbi' (4.12) 

C- Z = (- )(lIbJ!boC_ 1 + [D~bd [(CDx)IC_tl, 
(4.13) 

C_ 3 = (- )(lIb l l{boC_ z + b1C_ 1 

+ [D~bo][(iDx)IC_I] 
+ [D ~btl [(iDx fC_ 1 ]l2! 
+[D~btl(iDx)IC_Z], (4.14) 

C_ 4 = (- )(lIbJ!lhoC_ 3 + L 1c_ 2 

+ L 2c_ 1 + [D ~hd [(iDx )IC_ 3 ] 

+ [D ~ho][(iDx)IC_2] + [D ~h_tl 
X [(iDx)IC_ I ] + [D~bo] [(iDx)ZC_ 1]l21 

+ [D~htl [(iDx)2C_ z ]l3! 

+ [D~bd [(iDx)3C_tl/3lj, (4.15) 

etc. Thus C_ 4 is a function 0[GII ,G22,· .. and their deriva
tives. The asymptotic expansion Tr(e - tA ) can now be deter
mined as follows. Let us write 

e - lA = _1_. r e - tA (A - AI) - I dA 
21T1 1c 

and define 

E(t) = _1_. r e- tABA dA, 
21T1 1c 

where 
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'" a1.,B). = I CK(x,t,r,A.). 
K= -I 

We write 

f d2X 
Tr (E (t )) = L (t,x,x) -2' 

(21T) 

where 

L (t,x,y) = f ei1x 
- YlSa(E (t )) dt, 

with a((E (t )) the symbol of the operator E (t). Thus 

L (t,x,x) 

= I I K,j x,~ e - ta.lx,s,Tldtdr, N f C ( f:')t
j

-
I 

K=O J (j - 1)1 

where we have written 

and have used the residue theorem to write 

(4.18) 

(4.19) 

(4.20) 

(4.21) 

1 
tj-I 

e-t).(a l -A )-jdA = (21Ti). e-ta,IX,s,Tl. (4.22) 
c (j - 1)1 

Proceeding in this way, the desired asymptotic expansion for 
Tr(e - tA ) involving powers of t only can be obtained. 7 In 
particular the coefficient of t 1 is given by 

1 J'" J'" J'" V I (X I ,x2) = --3 dt dr ds 
(21T) - '" - '" - '" 
Xe isC_ 4(x l ,x2,t,r, - is). (4.23) 

The absence oflogarithmic terms in the asymptotic expan
sion is explained by the work ofWodzicki.s Wodzicki's re
sultS for an elliptic "'DO A with positive eigenvalues and or
der unity is the statement that tA (s) = Tr(A - S) is a 
meromorphic function in the wholes place with simple poles 
at the points Sj = (2 - j),j = 0,1,2,. ... Furthermore, the resi
dues at s = 0, - 1, - 2,.··, all vanish, i.e., tA (Sj) is a nonsin
gular object_ Thus no double poles are present in q:; A (s)r (s) 
for s = 0, - 1, - 2, .. ·; hence no logarithmic terms appear in 
the asymptotic expansion for e (x,t ). The Casimir energy for 
the surface X can thus be defined to be 

III J'" J'" J'" ER = --3 -f! d 2x dt dr ds 
(21T) 2 x - '" - '" _ '" 

(4.24) 

This is our desired explicit formula for the finite part of the 
Casimir energy. 

v. SUMMARY AND DISCUSSIONS 

We have been able to obtain the finite part ofthe Casi
mir energy of a compact, boundaryless, smooth Reimannian 
manifold X in terms of the coefficients G1, G22, G1, G2, and 
Go introduced in Sec. IV. In a future publication we will 
discuss the geometrical nature of Eq. (4.24) and apply the 
equation to calculate the Casimir energy of simple surfaces. 

It would appear from our calculation that for all pseu
dodifferential operators which can be represented in the 
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form l: K ='" m a K (x,t,A. ), logarithmic terms will not be present 
in the asymptotic expansion for the corresponding e (x,t ). 
This agrees with Wodzicki's result.s It is also clear that the 
method outlined in this paper can be trivially extended to D
dimensional compact manifolds without boundaries. The 
problem of obtaining a similar general formula for a mani
fold with a boundary is much more complex. One of the 
major problems in trying to obtain such a formula must be 
the problem of finding suitable boundary conditions for the 
elliptic pseudodifferential operator equation of interest. Sim
ply if - '\Pu" (x) = A ~ u" (x) is the Laplacian eigenvalue 
problem in a region r, with boundary ar, where the eigen
values correspond to the Dirichlet boundary condition 
un (x) = 0, X Ear. The corresponding pseudodifferential op
erator problem ( - V2)1/2vn = J-l" v" will not give 

J-l" = +,p:;: if the boundary condition v" (x) = 0, for 
x Ear is used. A trivial example will make this point clear. 
Suppose our equation of interest is ( - d 2/ 
dX2)U" (x) = A ~ u" (x), where O<x<L and Un (x) = 0, when 
x = ° and x = L. The eigenvalues A ~ are then given by A ~ 
= n2r / L 2. Ifwe now consider the "square-root" equations, 

(5.1) 

and require v± (x) = 0, x = 0, and x = L. We find v! (x) 
= 0. To determine the right boundary conditions even in 

this trivial example, so that A" = n1T/ L is "natural," in
volves choosing either v! (x) or v"- (x), which is a nonlocal 
operation, and requiring, for instance, IV+(O)I = Iv+(L )1. 
Finding and dealing with similar nonlocal constraints in the 
general case is one of the problems that has to be tackled 
when regions r with arbitrary smooth boundaries ar are 
considered.9 
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APPENDIX A: RELATION BETWEEN G1h Gu • G1• G2• Go. 
AND THE METRIC TENSOR glj(x1,x2) 

If we suppose 

(dS)2= I gijdXid~, g12=g21' (AI) 
i,j= 1,2 

Then 

(A2) 

where 

g gllg22 - (gd2 (A3) 

with 

gll =g22/g, g22 =gll/g, gl2 = (- )g12/g. 

Thus 
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Gil =g22/g, assumingg> 0, 

G22 = gl1/g, 

GI2 = ( - )2g12/g, 

~I = ~ [a~1 (~) - a~2 (~)l ~2 = ~ [a~2 (~) - a~1 (~)], 

bl = [G 115
2 + G22? + G1257] 1/2 -A, 

b - (G15 + G27) 

° - [G115
2 + G22? + G1257] 1/2 -A' 

b = qo _ (GI5::t- G27)2 + ~ (2G115 + G127~(G 1,15 + G 2,1 7) 
-I bl (b l )3 2 (blf 

(A4) 

(Bl) 

(B2) 

+ 2(~1)2 (2G227 + G125)(G 1,25 + G 2,2 7) - 4(~tl4 (G15 + G27)(2G115 + G[27)(G 11,1 52 + G 22,1 71 + G 12,1 57) 

- 4(~tl4 (GI5+ G27)(2G227 + G125)(G II ,25
2 

+ G 22,2?+ G 12,257), (B3) 

b ~2 = ( - ) J-- [2bob ~ I + ~ J-- (2G1l5 + G127) (G_O,I - C!o 3 (G 1,15 2 + G 22,171 + G 12,157) 
bl 21 bl bl 2(bd 

2004 

2b- (G 1,15 + G 2,1 7) bo {;- 2 ~ 
- 0 -, + --=---4(GI~+G27)(GII15 +G221 7 +GI21 {;-7) 

(b l )- (btl '" ~ 

+ (b_O)23 (Gil 15 2 + G22 I? + G12 I {;-7) - --!.--4 (Gil I {;-2 + G22 I? + GI2 I {;-7)(2G11 {;- + G127)(GI I {;- + G21 7) 2(btl' , , ~ 2(bd ' ~ , , ~ ~ , ~ , 

i i 
+ ---2 (2GII15+G1217)(GI15+G217)+ ---2 (2GII{;-+GI27)(GIII{;-+G2117) 2(bd ' , , , 2(btl ~ , , ~ , , 

i i 
+ 2(btl2 (2G22,1 7 + G12,15) X (GI,25 + G2,2 7) - 2(htl4 

X(GII ,15 2 + G12,157 + G22 ,1 ?)(GlzS + 2G227)(G1,25 + 2,2 7) 

i 
+ ---2 (2G2,7+GI {;-)(GI215+G2217) 

2(bd - ~" " 

+ --!.--6 (Gil I {;- 2 + G22 I? + G12 I {;-7)2(GI {;- + G27)(2G115 + G127) (2b
l

) , ~ , , ~ ~ 

+ 2(~tl6 (GII ,15
2 

+ G22,I? + G12,157)(GII,252 + G22,2? + GI2,257)(GI5 + G27)(2G227 + GlzS) 

- 4(~ )4 ((Gl,l5 + G2,1 7)((2G1l5 + G[27)(GII ,15 2 + G22,I? + GI2,157)(2G227 + GlzS) 

X (GI1,25 2 + G22,2? + G12,257)) + (G15 + G27)) ((2Gll ,15 + G12,1 7)(GII ,15 2 + G22,I? + G12,157) 

+ (2G 1l5 + G127)(GII ,15 2 + G22,I? + G12,1,157) 

+ (2G22,l 7 + G12,15 )(G11 ,25 2 + G22,2? + G12,257) + (2G227 + GlzS )(G11 ,2,15 2 + G22,2,I? + G12,2,157)) 

+ J.. J-- (2G'27 + GI {;-) (~O'2 - C!o 3 (GI 25 2 + G22 271 + GI2 257) - -:b02 (GI 25 + G22 7) 
4i bl - ~ bl 2(b l)' , , (b l)' , 

- - 2 

+ (:1)4 (G15 + G27)(G ll ,25
2 

+ G22,2? + G12,257) + ~~;:)3 (G ll ,25
2 

+ G22,2? + G12,257)) 

- 2(~d4 (G ll ,25 2 + G22,2? + G12,257)((2G1l5 + G127)(Gl,l5 + G2,17) + (2G227 + GlzS )(GI,25 + G2,2 7)) 

i 
+ 2(htl2 ((2GII ,25 + G12,2 7)(GI,15 + G2,1 7) + (2G 115 + G127)(Gl,l,25 + G2,I,27) , 

+ (2G22,27 + G12,25 )(GI,25 + G2,27) + (2G227 + G1zS )(GI,2,25 + G2,2,2 7)) + 2(btl6 (G11 ,25
2 

+ G22,2? 

+ G12,257)((GI5 + Gz7)(2G1l5 + G127)(G11,15
2 

+ G22,I? + G12,157) 
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+ (G15 + GiT)(2GziT + G125)(Gl1 ,25 2 
+ G22,2 r + G12,257)) 

- 4(;d4 ((GI,25 + G2,27)((2G115 + G127)(Gl1 ,15
2 

+ G22, I r + G12,157) + G12,257)) 

+ (2G227 + GI£ )(GII ,25 2 + G22,2 r + G12,257)) + (G15 + G27)((2Gl1 ,25 + G12,2 7)(Gl1 ,15 2 + G22,I r + G12,157) 

+ (2G115 + G127)(Gl1 ,I,25 2 + G22,I,2r + G12,I,257) + (2G22,27 + G12 52) X (Gl1 ,25
2 

+ G22,2 r 

f;-2 G r G f;-)) 1 (GI (GI5+G27)(2GI15+G127)) 
+ G12,257) + (2G227 + GI£ )(Gl1,2,2~ + 22,2,2 + 12,2,2~7 + i -y;;- - 2(hd3 

(
(GI,15 ~ G2,17) _ (G15 + G27)(Gl1 ,15

2
_+ G22,1 r + G12,157)) 

X b l 2(bd3 

+ ~ (C!2 _ (G15 + G27)(:G~27 + GI£ )) 
i b l 2(bd 

X((GI,25 ~ G2,2 7) _ (G15 + G27)(Gl1'25
2
_+ G22,2 r + G12,257)) _ ~ (2qll _ (2G115:=t- G127)2) 

b l 2(bd3 2 b l 2(bd3 

X ( - (Gl1 ,15
2 

+ G22,1 r ~ G12,157)(GI,15 + G2,I 7) + (G1.I,15 ~ G2,I,I 7)) 
2(bl )3 bl 

2- (Gl1 ,15
2 

+ G22;,.1 r + GI2,I57f (G 5 + G 7) 
+ 2 2(b l)5 I 2 

(GI,15 + G2,I 7)(Gl1 ,15 2 + G22,1 r + G12,157) (G15 + G27j(GII ,I,15 2 + Gn,l,l r + G12,I,157) 

2(hd3 2(hl 

_ ~(2G22 _ (2G227~GI£)2)(_(Gl1'252+a..22'2r+G12'257)(G f;-+G 7)+ (G1.2'25~G2'2'27)) 
2 b l 2(b lf 2(b

l
)3 1,2~ 2,2 b

l 

2- (G f;- 2 G r G f;-7)2 (G15 + G27) (GI,25 + G2,2 7) (G f;- 2 
+ 2 11,2~ + 22,2 + 12,2~ 2(hlf 2(h

l
)3 11,2~ 

-2 G 5 (G15 + G27) + Gn 2 T + 122 7) - - 3 
' , 2(b

l
) 

X(G f;-2+G r+G f;-7) _ (~12 _ (2G115+G127~2G227+GI£)) 
11,2,2 ~ n,2,2 12,2,2 ~ b I 2( b d3 

X ( - (Gl1 ,15
2 

+ G22,I r ~ G12,157j(GI,25 + G2 ,2 7 ) + (GI,2,15 + G2,2,I 7) 

2(bl hi 
3 (Gl1 ,15 2 + G22,I r + G12,157) 

+ "2 2(hlf 

(GI15+G217) 2 
X (Gll ,25 2 + G22,2 r + G12,257) X (G15 + G27) - '2(hd3 ' (Gl1 ,25 + G22,2 r + G12,257) 

X - (G15 + G27) (G f;- 2 + G r + G f;-7)) 2(hl 11,2,1~ 22,2,1 12,2,1~' 

where we use the notation/I =aj / ax I' /2 =aj / ax2, etc, 

APPENDIX C: EXPLICIT EXPRESSIONS FOR C_ 1, C_ 2, C_ 3, and C_ 4 IN TERMS OF G11,G22,G1,G2,GO,G12 

1 
C_ I = 2 -2 f;- 1/2 j' 

[G 115 + G22T + G12~7] -/I, 

C_ 2 = ( - ) (t)2 + 4i(ll)5 (2G115 + G127j(Gll,15
2 

+ G22, I r + G12,157) 

+ 4i(ld5 (2G227 + GI£ )(GII ,25 2 + Gn ,2 r + G12,257), 

C = ( _ ) ~ [(GI5 + G27) (_ (G15 + G27)) 1 1 2 • 
-3 hi hi (hl + 4i (h

l
)5 (2G 115 + G127)(GIl ,15 + G22,1 r + G12,157) 

+ 4
1
. (b-

1
)5 (2G227+GlzSj(Gllz52+G222r+G12zf;-T)+ 1-(c!o _ (GI5::t-G27f) 

1 I ", ~ b
l 

b
l 

(bd 3 

i (2(G 115 + G127j(GI 15 + GZI 7)) i 
+ "2 (hd 2 ' , + 2(h

l
)2 (2G22T + GlzS )(GI,25 + G2,2 7) 

i i 
- 4(h

1
)4 (G15 G27)(2GzzS + G127j(Gl1,152 + Gn,l r + G12,157) - 4(h

1
)4 
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Hamiltonian formulation of the KdV equation 
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TUBiTAK Research Institute/or Fundamental Sciences, P.O. Box 74, Gebze, Kocaeli, Turkey and 
Department 0/ Mathematics, Bosphorus University, Bebek, Istanbul, Turkey 
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We consider the canonical formulation of Whitham's variational principle for the KdV equation. 
This Lagrangian is degenerate and we have found it necessary to use Dirac's theory of constrained 
systems in constructing the Hamiltonian. Earlier discussions of the Hamiltonian structure of the 
KdV equation were based on various different decompositions of the field which is avoided by this 
new approach. 

PACS numbers: 11.l0.Ef, 11.l0.Lm 

I. INTRODUCTION 

In a recent paper, "A particle representation for KdV 
solitons," Bowtell and Stuare discuss the Hamiltonian for
mulation of the KdV equation. Starting with the variational 
formulation of the KdV equation in terms of the velocity 
potential2 they have obtained what one ordinarily expects to 
be the Hamiltonian and observed that it has various undesir
able properties. This Hamiltonian is in fact not the correct 
one, because the Lagrangian in the variational principle for 
the KdV equation is degenerate. It is necessary to use Dirac's 
theory of constraints3 in order to cast such degenerate sys
tems into canonical form and we shall do so in this paper. 

The construction of a Hamiltonian for the KdV equa
tion was first considered by Gardner4 using a decomposition 
of the field into normal modes and this method has since 
been extensively studied. 5 The Hamiltonian formalism we 
shall present in this paper is based on a completely different 
approach which is much more general. We shall not require 
reference to any type of decomposition but instead proceed 
directly with Dirac's method to find the KdV Hamiltonian. 
The new Hamiltonian is formulated in terms of two poten
tials and their conjugate momenta and it is conserved by 
virtue of the third6 among the infinite set of conservation 
laws 7 satisfied by the KdV equation. 

II. HAMILTONIAN 

The KdV equation can be obtained from a variational 
principle 

81=0, 1= J X dxdt, 

where2 

(1) 

(2) 

is the Lagrangian density. Here tP is the velocity potential 

u = tPx (3) 

and tP is another potential which has been introduced to 
avoid derivatives higher than the first order in the Lagran
gian. Considering independent variations with respect to tP 
and tP we obtain 

tPxt + 6¢xtPxx + tPxx = 0, 

tP - tPxx = 0, 

which in view of Eq. (3) leads to the KdV equation 

(4) 

(5) 

(6) 

The Lagrangian in Eq. (2) is degenerate, that is, the momenta 

1T,p=0, (7a) 

~=~ (~ 

cannot be inverted for the velocities tPI and tPI' Therefore, 
following Dirac we define the constraints 

C,=1T"" 
C2=1T", -!tPx' 

and using the canonical Poisson brackets 

(8a) 

(8b) 

[tP(X),1T,p(X')] = 8(x - x'), (9a) 

[tP (X),1T",(X')] = 8(x - x'), (9b) 
we find that Poisson brackets of the constraints are given by 

[c,(x), c,(x')] = 0, 

[c,(x), c2(x')] = 0, 

[c2(X),C2(x')] = - 8x (x - x'), 

(lOa) 

(lOb) 

(lOc) 

where 8 stands for the Dirac 8-function. From Eqs. (10) we 
conclude that the constraints are second class. 

The total Hamiltonian is given by 

H = J df"dx, (lIa) 

df" = df"o + df"" (lIb) 
where df"o is the free part (which is the only piece considered 
in Ref. 1), 

df"o= 1T,ptPI +1T",tPI- X 

= - tP! - tPx tPx - !tP2, 
and df", is a linear combination of the constraints 

(12) 

df", = A.C, + ifC2, (13) 

where A. and if are multipliers. The Poisson bracket of the 
constraints with H must vanish and this requirement will 
determine A and if provided there are not further constraints 
in the problem. We find however, that 

(14) 

which cannot be set equal to zero by any choice of the multi
pliers and therefore 

x = tP - tPxx (15) 

must be introduced as a secondary constraint. This con
straint will be included in the total Hamiltonian so that in 
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place ofEq. (13) we now have 

dY'1 = AC I + UC2 + /-lX, (16) 

where /-l is another multiplier. We have now obtained all of 
the constraints in the problem. In order to see this we calcu
late the Poisson brackets 

[cl,H] = X - /-l, 

[c2,H] = (/-lx - U - 3¢ ~ - tPx lx, 

[X,H] =A -uxx ' 

(17a) 

(17b) 

(17c) 

and observe that the right-hand sides of Eqs. (17) can be 
made to vanish by choosing 

/-l = tP - ¢xx, 

U = - ¢3x - 3¢ ~ , 

A = - ¢5x - 6¢x¢3x - 6¢~x' 

(18a) 

(18b) 

(18c) 

When we put these expressions back into Eqs. (12) and (16) 
we find the total Hamiltonian density 

dY'=!¢! +!~+¢xtPx +!¢~x - (¢3x +3¢~)1I'<P 
- (¢5X +6¢~x +6¢x¢3X)1I'tP' (19) 

where we have left out a divergence. 
We can verify that the Poisson bracket of the canonical 

variables ¢, 11''11' tP, 11' tP with the total Hamiltonian results in 

¢, + 3¢ ~ + ¢3x = 0, (20a) 

¢x, + 6¢x¢xx + ¢4x = 0, (20b) 

tP, + 6¢ ~x + 6¢X¢3x + ¢5x = 0, 

tP-¢xx =0, 

(20c) 

(20d) 

respectively. Equation (20b) is the KdV equation, and with 
the definition (20d), Eq. (20c) also reduces to the KdV equa
tion. Furthermore Eq. (20a) is also equivalent to the KdV 
equation up to an arbitrary function of time which can be 
added to its right-hand side. This arbitrary function of time 
can be set equal to zero without loss of generality because in 
solving for U from Eq. (17b) we have ignored such an arbi
trary function. Therefore the content of Eqs. (20) is the KdV 
equation. 

2008 J. Math. Phys., Vol. 25, No.6, June 1984 

The total Hamiltonian is a conserved quantity and it 
will be of interest to express it in terms of the original field u. 
From Eqs. (3), (7a), (7b), (2Oc), and (19) we find that up to a 
surface term 

(21) 

which is Whitham's conserved quantity. It arises from the 
third, among the infinitely many, conservation laws satisfied 
by the KdV equation. 

III. CONCLUSION 

We have constructed the Hamiltonian for the KdV 
equation by applying Dirac's theory of constrained systems 
to Whitham's degenerate Lagrangian. We have found that in 
this system there are two primary constraints which are sec
ond class and there is also a secondary constraint. The total 
Hamiltonian of Dirac is given by a local expression in terms 
of the canonical variables. This approach to the Hamiltonian 
structure of the KdV equation is more general that the one 
encountered in earlier work which starts by decomposing 
the field into various modes4

•
5 and completes earlier results I 

based on Whitham's variational principle. 
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We consider the most general conformal invariant 0(3) nonlinear u-model in two dimensions, 
whose Lagrangian contains only first derivatives of the field variable. This is the generalized 
sigma model (GSM). We point out that its integrability condition, the generalized sine-Gordon 
(GSG) equation, follows from the fact that the Gaussian curvature of the surface underlying the 
model is a constant. We show that the GSG can be formulated as an imbedding and an inverse 
scattering problem. Finally we examine the in variance properties of the GSG equation. 

PACS numbers: 11.10.Lm 

I. INTRODUCTION 

In recent years the two-dimensional nonlinear sigma 
model has attracted a great deal of renewed interest among 
physicists. The standard action of this model is bilinear in 
the derivatives of the field variable. Furthermore, the values 
of these variables are constrained to the surface of a two
dimensional sphere. One type of generalization of this model 
has been obtained by replacing the spherical surface by a 
higher-dimensional homogeneous space. This approach has 
yielded a number of interesting results both in the classical 
and in the quantum domain. 

More recently a different type of generalization of this 
model has been considered in which the values of the field 
functions still describe a spherical surface but the Lagran
gian is generalized in such a way that the conformal invar
iance of the resulting action is preserved. I If only first-deri
vative terms are present, then such a Lagrangian contains an 
arbitrary function of one variable. Depending on the choice 
of this arbitrary function, the generalized sigma model 
(GSM) can describe an infinite family of dynamical systems. 
The nonlinearity of this generalized model arises not solely 
from the constraint that the field variable take values on a 
nonlinear space but also from the fact that the Lagrangian is 
no longer bilinear in the derivatives of the field variable. The 
integrability condition for the classical equations of motion 
of this model is a generalization of the sine-Gordon equa
tion, which in turn, is the integrability condition of the stan
dard nonlinear sigma model2 in two dimensions. In this pa
per we exploit the methods that have been developed for the 
sine-Gordon equation and other totally integrable systems 
to further investigate the generalized sine-Gordon equation 
(GSG). In Sec. II we utilize geometrical techniques to show 
that just like the sine-Gordon equation, the GSG equation 
can be derived from the condition that its underlying surface 
has a Gaussian curvature equal to 1. We then consider the 
imbedding of this surface in a three-dimensional flat space. 
In Sec. III, we formulate the GSG equation as inverse scat
tering problem according to the general framework provided 
by Lax3 and Ablowitz, Kaup, Newell, and Segur (LAKNS).4 
Thereby we derive the soliton connection and obtain a self
Backlund transformation. In Sec.lV we use the group theo
retical approach to investigate the invariance properties of 
the GSG equation under a transformation of the variables. 
This invariance study once more singles out the special cases 
of the GSG equation exhibiting extra symmetries, which 

have been shown to be unified with a variable transforma
tion. 1 

II. SURFACE THEORY AND THE GSM 

In this section we give a brief description of the GSM 
and then proceed to investigate the nature of the surface 
underlying this model. To this end, we identify the first fun
damental form and the Gaussian curvature of the surface. 
Then we consider the imbedding of the surface in a three
dimensional flat space and obtain the appropriate second 
fundamental form. 

The GSM is described by the Lagrangian density 

L = ou·ov/(8) +..1, (02 - 1), (2.1) 

where 

u = W + x), v = W - x) (2.2) 

are the light cone variables. The field variable 0 is a three
dimensional vector and the Lagrange multiplier A ensures 
that 0 2 equals 1. The quantity 8 is half the angle between 0u 

and 0v' Here SUbscripts denote partial differentiation. With 
f, an arbitrary function of 8, the action 

s= J Ldudv (2.3) 

is conformally invariant. 
The three-dimensional unit vector 0 geometrically de

scribes the surface of a unit sphere. Since 0 is a function of u 
and v, provided that this function is nonsingular, these varia
bles, or equivalently x and t, may be used as the coordinates 
of this two-dimensional surface. In Ref. 1 it was shown that 
the equations of motion and the conformal invariance of the 
model can be utilized to choose coordinates such that 

o~ = o~ = [f(8) - !f'(8 )sin(48)] -1=e2a
, (2.4) 

where a is a function of 8 which is determined by the func
tion/in the Lagrangian. Thus the metric on the unit sphere is 
given by 

d~ = d02 = (ov dv + 0u dU)2 

(2.5) 
From this equation we immediately recognize the basis one
forms 

CUi = ea cos 8 dt, 
(2.6) 
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such that 

dsi = (wlf + (w2f (2.7) 
The connection one-form 

wap = - w/3u (2.8) 

is determined from the integrability condition 
dwu + wU

p /\w/3 = 0, (2.9) 
and is given by 

WIZ = (ax cot () - ()x )dt - (at tan () + ()t )dx. (2.10) 
The Gaussian curvature K is defined by 

dwa 
fl = Kwa 

/\ wfl. 

Letting the Gaussian curvature equal to 1 we get 

[(a' cot () - l)()x]x + [(a' tan () + l)()t], 

+ eZu cos () sin () = O. 

This is the integrability condition for the GSM. 

(2.11) 

(2.12) 

Having identified the intrinsic geometry underlying the 
GSM, we consider the imbedding of the surface S in a three
dimensional flat space M. We define the second fundamental 
form of S through 

-ds~ =W
I

®1TI +w2 ®r. (2.13) 

The equation governing the imbedding problem is 

dWik +W~/\uik =0, (2.14) 

where the indices range over three values. This is the Gauss
Codazzi equation for the imbedding problem with the identi
fication 

W
I
3 =1TI, w23=r. 

Furthermore the definition of the surface S as 

w 3 = 0 

imposes another condition 

(2.15) 

(2.16) 

WI /\ 1T1 + w2
/\ r = O. (2.17) 

We see that Eqs. (2.14)-(2.17) are all satisfied when we let 

1T1=wI, r=w2. (2.18) 

III. THE SOLITON CONNECTION AND THE GSM 

Having established the geometrical framework under
lying the GSM, we construct an SL(2,R ) valued connection 
one-form with zero curvature. This is the soliton connection. 
We perform a gauge transformation in order to cast it into 
LAKNS form. Finally we find the Backlund transformation 
for the GSM. Our approach closely resembles that of Ref. 5. 

The Gauss-Codazzi equations for embedding surfaces 
in a three-dimensional flat space form a realization of Car
tan's equations for SL(2,R ): 

d8 i + ~C/k8j /\8 k = 0, 

where 

C I 02 = 1, 

CO II = - Co Z Z = 2 

(3.1) 

(3.2) 

are the structure constants of SL(2,R ), with identification 

2010 

8° = (iI2)w l z, 

8 1 = -~(u/+iwl), 

8 2 = ~(W2 _ iw l
). 
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(3.3) 

For the GSM, these are 

8° = (i/2) [(a' cot () - 1)()x ]dt 

- [(a' tan () + 1)()t ]dx, 

8 I = - ~(eU sin () dx + ieu cos () dt ), 

8 2 = !(eU sin () dx - ieU cos () dt ). 

Now we construct a connection one-form r l 

(
8° 81) 

r l = 82 _8 0 ' 

with a vanishing curvature 

dr l + rl/\r l = O. 

This can be traced back to Gauss-Codazzi equations 
through Eq. (3.1). 

(3.4) 

(3.5) 

(3.6) 

Now we can briefly summarize the LAKNS formalism. 
The integrability conditions for the systems of linear partial 
differential equations 

V lx - isVI = qV2, 

(3.7) 

where the eigenfunctions VI and V2 evolve in time according 
to 

are 

Vlt =AVI + BV2, 

V2t = CVI -AV2' 

Ax =qC- rB, 

Bx - 2isB = q, - 2qA, 

Cx + 2isC = r, + 2rA. 

(3.8) 

(3.9) 

Here A, B, and C are functions of x, t, and S, where S is a 
constant. If we construct a connection one-form with the 
identification 

8 0 = - (A dt + is dx), 

8 I = - (B dt + q dx), 

8 2 = - (C dt + r dx), 

(3.10) 

the condition that its curvature vanishes yields Eq. (3.9). We 
want to identify the set described in Eq. (3.10) with that in 
Eq. (3.4) to read off the LAKNS potentials for the GSM. 
However, as they stand, these two sets of equations are in
compatible since S has to be a constant. To circumvent this 
problem we perform a gauge transformation 

r' =srls-1 +SdS-1 (3.11) 

in order to cast Eq. (3.4) into LAKNS form described by Eq. 
(3.10). Here S has a determinant equal to unity. We find that 
for the GSM, S has a very simple form 

S = _1_ (e - isx e -- iSX). (3.12) 
.,fi - e'5x e'sx 

Equating the transformed one-form r' with (3.10) we get 

A = (iI2)eU cos (), 

C = (iI2)eZiSX(a' cot () - l)()x, 

B = (i/2)e - ZiSx(a' cot () - 1)() x' 

q = !e - Zi{;x [ eU sin () - ita' tan () + 1 )(), ] , 

r = - !eZiSX 
[ eU sin () + ita' tan () + 1 )()t ] . 

M. Arik and F. Neyzi 
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The eigenvalue S usually has a real and an imaginary 
part. If we restrict its value to be real for simplicity then 

r = - q*. (3.14) 

Furthermore, 
B = - C*. (3.15) 
In the literature, it has been shown that the Gelfand

Levitan-Marchenko integral equation associated with the 
inverse scattering problem is uniquely solvable if r = - q* 
(Ref. 6). For this specific case, there is also a general method 
for deriving the Backlund transformation from the equa
tions for the inverse problem. 7 This is as follows. To conform 
with the notation in Ref. 7 we let S go to - S in Eq. (3.7). 
Then, defining a quantity U = V1/V2 we get a system of 
equations 

Ux = - 2isU-rU2 +q, 

U, = 2AU - CU 2 +B. 

For the GSM we have 

Ux = - 2isU+q*U 2 +q, 

U, =2AU+CU 2 -C*, 
where 

_ 1 (q,e2isx + c.c.) 
A- - , 

2 qe2iSX - C.c. 

i ( 1 ) ( iq,e2iSX - C.c. ) 
c ="2 q + q*e-4isX _ qe1is" + c.c. x· 

(3.16) 

(3.17a) 

(3.17bl 

(3.18) 

Using Eq. (3.17a) and its complex conjugate we derive 
an expression for q in terms of U, U *, Ux' and U ~. Substitut
ing this expression in Eq. (3.17b), we can eliminate q and 
thereby get a nonlinear partial differential equation for U 
and U *. This equation is invariant under the transformation 

(U,s)-( - U,s)· (3.19) 

The existence of this gaugelike invariance makes it pos
sible to find a self-Backlund transformation since we know 
we have a second solution q' such that 

Ux = - 2iSU - q'*U 2 
- q', 

U, =2AU-CU2 +C*. 

(3.20a) 

(3.20b) 

Here A and C are functions of q', q;, q~, and q~, and their 
complex conjugates. Subtracting Eq. (3.20a) from Eq. (3.17a) 
we obtain the following expression for U: 

U = ± i[ Iq + q'I/(q + q')*]H(x - Xo + 4St), (3.21) 

where H is the Heaviside step function. In order to get the 
spatial part of the Backlund transformation for the GSG 
equation, we add Eqs. (3.20a) and (3. 17a) and then substitute 
for U from Eq. (3.21). Rearranging terms we get 

(q - q')x = - 2is(q + q') + i(q - q')lq ± q'l 

XH (x - Xo + 4St). (3.22) 

Similarly we add Eqs. (3.20b) and (3.17b) and substitute for U 
to get the temporal part of the Backlund transformation. 

IV.INVARIANCE AND INFINITESIMAL PROPERTIES OF 
THE GSG EQUATION 

In this section we shall investigate the invariance prop
erties of the GSG equation under one parameter Lie group of 
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transformations.s We shall find the invariant variable in 
terms of which we can reduce the partial differential equa
tion with two independent variables and one dependent vari
able to an ordinary differential equation. Finally we find the 
explicit solution of this ODE for a special case. 

Let us rewrite the GSG equation [Eq. (2.12)]; 

2r(u)sin u + u"F1(u) - Uxx F2(U) + u;F" 

= H(u,uxx'u", ... ) = o. 
Here 

FI = 1 + (r.,!r)tan(u/2), 

F2 = 1 - (r.,!r)cot(u/2) 

() = u/2, 

and SUbscripts denote partial differentiation. 

(4.1) 

(4.2a) 

(4.2b) 

(4.3) 

Let u = t/> (x,t) be a solution of H. If His invariant under 
the one-parameter (E) group of transformations obtained 
from the infinitesimal transformation, 

x' = x + E/3(X,t,u), 

t' = t + E1'(X,t,U), 

u' = u + E17(x,t,U), 

through exponentiation, then 

XHlu=tft(x,l) = 0, 

where X is the operator 

a a a a 
X =/3- +1'- +17- + [17x]-ax at au au" 

a + [17xx] - .... auxx 

(4.4) 

(4.5) 

(4.6) 

Here [17 x ] and [17 xx ] are the infinitesimals for u x and u xx , 
respectively, whose explicit forms in terms of 17, /3, and 1" can 
be obtained from Eq. (4.4). Furthermore if H is invariant 
under the transformation defined by Eq. (4.4) then the fol
lowing equation must hold: 

dx dt dt/> 
7i = -; = -:q' (4.7) 

Using Eq. (4.5), we find the infinitesimals/3, 17, and 1". Then 
substituting these values in Eq. (4.7), we get a solution with 
two arbitrary constants. One of them, /3, will be the similarity 
variable. The other one,f1j3 ) will be the independent variable. 

For Eq. (4.1), when we impose the condition (4.5) and 
collect together the like-derivative terms in t/> we get 

17=0, 

1" = r(x) + b, 

/3 = /3(t) + b, 

restricted by the following equations: 

1"xF2 = /3,F I' 

1'xF; =/3,F;. 
Equation (4.9) tells us immediately that either 

FI =a2F2' 

where a is just a constant, or 

M. Arik and F. Neyzi 
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'Tx =St =0. (4.11) 

Equation (4.10) is the same as Eq. (3.13) in Ref. 1. If this 
relation holds, then the integrability condition of the GSM 
reduces to the sine-Gordon, the Euclidean sinh-Gordon, 
the time-independent, or the space-independent equations 
for different values of a2

• The invariance properties of the 
sine-Gordon equation has been analyzed in Ref. 8; the other 
three cases are related to the sine-Gordon equation by a 
variable transformation. 1 

Ifwe do not have the special case described by Eq. (4.9), 
then using Eqs. (4.11), (4.8), and (4.7) we find the invariant 
variables fl andff!3): 

x - (alb )t = fl, 
u =ff!3). 

(4.12) 

This reduces the GSG equation to a particularly simple form 

{[F2 - (a2Ib 2)Ftlf'J' = 2ysin/, (4.13) 

2012 J. Math. Phys., Vol. 25, No.6, June 1984 

where primes denote differentiation with respect to fl. 
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Indefinite metric and other-than-Feynman propagators as tools in a 
relativistic two-body problem 
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By embedding the usual physical Fock space P of a simple field theory in a larger non-Hilbert 
representation space R, a formalism is obtained permitting the use of:J propagators instead of the 
Feynman propagators LlF to represent the internal particle lines in Feynman graphs. The new 
formalism is subsequently applied to a Bethe-Salpeter equation in the i" approximation of its 
kernel and an exact solution of the latter is obtained exhibiting much simpler analytical features 
compared to its standard counterpart-the so-called Wick equation. 

PACS numbers: lUO.St, 11.90. + t, 02.90. + p, 03.70. + k 

I. INTRODUCTION 

The modification of the standard field-theoretical algo
rithm proposed in this paper represents-in the nutshell
an attempt at the physical and mathematical validation of 
the use of other-than-Feynman types of propagators to rep
resent internal particle lines in the (appropriately redefined) 
Feynman graphs. This wider (than just Feynman) variety of 
propagators admissible in this sense has its origin-by trac
ing back the meaning of such propagators to their generic 
definition as "contraction symbols" in the usage of the 
Wick's Ordering Theorem I_in an at first formal generaliza
tion of the definition of normal products of the field opera
tors. This generalization must entail however the introduc
tion of an auxiliary field or fields and thus an extension of the 
underlying representation space of the field algebra to a re
presentation space R with indefinite metric (non-Hilbert). 
The physical subspace P of R, i.e., a subspace invariant un
der all operators representing physical quantities, remains 
nevertheless Hilbert and thus does not change the physical 
content of the theory, in which respect our new algorithm 
follows in fact exactly the footsteps of the well-known 
Bleuler-Gupta method in QED where the auxiliary ghost 
field representing the fourth component of the vector poten
tial Ao necessitates the introduction of the indefinite metric 
in a larger space OJ and yet the physical space spanned by 
vectors 11/1) corresponding to the absence of the quanta of 
the free field 

1f=JI'AIl 

remains Hilbert. 2 The general field-theoretical aspects of the 
proposed formalism go therefore actually beyond the con
fines of any particular perturbative approach (i.e., whether 
one expands in terms of the standard or modified Feynman 
graphs) and it is in fact the much greater facility with which a 
certain type of the Bethe-Salpeter equation can be solved 
when the exchange particle propagator is represented by half 
the difference between the retarded and advanced propaga
tors (i.e., the so-called:J propagator)3 as compared to the 
well-known method4 of solving the standard version of this 
equation (with all Feynman propagators) in which-in the 
author's opinion-also purely computational advantages of 
the new method can be seen. In order to make the paper self
contained, the rudiments of this new solution are given in 

Sec. VI, including the relativistic generalization of the 
Balmer-Ritz formula for two finite-mass particle bound 
states, which-to all appearances-cannot at least be as easi
ly and unambiguously derived from the standard Bethe-Sal
peter equation. 

II. GENERALIZED CONTRACTION SYMBOLS 
(INTERNAL LINE PROPAGATORS) 

We formulate our procedure for a scalar self-adjoint 
Klein-Gordon field IP a (x), where the subscript a is for a later 
distinction. The extension to other boson fields and to fer
mion fields is straightforward. 

First, to establish notation, we briefly review the con
ventional formalism. In the interaction picture this field 
obeys the free field equation 

(0 + m~)IPa(x) = 0 (1) 

and the commutation relation 

(2) 

whereLl (x;m) is the well-known Pauli-Jordan function. The 
field IP a (x) may furthermore be represented, in a well-known 
way, as 

IPa (x) = IP ~+ I(x) + IP ~ - I(x), (3) 

where the positive and negative energy parts are 

(4) 

and 

(5) 
a 

where I fa (x) I is a set of positive energy solutions of the free 
Klein-Gordon equation, together with its complex-conju-

gate set I fa (x) I of negative energy solutions. These sets are 
assumed to be orthonormal in the covariant sense, namely, 

-J d 3
X{fa(X) J~::X) - J;x~)fp(X)} =8ap (6) 

and to be complete in the sense that 

Ifa(x) fa (x') = iLl (+)(x -x';m), (7) 
a 
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where..d (+I(x;m) stands for the positive energy part of the 
previously introduced Pauli-Jordan function..d (x;m). Con
sequently, the creation and annihilation operators a: and aa 
satisfy5 

[aa,ap ] = [a:,a;] =0, (8) 

(9) 

In this context, the Wick ordering theorem concerns 
the expansion of the time-ordered products, 
T(lPa(xJ!, ... ,lPa(xn )) in terms of the normal products 

N(lPa (xd,···,lPa (xr )), r<,n; (lO) 

the standard definition of the latter being that the ordinary 
product of r lPa operators 

( 11) 

should first be formally written as a sum of all the products 
of r factors of the type lP ~ + I or lP ~ - I resulting from substitut
ing the expression (3) into (11) and then defining (lO) by 
changing the order of those latter products by placing all 
lP ~ - I to the left of alllP ~ + I. 

For our purposes the pertinent part of Wick's theorem 
is that the coefficients of the normal products in this expan
sion are solely products of the c-number contraction symbols 
defined by 

C(x,x')=T(lPa(x),lPa(x')) - N(lPa (x),lPa (x')). (12) 

Equation (12) is the generic definition of the propagator rep
resenting the internal particle lines in Feynman graphs. The 
above definition of the normal product is what conveys the 
general impression that only Feynman propagators can be 
used to represent internal lines in a realistic theory. 

We now endeavor to remove this last constraint by gen
eralizing the normal product through the simple expedient 
of replacing lP ~ + I and lP ~ -I in the standard definition by lPI 
and lP2, respectively, in a decomposition of lPa, 

lPa(x) = lPI(X) + lP2(X), (13) 

different in general from (3); the (generalized) normal pro
duct N' being defined as the corresponding sum of products 
with all the lP2 standing to the left of alllP I' Caution must be 
exercised here because it is required that 

(14) 

for all x and x', for the normal product to be well defined, 
independently of the sequence of lPI'S among themselves or 
lP2'S among themselves. 

No other linear combinations of lP ~ + I and lP ~ -I except 
the triviallPI = lP ~ + I, lP2 = lP ~ - I (or vice versa) satisfies both 
(13) and (14) and we are thereby led to consider auxiliary 
fields. We introduce two independent "primary" self-adjoint 
scalar KG fields, lPb(X) and lPc(x), which satisfy the same 
field equations and commutation relations. Thus 

(0 + m2)lPb(x) = (0 + m2)lPc(x) = 0 (15) 

and 

and 

(17) 

The field lPa(x) satisfying (1) and (2) is then constructed as 
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lPa(x) = (1 +,,j,2)-1/2(lPb(X) + AlPc(X)) (18) 

with an arbitrary real parameter A. By putting either 

lPI(X) = (1 + A 2)-1/2(lP b + I(X) + AlP ~ + I(x)) (19a) 

and 

(19b) 

or 

(20a) 

and 

(20b) 

where ( ± ) denote positive and negative energy parts as be
fore, we obtain two decompositions of lPa (x) satisfying (13) 
and (14). Recognizing in (19) but another guise of the decom
position (3), the only nontrivially different decomposition is 
therefore (20). This decomposition mixes positive and nega
tive energy parts and wi11lead to the necessity of introducing 
an indefinite metric into the formalism (see Sec. III). 

We finally derive the formula for the generalized con
traction symbol as follows: We rewrite (12) in the form 

C'(x,x') = - 8 (xb - xo)[ lPa (x),lPa (x')] 

+ lPa(x)lPa(x') - N '(lPa (x),lPa (x')). (21) 

The last two terms in (21) can be rewritten as 

(lPI(X) + lP2(X))(lPI(X') + lP2(X')) 

- N'(lPI(x) + lP2(X),lPI(X') + lP2(X')) = [lP2(X),lPI(X')] 

(22) 

which by (20) becomes 

(I + A 2) - I! [ lP b + l(x),lP b - I(x')] + A 2 [ lP ~ - l(x),lP ~ + I(x')] ) 

= [U(1 + A 2)]!..d (+)(x - x';m) + A 2..d (--)(x - x';m)J. 
(23) 

Combining (23) and (2) gives 

C'(x,x') = i! - 8(xb - xo)..d (x - x';m) 

+ (1 + A 2)-1..d (+)(x - x/;m) 

+ [A 2/(1 +A 2)]..d H(x - x/;m)). (24) 

The..d (± 1 functions have the well-known properties 

..d H(x;m) = (..d (+)(x;m)) = -..d (+)( - x;m), (25) 

..d (+I(x;m) +..d H(x;m) =..d (x;m). (26) 

The Feynman propagator ..d F' and Ll are defined by 

..dF(x;m) = 8( -xoJ..d H(x;m) - 8 (xoJ..d (+)(x;m), (27) 

Ll (x;m) = ~(8 ( - xo) - 8 (xo))L1 (x;m). (28) 

The overall proportionality coefficients in those definitions 
are so chosen that 

(0 + m2J..dF(x;m) = (0 + m2 )Ll (x;m) = + 84(x). (29) 

With these, Eq. (24) is reduced to 

C'(x,x/) = - i{ 1 - A: ..dF(x - x/;m) 
I+A 

u 2 
_ } + --..d(x-x/;m) . 

1 + A 2 
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Equation (30) represents-at least from the formal point of 
view-the desired generalized contraction symbol (internal 
line propagator). It indeed reproduces the standard result 
- iA F (x - x';m) for A = 0, the main novel interest attaching 

in this paper to the case A = 1, where this propagator be
comes - iJ. (x - x';m) (and leads, as mentioned in the Sec. I 
to definite computational advantages when applied to the 
Bethe-Salpeter equation; see Sec. VI). It may be of some 
theoretical interest per se that this propagator is also relati
vistically "strictly causal" (i.e., that it vanishes for spacelike 
x - x'), that is to say that the class of propagators which we 
are endeavoring to show as admissible to represent internal 
particle lines contains in fact such "strictly causal" propaga
tors. 

Before proceeding to physical applications of the new 
algorithm, we devote the sections immediately following to a 
fuller physical and mathematical analysis of the new features 
of the formalism associated with the requirements (a) of in
creasing the number of the independent fields and (b) of mix
ing the positive and negative energy parts in the new defini
tion of the creation and annihilation operators. This 
discussion will proceed for some time in terms of arbitrary A. 

III. FIELD-THEORETICAL CONSEQUENCES 
(ENLARGEMENT OF THE REPRESENTATION SPACE 
OF THE FIELD ALGEBRA; NEED FOR INDEFINITE 
METRIC) 

The introduciton of two independent fields, fPb (x) and 
fPc (x), from which to construct fPa(x) makes it necessary to 
account in our formalism for a second linear combination of 
these fields independent of (18). The field 

fPd(X) = (1 + A 2)-1/2( - AfPb (x) + fPc (x)) (31) 

is independent of fP a (x) in the sense that 

(32) 

and also satisfies the commutation relation of the type (16) 

(33) 

This requires, in a well-known way, an extension of the origi
nal physical state vector space representation of the field 
algebra generated by fPa(x) [with the tacit inclusion of all 
other fields interacting with fPa(x) and comprising the origi
nal dynamical system] to a larger irreducible representation 
space R of an algebra generated by fP a (x) and fP d (x). In a given 
representation space R the original physical space P is to be 
identified with the subspace of R characterized by the ab
sence of the d quanta, provided, however, that P (though not 
necessarily R ) be Hilbert. 

To further specify the most convenient choice of R in a 
unique way, we first notice that the Eqs. (18) and (31) are 
pseudounitary transforms-in an, in general, non-Hilbert 
R-of fPb(X) and fPc (x), respectively. Thus 

fPa(x) = UfPb(X)U*, 

fPd(X) = UfPc(x)U*, 

U*U= 1; 

where 

(34a) 

(34b) 

(35) 

U = exp{ - i tan -IA f d 3X(fPb Jo'Pc - fPc JofPc )}, (36) 
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as can be seen from the well-known formula 

by the repeated use of the commutation relations 

[f(fPb(X')JofPc(X') - fPc(X')J~(X'))d3X"fPb(X)] 

= ;f(A (x' -x;m)JofPc(x') 

(37) 

- fPc (x')JoA (x' - x;m))d 3X = ifPc(x) (38) 

and similarly derived 

[f(fPb (x')JofPc(x') - fPc (X')JOfPb (x'))d 3X',fPc(X)] 

= - ifPb(x). (39) 

This in turn leads us to expect that it should be possible to 
introduce in R two pseudounitarily equivalent bases of 
states, one consisting of the usual multiparticle occupation 
states of the fields fPa (x) and fPd(X) with its "natural" vacuum 
10) being the extension to R of the physical vacuum of P, and 
the other basis consisting of an analogous set of multiparticle 
occupation states of the fields fPb (x) and fPc (x) with its natural 
vacuum Iw) (referred to in the sequel as the unphysical vacu
um). The transition matrix between the two bases is U, and, 
in particular 

10) = U Iw). (40) 

The above two bases will be said to define either the a - d or 
the b - c pictures, in obvious analogy to the Heisenberg, 
Schrodinger, or interaction pictures which likewise refer to 
specific bases of the same representation space of the field 
algebra. 

We now define R uniquely by the requirement that it 
should contain a (presumably nonzero and nondegenerate) 
unphysical vacuum Iw) of the type alluded to above, itself 
defined specifically through the requirement that 

fPl(x)lw) = 0 (41) 

or, equivalently, through the dual relation 

(WlfP2(X) = (WI(fPl(X))* = 0 (42) 

with fPl(X) andfP2(x) given by (20), in strict analogy to, respec
tively, 

fP ~ + l(x)IO) = 0 (43) 

and 

(OlfP ~ - I(x) = (01 (fP ~ + l(x))* = 0 (44) 

and pertaining to the decomposition (3). [Relation (43) is, as 
presently seen, also a consequence of(41).] 

In terms of Iw) the generalized contraction symbol is 

C'(x,x') = (wi T(fPa (x),fPa(x')) Iw) 

in strict analogy to the standard 

C(x,x') = (OIT(fPa(x),fPa(x'))IO). 

(45) 

(46) 

Emphasizing the mixing of positive and negative energy 
parts in (20) we next notice that (41) holds only when simulta
neously 
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(47) 

and 

(48) 

so that leu) is actually defined-as it should in an enlarged 
representation space R-by two relations pertaining to two 
independent fields q7b(X) and q7c(x). As the relations of the 
type (34) obviously apply to the positive and negative energy 
parts of the corresponding fields separately and because of 
(47) and (48), we have for the physical vacuum 

q7 ~ + l(x)IO) = Uq7 ~ + l(x)U*U leu) = Uq7 ~ + I(X) leu) = 0 
(49) 

and 

q7 ~ -1(x)IO) = Uq7 ~ -1(x)U*U leu) = Uq7 ~ -1(x)leu) = 0, 
(50) 

Eq. (49) furnishing the proof that indeed (43) follows from 
(41). Because ofleft-hand equation in (50) we can character
ize the physical subspace P of R as spanned by vectors I «JI ) 
for which 

(51) 

The above concludes in principle the formulation of our 
algorithm, but must still be augmented by metric consider
ations allowing us to conclude that P is Hilbert and thus is in 
fact the physical space of the standard theory, despite the 
fact that R cannot be Hilbert because of condition (48). 

Condition (47) is equivalent to 

ba leu) = 0, (52) 

where the creation and annihilation operators b ~ and ba 

enter the expansion 

(53) 
a 

and Ua (x) 1 and [ fa (x)) are the same positive and negative 
energy solutions of the KG equation as in (4) and (5). Their 
commutation relations are 

(54) 

These, in conjunction with (52), lead (for one degree offree
dom) in a standard way to the "normal" hierarchy of eigen
states of the number-of-particles operator b *b belonging to 
positive integer eigenvalues n, 

In;eu) = (lIFnT)(b *rleu) 

which satisfy 

(n';euln;eu) = on'n 

and so have positive norm, and for which 

b In;eu) = In - l;eu)..[ii 

and 

b *In;eu) = In + l;eu)rn+i. 

(55) 

(56) 

(57) 

(58) 

The space spanned by vectors (55) is thus Hilbert and the b
quanta are represented in R by "normal" particles. 

By contrast, the condition (48) is equivalent to 

s~leu) = 0, (59) 

where s~ and Sa enter the expansion 
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(60) 
a 

and 

(61) 

the same as (53) and (54). However, it is known6 that it is 
impossible to find a Hilbert (positive metric) representation 
space of an algebra generated by operators satisfying (61) and 
yet containing a (nonzero) vector leu) satisfying (59). An in
definite metric irreducible representation satisfying these 
conditions is possible. 7 We rename the starred and unstarred 
operators thus, 

so that condition (59) assumes the form 

Ca leu) = 0 

(62) 

(63) 

superficially resembling (52), while the commutation rela
tions (61) become "pathological," 

[ca,cp ] = 0; [ca,c;] = - oaP (64) 

and, finally, the expansion (60) assumes the unconventional 
form 

q7c(x) = I ( Ja(x)ca + Ja(x)c~). (65) 
a 

The representation space, for one degree of freedom, is 
spanned7 by eigenvectors of the operator c*c belonging now 
to negative integer eigenvalues, - m, 

Im;eu) = (lI[,nT)(c*tleu), 

with alternating sign of the norm 

(m';eulm;eu) = ( - l)mom'm 

(66) 

(67) 

the necessity for which is seen from the reversed sign in the 
first of the following relations 

clm;eu) = - 1m - l;eu).Jm (68) 

and 

c*lm;eu) = 1m + l;eu)~m + 1 (69) 

as compared with (57) and (58). 
The c quanta must therefore be represented in R by 

negative norm "ghosts" [the state exemplified by (66) being 
an "m-ghost state"] and R must indeed be non-Hilbert. 

The transition matrix U given by (36) will thus mix nor
mal states and ghosts-a circumstance worth remembering 
especially when working in the b - c picture. Since U is 
pseudounitary and preserves norm, relations (34) show that 
the a quanta inherit from the b field the property of being 
positive norm particles, while the d quanta will be ghosts like 
the c quanta. Since its defining conditon (51) is just the condi
tion expressing the absence of those d ghosts, the subspace P 
is Hilbert and does not change the physical content and the 
probabilistic interpretation of the original field theory. 

IV. RELATION BETWEEN VACUUM COMPONENTS IN 
a - d AND b - c PICTURES 

In this section we will establish the important relation 
that, for any physical state I «JI ), i.e., for which there are no d 
ghosts 
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d It[!) = 0, . (70) 

there is the simple proportionality 

(wit[!) =~ (Olt[!) (71) 

between its components with respect to the unphysical and 
physical vacua. This relation will be the basis in the next 
section of the correspondence between wave functions in the 
two pictures of bound states involving the exchange of ifJa 
particles. 

First we note that, in analogy with (65), the d field can 
be written 

where 

[da,dtll =0; [da,dt] = -Dati 

so that by (49), (50) 

aa 10) = da 10) = O. 

The matrix U can also be written in the form 

U = eXP0~(baCc - b !C!)) 

= exp0 ~(aada - a!d!)), 

(72) 

(73) 

(74) 

(75) 

where f3 = tan - I A. Restricting to one degree of freedom 
again, with 

(a*)n(d*)m 
In,m;O) = r::cI 10) = U In,m;w) 

"n!m! 

= U Iw) , (
(b*nc*r ) 
~n!m! 

(76) 

we can establish the relation 
00 

In,m;O) = I In + s,m + s;w) 
s= -m 

X(-I)S ~ 
~ n!m!(m + s)! 

d m 
{ (sinf3r+s } 

X df3m (cosf3 t +>+ I (77) 

which explicitly exhibits the presence of additional (bc)pairs 
in a basis vector of the a - d picture when viewed from the 
b - c picture (the converse being also true about (ad) pairs 
when a basis vector from the b - c picture is viewed from the 
a - d picture). We omit the proof. 

Physical states are composed of In,m = 0;0) states 
which span P. Specializing (77) to them gives 

00 

In,m = 0;0) = I In + s,s;w) 
S~O 

X( - 1)' (n +s)! AS(~t+1 
n!s! 

and for the physical vacuum, n = 0, we getS 

10) = fi+P e-AbOcOlw). 

(78) 

(79) 

The inverse of U is obtained by changing the sign of A in (75). 
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This combined with the fact that (75) has exactly the same 
form when written in terms of either band c or a and d 
operators allows us to repeat the above with the roles of the 
a - d and b - c pictures reversed, so that 

Iw) = ~ e"aodOIO). (80) 

If It[!) satisfies (70), the dual to (80) proves (71). 

v. PHYSICAL APPLICATIONS OF THE ALGORITHM; 
BETHE-SALPETER EQUATION 

The search for physical applications of the now fully 
formulated new algorithm can at this point be simply under
stood as a search for possible computational advantages of 
performing actual calculations in the b - c picture and then 
interpreting the results physically from the point of view of 
the a - d picture. 

As no possible advantage can be foreseen at this early 
stage from at once attempting an application to a more com
plicated theory, we shall once more confine ourselves to a 
simple theory of two scalar, complex KG fields ifJ A (x) and 
ifJB (x) describing "scattered particles" A and B, interacting 
through the exhange of a third particle a (referred to in the 
sequel as the "exchange particle" or simply as a "gluon") 
described by the real scalar KG field ifJa (x) and identified 
with the meson field considered so far to illustrate our new 
formalism [i.e., notwithstanding the possibility of extending 
our new algorithm to all the fields ifJA (x), ifJB(X), and ifJa(x) 
simultaneously, which we however shall not attempt here.] 

Using bold type characters to denote Heisenberg opera
tors, the equations of motion of such a theory are according
ly 

and 

(O+m~ +g'Pa)'PA +0, 

(0 + m1 + g'Pa)'PB = 0, 

(81) 

(82) 

(83) 

These equations are derivable from the Lagrangian density 

L = LA + LB + La + Lint> 

where 

LA = (avifJ~)(avifJA) - m~ifJ~ifJA' 
B B B B B B 

La = ~(avifJa )(a"ifJa) - !m~ifJ ~, 

and the interaction Lagrangian 

(84) 

(85) 

(86) 

Lint = - lHIint = - g(ifJ ~ifJaifJ A + ifJ ~ifJaifJB)' (87) 

It is now necessary to augment the Lagrangian (84) by addi
tion of the dynamics of the ghost field ifJd' namely, 

LR = L + Ld , (88) 

with 

(89) 

This comprises the a - d picture in which the d-particle field 
operator ifJd(X), being free, is identical with its Heisenberg 
counterpart 'PAx); it should be however strongly empha
sized that in the b - c picture the fields 'Pb(X) and 'Pc (x), still 
related to 'Pa(x) and ifJd(X) through (18) and (31)9 both do 
interact with the scattered particles A and B. 
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Starting with the well-known expansion for theS opera-
tor 

(90) 

but working in the b - c picture-i.e., expressing the pro
cesses relating to the exchange particles in terms of emissions 
and absorptions of band c particles rather than directly in 
terms of the a particles-we are then indeed confronted with 
the task of expressing the chronological products appearing 
in (90) in terms of generalized normal products defined in 
Sec. II (of course, only as far as the exchange particles are 
concerned); in short, the Feynman expansion for any parti
cular scattering process is now in terms of graphs where 
internal exchange particle lines are represented by (30). 

We shall confine ourselves in this paper to the problem 
of bound states of A andB through the exchange of fPa parti
cles, since not only the reinterpretation of external exchange 
particle lines in terms of fP ~ + I(x) and fP ~ ~ I(x), proper for the 
a - d picture from that in terms of fPl(X) and fP2(X), given by 
(20) and proper for the b - c picture, is here completely 
avoided, but mainly because of the seemingly significant 
computational advantage of our new algorithm in this parti
cular application, which we shall endeavor to illustrate in the 
next section at least for the case ma = O. 

Since nonperturbative methods are essential for bound 
states, it should be realized from the onset that the scheme of 
embedding the physical space P in a larger representation 
space R, as well as performing the change of basis in R, is 
completely independent of a perturbative approach. The 
Bethe-Salpeter equation, being nonperturbative, allows a 
good test of this algorithm. The two steps in solving an AB 
bound state problem will be (1) to set up a Bethe-Salpeter 
equation in the b - c picture and solve it in the desired ap
proximation of its kernel for the particular value of A for 
which the solution is easiest computationally, and (2) to in
terpret the wave function so obtained (from the point of view 
of the physical a - d picture). 

Stressing the importance of the second step, we shall 
actually define here the Bethe-Salpeter equation as that sat
isfied by the wave function 

(91) 

where the vacuum vector In) can now stand for either 10) or 
Iw) and where 11/1 ) is any (Heisenberg) state from R contain
ing one particle A and one particle B. 

Special significance attaches then to the case of 11/1 ) be
ing a physical vector from P, since the vector 

T(cpA (XJ!cpB (x2)) I 1/1 ) (92) 

must then also lie in P, and so, by the discussion of Sec. IV, 
the amplitude "'(x 1 ,x2;0) and "'(x 1,x2;W) must be proportional. 
This means that every physical solution of the standard 
Bethe-Salpeter equation (i.e., of an equation written only for 
the physical sector and thus a priori exhibiting no d ghost, 
but also interpretable as the Bethe-Salpeter equation in the 
a - d picture) must be found among the solutions of the corre
sponding Bethe-Salpeter equation pertaining to the b - c pic-
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ture. In particular, the bound state spectrum, as defined, e.g., 
by the energy poles in the "'(X 1,x2;0) amplitudes, must be 
found in the bound state spectrum resulting from solving the 
Bethe-Salpeter equation in the b - c picture, i.e, among the 
poles of "'(X 1,x2;W). 

The above is of course valid-in the strict sense of a 
mathematical theorem--only in the context of exact Bethe
Sal peter equations in the a - d and b - c pictures, respec
tively. Nevertheless-assuming that there is no a priori rea
son to trust the computational accuracy based on the com
monly used g2 approximation in the kernel (referred to 
mostly as the ladder approximation) more in one case than in 
the other-it does follow that the spectrum of the standard 
Bethe-Salpeter equation 

[(0 1 +m~)(02+m~)+ig2..::1F(xl-x2;ma)J 

x ",(X I,X2;0) = 0 (93) 

must coincide-within the numerical accuracy inherent 
only in the overall reliability of that approximation-with a 
subset of the spectrum of the corresponding Bethe-Salpeter 
equation in the b - c picture, which for (93) is 

[(0 1 + m~ )(02 + m~) + ig2.J (XI - x 2;ma)j 

x "'(X I,X2;W) = O. (94) 

Equations (93) and (94) follow, by virtue of(45), (46), and (30), 
from the common generic origin 

[(0 1 + m~)(02 + m~) -g2(n I T(fPa (xJ!,fPa (x2)) In ) J 

(95) 

where again In ) stands for either 10) or Iw), rederived from 
field theory in the Appendix (in order to provide additional 
emphasis on the fact that the wave function of the Bethe
Sal peter equation is interpretable as (91)-a crucial link in 
the above discussion but somewhat deemphasized in the 
standard 10 derivation of the Bethe-Salpeter equation). 

VI. EXACT SOLUTION OF (94) FOR mA = 0 

We finally illustrate the computational advantages of 
our new algorithm by solving (94) exactly in the case ma = 0, 
which, as we shall see, is actually much easier to do than in a 
corresponding case of (93) (known as Wick equation) and 
which-as mentioned in Sec. I-provided in fact the main
motivation to develop this algorithm. 

This presentation is a somewhat shortened version of 
this solution contained in the already mentioned paper,3 but 
is now compiled in an entirely self-motivated way, i.e., not as 
a mere illustration of similar methods applied to Wick equa
tion (where it was treated only as an ad hoc exactly soluble 
model not yet connected to physical reality by arguments 
proceeding from the basic principles). 

We start with the well-known plane wave representa
tion for.J defined by (28) 

.J(x·m) = _1_fd4ke~ik'xp( 1). (96) 
'(21T)4 m 2 _ k 2 

Equation (94) written in terms of Fourier transforms is 
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(m~ -p~)(m~ -P~)1\I(PA,PB) 

+ i~2Jd4k1\l(PA -k,PB -k)P( 21 k 2)=0, 
(21T) ma -

(97) 

where 1\1( PA ,p B) is the Fourier transform of the previously 
used wave function 1\I(x\,x2;w). The symbol P appearing in 
(96) and (97) means the principal part integration in the ze
roth component of the four-momentum k, and it is in fact 
this particular feature that allows us to solve our problem 
exactly. 

We now specifically consider the case ma = 0.1t is con
venient to work in terms of the function 

(98) 

rather than 1\1( P A ,P B) itself, expressing at the same time the 
four-momenta P A and P B in terms of a constant four-vector r, 
representing the total energy-momentum of the bound state, 
and a variable four-momentum p, thus 

PA =p+r+p, 

PB =PJ-p, 

(99) 

(100) 

where the as yet undetermined constants P + and P _ satisfy 

P++P_=l. (101) 

In terms of this notation, Eq. (97) becomes 

Eq. (103) gives 

(21T)4i 
~u(p;r) 

+JdY ' u(p";r) 
[(p" +p+r)2 -m~] [(p" -p_rf -m~] 

Xp( 1 2) = O. (102) 
(p" -p) 

In order to arrive at a synthetic survey of the solutions 
of (102), we next propose to replace u( p;r) by a generating 
function (chosen in the form of a "four-point function" per

taining to the scattering process PA + P r-+ + p~ + PB)' 
(PI T(r)1 p'), and in fact endeavor to solve the following inho
mogeneous version of (102), 

(21T)4i (pIT(r)1 p') 
g2 

+JdP" (p"IT(r)lp') 
[(p" + p+rf - m~] [(p" - p_r)2 - m~] 

Xp( 1 )= 1 . 
(p" -pf (p-p'f 

(103) 

Working specifically in the rest frame of the bound state of A 
andR, 

r =0; ro =E, 

and defining a new generating function A by 

(Po,lpIIA (E,z") I Po,lpl) = Ipllp'l(pIT(r)1 p'), etc., 
(104) 

2(~)4i (Po,lpIIA(E,z")IPo,lpl)+ J d 2n"i+
00 

dlpIJ_+oooo dp;; 

(Po,lp" IIA (E,z) I Po,lp'l) P ( 1 ) 

X [(p;;+P+E)2_lp"12_m~][(p;;_P_E)2_lp"12_m1] z'-y' = z" _y'" 
(105) 

where the variables z, z', and z" denote cosines of the scattering angles (i.e., cosines of the angles between the vectors: p' and p" ; 
p" and p, and p and p', respectively), Sd 2n "( ... ) stands for angular integration in the P" variable, and where, finally, the 
variables y, y' and y" are defined by 

Ip'1 2 + Ip"1 2 
- (Po _p;;)2 

y= 2Ip'llp"l etc., (106) 

the definitions of y' and y" obtaining by cyclic permutations of un primed, primed, and double-primed quantities. 
Included in the next step will be an extension of the integration in the Ip" I variable from - 00 to + 00 instead offrom 0 to 

+ 00 (which we shall nevertheless continue denoting by Ip" I to avoid unnecessary confusion) by the simple expedient of 
extending the function A to negative values of Ip" I through 

(Po, -lpllA (E,z") I Po,lp'l) = - (Po,lpIIA (E,z") I Po Ip'l), (107) 

compatible with (105) (bringing about the appearance of an additional factor! before the integral). 
We reduce the number of integration variables from four to three by (a) expressing the angular integration in terms of the 

variables z and z' and (b) performing the z' integration explicitly, since the unknown function (p;;, I p" IIA (E,z) I Po, I p' I) does not 
depend on z'. Thus 

2(21T)4i (Po, IpllA (E,z") I Po,lp'l) + 21T I + 00 dip" II + 00 dP;;I + Idz 
~ 2 -00 -00 -I 

X (p;;'lp"IIA (E,z) I Po,lp'l) Im( 1 ) __ _ 
[(p;;+P+E)2_lp"12_m~][(p;;_P_E)2_lp"12_m~] l_z2_y'2_ z"2+2zy'z,,)\/2 - z"-y'" 

(108) 

where (1 - Z2 - y,2 - Z"2 + 2zy'Z") 1 12, understood as a function ofy'; denotes that branch of this function, which, in the cuty' 
plane, assumes real positive values on the lower lip of the cut. The appearance of the imaginary part of the inverse of this 
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function is again a significant feature in solving (94) instead of (93), for in the latter case it is replaced by a much more 
complicated expression, practically blocking further progress towards an exact solution. II 

Solving (lOS) involves a proper choice of auxiliary variables, which we recapitulate briefly as follows: 
Assigning the values 

fJ+ = (E2 ± m~ + m~)l2E (109) 

to the previously undeterminedfJ ± satisfying (101) and going over from thepo and Ipi variables (analogously for primed and 
double-primed quantities) to 

_ Po ± Ipi + I 
v ± - Po ± Ipi - I ' 

where 

(110) 

1= (l/2E)[(E - mA - mB)(E - mA + mB)(E + mA - mB)(E + mA + mB)] 112, 

we achieve that 

(Ill) 

dp({dlp"l 

I I dv':. dv"_ 

2 (fJ +E + 1)( fJ _E - I) (v'.'.- v'~ - u2+ )(v'.'.- v'~ - u2_ ) , (112) 

where 

(113) 

and where the stress is on the fact that dv',+- dv'~ is multi
plied in (112) by a function of the product v''+- v'~ only. We 
also opt at this point to perform our calculations for E in the 
scattering region (E>m A + m B) which makes I of (III) as 
well as the v ± variables real (eventually "reaching" the 
bound state values of E by an analytic continuation of the 
results in the physical E sheet). 

To represent angular variables, we first notice that as a 
consequence of (106) and (110) 

y-I 

y+1 

(v''+- - v'+ )(v'~ - v'_ ) 
-'----'----- etc., 
(v''+- - v'_ )(v'~ - v'+ ) 

and then define the t parameters through 

and 

z-I 

z+1 

(v''+- - tv'+ )(v''- - tv'_ ) 

(v''+- - tv'_ )(v'~ - tv'+ ) 

z" - I (v+ - t "v'+ )(v_ - t "v'_ ) 

z" + I (v+ - t"v'_ )(v_ - t"v'+) 

(114) 

(lIS) 

(116) 

respectively [the introduction of t' is not necessary since the 
variable z' was eliminated in the step leading from (105) to 
(lOS)]. Viewing (lIS) and (116) as quadratic equations for the 
determination oft and t " for givenz andz", respectively, we 
then see that another pair of solutions, sand s" also exists, 
related to the original t and t " through 

v'.'.- v'~_ = stv'-+- v'_ (117) 

and 

(lIS) 

respectively. Under these circumstances we can actually re
place other variables by t and s variables, which, as we shall 
presently see is actually the most significant step in our solu
tion. 
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The most advantageous choice at this point is actually s, 
t, and 

w" = cosh 1//', 

where the hyperbolic angle if/' is defined by 

tanh ¢" = (v''+- - v'~ )I(v''+- + v'~ ) 

(119) 

(120) 

and the corresponding triples", t ", and w, in terms of which 

dv''+- dv'~ dz 

= v'+ v'_ 

Q is given by 

. h E.- sinh ¢ ds dt dw" 
sm ~ 

sinh ¢" (_ Q)I/2 

Q = - x 2 
- X'2 - X"2 + 2xx'x" + 2ww'(x" - xx') 

+ 2W'W"(X - x'x") + 2w"w(x' - x"x) 
+ W2(X2 _ I) + W'2(X'2 - 1) + W"2(X"2 - I) 

AW"2 + Bw" + C, 

where the further abbreviations mean 

x = cosht, 

x'=cosht', 
x" = cosht ", 

with the hyperbolic angles t, t I, and t " defined by 

( 121) 

(122) 

(123) 

(124) 

(125) 

tanh t = (s - t )I(s + t), (126) 

tanh t '= (st - s"t ")I(st + s"t "), (127) 

tanh t" = (s" - t ")I(s" + t ") (12S) 

[note an asymmetry in the definition (127) caused by the 
absence of t ']. 

Realizing that 

1 1 ~ln W (129) 
& sinht" Jw" ' 

where 

w=JA(w" +BI2A)+& (130) 
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with the expressions A and B identified through (122), that 

1 _ sinh ifJ sinh ifJ' ( __ 1_ + _1_) 
z" - y" - sinh t " s" - 1 t" - 1 ' 

(131) 

defining a new generating function cP through 

.rh (" ") sinh t " 
'Y s ,t ,w = -----''---

sinh ifJ sinh ifJ' 

X (v+,v_IA (E,z")lv'+ v'_ ) etc., (132) 

and finally invoking (112) and (121), the Eq. (108) becomes 

2(21T)4i .rh (" " ) 
~'Ys ,t ,W 

21TV' v' 1 

+ ~ - (fJ+E + l)(fJ_E - /) 

X r+ 00'" ds f-+ ",'" dt 1~:'r dw" cP (s,t,w") 

xRe (aln W\ 1 
aw'-;-) (v'~ v"_ - u 2+ )(v'~ v'~ - u2

_ ) 

1 1 ---+--
s" - 1 t" - 1 ' 

(133) 

where the integration limits w'± correspond to the integra
tion limits z = ± 1 in (108) and are 

w'~ = xw/ ±.JXL=1 ~W'2 - 1 . (134) 

The exact solubility of (133) follows from the fact that, 
as can be shown, 12 

W(w" =w'~) 

W(w" =w"_) 

(s - s")(t - t ") 

(s-t")(t-s") , 
(135) 

enabling us to make the solving ansatz that cP is independent 
of the w parameter, so that, performing the w" integration, 
we obtain, consistently 

2(21T)4i cP (s" ,t ") + 217' v'+ v'_ 
g2 4 (fJ+E + l)(fJ_E -I) 

X f-+ 00'" ds f-+ ",'" dt 

CP(s,t) lnl (s -s")(t - t ") I 
X (s-t")(t-s") 

(v'+ v'_ st - u2+ )(v'+ v'_ st _ u2
_ ) 

1 1 =---+--. 
s" - 1 t" - 1 

(136) 

A glance at (136) allows us finally to conclude that it is solu
ble by the further ansatz 

¢ (s,t ) = G (s) - G (t ), (137) 

reducing in fact the whole problem of finding our generating 
function to that of solving one integro-differential equation 
in one variable only. 

Before proceeding with the solution it is worthwhile to 
again compare the present situation with the corresponding 
one for the Bethe--Salpeter equation (93). These remarks, 
though rather technical, are intended to illustrate the much 
greater simplicity associated with Eq. (94). 

(a) The ansatz (137) is not allowed at the corresponding 
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stage, for the Bethe--Salpeter equation (93) even ifthe pre
vious ansatz about the w independence of cP were allowed. 13 
Instead, cP would have to satisfy a second-order partial dif
ferential equation in both sand t. 14 

(b) This partial differential equation is separable, but 
leads to second-order ordinary differential equations of a 
complicated Heun type, a Fuchsian with/our singular 
points, from which to determine the energy spectrum. 

Continuing with the present solution, the integro-dif
ferential equation for G (t ) is 

2(217')4 dG (t") 21TV'+ v'_ j + '" 
---r~ + 41E _ 00 K(t",t)G(t)dt 

= - ---7' 

(t"- W 
(138) 

with the kernel 

K(t",t)=j+"'dS( 1 
- 00 v'+ v'_ st - u2+ 

( I 1) xP -----
t"-t t"-s 

(139) 

and is actually obtained by substituting (137) into (136) and 
then additionally differentiating the result partially with re
spect to t " in order to get rid of the logarithmic terms. If the 
expressions (m~ + p~ ) and (m~ + p~) appearing in (97) are 
interpreted as the reciprocals of the Fourier transforms of 
retarded propagators,15 then 

----------
v'+ v'_ st - u2

± tv'+ v'_ 

X lim (140) 
t-.() S - (u2± Itv'+ v'_ ) ± ic 

and (138) becomes 

X _ 00 t t - t " + ic + f + 00 dt ( 1 
t - t" - ic 

+ + -;,) u2 u2_ 
(" - + +ic t" -

v'+ V'_t v'+ v'_ t 

1 
X G (t ) = - -(t-" -_-1-=-)2 (141) 

Modelled on the well-known representation for the inhomo
geneity 

_ i f+iOO vdv ( )V-Id ------ --- -t v 
(t" - 1)2 2 -ioo sin 1TV 

(142) 

the closed-form solution of(141) can be sought in the form 
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G(t) = .iJ+;oo .vdv 
2 -;00 SlD 1TV 

Owing to the circumstance that for noninteger v the func
tions ( - t) - v and ( - lItv'+ v'_ t must be considered inde
pendent, the functions/Iv) and h (v) are finally obtained as 
solutions of 

1 = (Mv + Nlf(v) + (u+) - 2vNh (v) (144) 

and 

0= (u_)2vN/(v) + (Mv + N)h (v), (145) 

with 

M = 2(21T)4ilg2 (146) 

and 

N = (21T)3 IS/E. (147) 

To obtain the energy spectrum of (94) we first determine 
the positions of poles (Regge poles) of/Iv) and h (v) from the 
determinantal equation 

(14S) 

The bound state poles in G (t )-and therefore in all the pre
viously defined amplitudes-obtain where, for integer 
v = n, these Regge poles "pinch" against the poles stemming 
from l/sin 1TV in (143). The bound state formula is thus ob
tained by equating to zero the [ I brackets in (14S) for v = n, 
which, recalling the definitions of / and u ± given by (111) 
and (113) and (109), respectively, and finally introducing a 
very convenient parameter 

Z = u_Iu+ (149) 

reads 

(150) 

concurrent with 

(151) 

The bound state spectrum of the Bethe-Salpeter equa
tion in the b - c picture (94)-which, according to the dis
cussion at the end of the previous section should contain the 
physical spectrum in an approximation as good as that fol
lowing from the solution of the Wick equation (93 )-is there
fore obtained by the simple expedient of solving the algebraic 
equation of the (n + 1 )th degree (150) and then computing 
the bound state energies from (151). 

It is interesting to note that-whatever the physical 
meaning of lower lying energy states-the "plus" branch of 
(150) reproduces easily at least the nonrelativistic Balmer
Ritz formula 
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i.e., for energies E just below the scattering threshold 
mA + mB [and therefore Z in the vicinity of 1, which can be 
represented there by a power series in n through (150), the 
leading term leading to (152)]. 

By contrast, in the case of the Wick equation (93), the 
energy spectrum derived from the second-order differential 
equations mentioned under (b) above is known to exhibit 
many pathological analytical features, and is not obtainable 
in an analytically closed form to the extent that even the 
clear-cut correspondence with the nonrelativistic Ritz
Balmer formula is somewhat dubious. 

Finally, unlike (93), the solution of(94) does not necessi
tate the so called Wick rotation (auxiliary transition to the 
Euclidean metric of the original four-momentum space by 
rotating the integration path in ko) and is performed entirely 
in the original non-Euclidean space [in fact the Wick rota
tion is certainly not allowed in the case of (94)]. 
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APPENDIX 

In order to derive Eq. (95) of the main text, we shall first 
prove the theorem, valid exactly in terms of the operators 
involved, to the effect that 

'Po(x I ,x2) = q:>(x I ,x2 ) 

+ g2 f-+ 0000 f-+ 0000 .1 Re, (XI - x; ;mA ) 

X.1 Re, (X2 - x~ ;mB ) 

X T'(q:>a (x; ),q:>a (x~ ))q:>(x; ,x~)d 4X; d 4X~ (AI) 

is a/ree field in both arguments XI and x 2, thus 

(01 + m~ )'PO(X I ,X2) = (02 + m~ l'PO(X I,x2) = O. (A2) 

Here q:>(x; ,x~) is defined by 

q:>(X I,X2) = T(q:>A(Xtl,q:>B(X2)). (A3) 

T and T / stand for chronological and antichronological or
dering, respectively, and 

.1 Re, (x;m) = - 8 (xo).1 (x;m) (A4) 
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and is so defined that 

(0 + m2~Ret(X;m) = + 04(X) (A5) 

[compare (29) of the main text]. 
The above theorem, its proof and the subsequent deri

vation of the Bethe-Salpeter equation, represent a simplified 
version of a more general procedure involving n interacting 
particles and applied to QED, published elsewhere. 16 

In the case of two bodies the proof of the theorem pro
ceeds most simply from the lemma 

T'«(Oj + m~ + g'Pa(x j)) 

(A6) 

tantamount essentially17 to the validity of the following two 
statements: 
(0 1 + m~ + g'Pa(x j)) 

X(02+m~ + g'Pa(X2))'PB(X2)CPA(xd =0 (A7) 
valid for point events X 2 later than x I because of the field 
equation (S2), and 

(02 + m~ + g'Pa(x2)) 

valid in the opposite case of x j being later than X 2, because of 
(Sl). We actually prove the first equation in (A2) 

(0 1 + m~ + g'Pa (xd)'P(x j,x2) 

+ g f-+ COCO d 4
x;L1Ret (X2 - x; ;mB ) 

X T'('Pa(x;),(Oj + m~ + g'Pa(x I)) 

X(jJ (xI,x;) = 0, (A9) 

the second following by reversing the roles of particles A and 
B. Introducing the abbreviation 

K(X j,x2)=(01 +m~ +g'Pa(xd)'P(X I,X2) (AlO) 

we have 

K (x j,x2) = 0 for x j later than X 2, (All) 

whereas the lemma [(A6)] can be rewritten in the form 

(02 + m~)K(xI,x2) 
= -gT('Pa(x2),(01 +m~ +g(jJa(xI))'P(X j,x2)' (A12) 

(AS) Consequently, 
I 

(A13) 

the proof of (A9) accomplished by the vanishing of the last surface integral as a consequence of (A 11). 
To derive the Bethe-Salpeter equation in the g2 approximation in its kernel (in either of the a - d or b - c pictures) we 

first notice that taking the equality (A 1) between the brackets (fl I and I '/I) as it stands yields a linear relationship not only 
between the wave function (91) (through the zeroth and second-order terms in g) and two-gluon terms (through the terms 
quadratic in g), but also, through the linear term, between one-gluon amplitudes 

(fl l'Pa (y)T('Pa (Xd,'PB(x2))1 '/I), 
which have therefore to be eliminated in order to obtain a self-consistent equation containing only terms of the type (91) in all 
terms up to the second order ing. This is accomplished by iterating (A 1 )priorto putting it between the brackets (fl I and 1'/1) by 
expressing the zero-order g term ¢(X I,X2), by the inhomogeneity (jJO(X I,x2)' and the higher-order g terms, and substituting it 
back into the linear g terms. Thus 

I (X I,x2) = 'P(X I,x2) - g2 f-+ coCO d 4x; f-+ COCO d 4X; L1 Ret (XI - x; ;mA )LlRet(X2 - x; ;mB)T('Pa(x; ),'Pa(X; ))'P(X;,x;) 

where use was made of 

T ('Pa (X),'Pa (y)) + T'('Pa (X),'Pa (y)) 

= 'Pa (X)'Pa (y) + 'Pa (Y)'Pa (X) 

and where the inhomogeneity 
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(A15) 

I(x l,x2) = (jJO(X I,x2) + g f-+ cocoL1Ret (Xj - x; ;mA) 

X 'Pa (x; )(jJo(x; ,x2)d 4X; 

J
+CO 

+ g _ co L1 Ret (X2 - x;;mB) 

X 'Pa (x; )(jJo(X l,x;)d 4X; 
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is still a sum of free fields at least in one of the arguments XI 

and x 2 , so that 

(0 1 + m~)(02 + m1)I(x l ,X2) = O. (AI7) 

By repeating the above iteration once more in the last two g'2 
terms in (AI4)-tantamount, in theg'2 approximation, to 
simply replacing them by terms containing 'PO(X I ,x2) instead 
of cp(x 1 ,x2) and then incorporating them into a new inhomo
geneity, I'(X I ,X2), still satisfying (AI7)-we get (after also 
placing the pertinent equation between the brackets (Ill and 
II[!) ) 

(1lII'(x l ,x2)11[! ) 

= "¢(x l ,x2;1l ) + g'2 L+ 0000 d 4X; J~+ 0000 d 4X; 

X.:lRet(X 1 -x;;mA )L1Ret(X2 -x;;mB) 

X (Ill T (CPa (x; ),CPa (x; ))cp(x; ,x;) II[!) 

or, in the differential form 

(0 1 + m~ )(02 + m1 )"¢(X 1 ,x2;1l ) 

+g'2(IlIT(CPa(x l +),CPa(X2))cp(x l ,x2)11[!) = O. 

(AI8) 

(AI9) 

The last step leading to Eq. (95) of the main text is now only 
the truncation of the expression 

(A20) 

into 

(A21) 

in which we finally also replace the Heisenberg operators CPa 
by their interaction counterparts 'Pa' and two-gluon terms, 
which we discard (since their elimination effects the kernel 
only in the g4-approximation). 

In connection with the discussion at the end of Sec. V it 
is finally worth while to remark that it is only the last trunca
tion that differentiates between (93) and (94) of the main text. 
By invoking the important Eq. (71) of Sec. IV for the expres
sion (A20) in the case of II[! ) EP, we see that, for physical II[! ), 
the forms (A18) and (A19) are still simply identical in the 
a - d and b - c pictures (i.e., proportional with the common 
proportionality factor when written for Ill) = 10) and 
Ill) = IliJ), respectively). 

'Compare, e.g., J. M. Jauch and F. Rohrlich, The Theory of Photons and 
Electrons (Springer-Verlag, Berlin, 1976), Appendix A4, pp. 445-453. 

2Compare a short discussion of the methods ofBleuler and Gupta, in J. M. 
Jauch and F. Rohrlich, Ref. I, pp. 100-110; especially ofindefinite metric, 
p. 105. For a more extensive source dealing with the applications of inde
finite metric to quantum field theory see, e.g., K. L. Nagy, State Vector 
Spaces with Indefinite Metric in Quantum Field Theory (Noordhoff, Gro
ningen, The Netherlands, 1966). 

3M. Giinther, Phys. Rev. D 9, 2411~2450 (1974); especially pp. 2436-2441. 
4G. C. Wick, Phys. Rev. 96, 1124 (1954); R. E. Cutkosky, Phys. Rev. 96, 
1135 (1954); H. S. Green, Nuovo Ciment05, 866 (1957); S. N. Biswas, ibid. 
7,557 (1958) etc. For fuller literature see Ref. 3. 

5Compare, e.g., S. S. Schweber and H. A. Bethe, An Introduction to Relativ
istic Quantum Field Theory (Row, Peterson, New York, 1961), pp. 745-6. 

6Compare the discussion, K. L. Nagy, Ref. 2, pp. 22~3 and J. M. Jauch and 
F. Rohrlich, Ref. I, pp. 104-5. We are here forced into the alternative 
(2.5H2.6) of K. L. Nagy which are our Eqs. (64) and (63), respectively 
[after the change of notation (62)]. 

70ur Eqs. (66), (67), (68), and (69) are Eqs. (2.7), (2.8), (2.12) of K. L. Nagy, 
Ref. 2, and Eqs. (6.56), (6.57), (6.63), and (6.63*) of J. M. Jauch and F. 
Rohrlich, Ref. I, respectively. 

·Compare formula (6-41), p. 102, J. M. Jauch and F. Rohrlich, Ref. I. Note 
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also that when acting on the particular vector Iw) the more complicated 
operator exp [tan -, A. (bc - b *c) I has the same effect as exp( - A.b *c*). 

"Though the pseudounitary operator U of (34) must be replaced by the 
Heisenberg counterpart of(36). Sincefd 3x(tpbaOtpc - tpcaOtpb) is no longer 
time independent, the time at which this surface integral has to be taken 
can be arbitrarily fixed, e.g., as at t = - 00. 

IDE. E. Salpeter and H. A. Bethe, Phys. Rev. 84,1232 (1951). 
"Compare the detailed discussion of the same method when applied to the 

standard Bethe-Salpeter equation (93) (in its original non-Euclidean met
ric, prior to the Wick rotation), Ref. 3, pp. 2422-2436. 

12See for detailed proof of (135), Ref. 3, Appendix A, pp. 2441-2445 where 
W was denoted by S or (up to a common factor) by l. To accommodate 
both cases of Wick's rotated and unrotatedstandard Bethe-Salpeter equa
tion, the formulas were also written in terms of ordinary rather than hy
perbolic angles, thus, e.g., the previous ifJ means now iifJ etc. This change 
does not however effect the definitions of the sand t parameters which are 
the same as here. 

"The question of whether or not the ansatz (in the case of the standard BS 
equation) of the w-independence of <I> can be made seems to be intimately 
connected with the question of the permissibility of the so called Wick 
rotation and was actually used in the paper (Ref. 3) as a test of the latter. 

'4The partial differential equation referred to is Eq. (160), p. 2432, Ref. 3. 
"The question of what propagators to use for the scattered particles A and B 
is-in the particular context of the Bethe-Salpeter equation-of much 
lesser consequence than for the exchange particle since their choice de
pends entirely on the type of initial conditions imposed on the solutions of, 
respectively, the differential equations (93) or (94)-the initial conditions 
of particularly little importance for bound states. Still, the derivation of 
the Bethe-Salpeter equation of the Appendix does suggest the use of re
tarded propagators. 

'6M. Giinther, Phys. Rev. 88,1411 (1952); 94,1347 (1954). 
17However, a more detailed proof of the important premise (A6), with parti

cular attention payed to the step functions involved, can be given as fol
lows: Eq. (A3) can be written as 

tp(x"x2) = O(t, - t2)tpA(X,)tpB(X2) + 0(t2 - t,)tpB(X2 )tpA(X ,) 

= O(t, - t2)[tp" (X,),tpB(X2)] + tpB(X2)tpA(X ,) 

= - 0(t2 - t,) [tpA (X ,),tpB(X2 )] + tpA(X ,)tpB(X2), (RI) 

Consequently, because of the field equations (81) and (82), the left-hand 
side of (A6) is 

[0 (t2 - tIHO, + m~ + gtpQ(X ,))(02 + m~ + gtpQ(x)) 

XO(t, - t2) - 0 (t , - t2)(02 + m~ + gtpQ(x2)) 

X(O, + m~ +gtpQ(X ,))0(t2 - t,ll [tpA(X ,),tpB(X2)], (R2) 

Here, the significant fact is that (R2) can be written in the form of an 
operator acting only on a commutator of the Heisenberg fields tp A (x I) and 
tpB(X2)' The proof that (R2) is zero follows mainly from 

(0 , +m~ +gtpQ(X I ))0(t, -t2)[tpA(X,),tpB(X2)) 

= O(t, - t2)(0, + m~ + gtpQ(X ,)) [ tpA(X,),tpB(X2)]' etc. (R3) 

and 

(0, + m~ + gtpQ(x,))O (t, - t2) [tpA (x ,),tpQ(X2)] 

= Ott, - t2HO, + m~ + gtpQ(X ,)) [tpA (x , ),tpQ(X2)) , etc. (R4) 

which are in tum true because, even in the Heisenberg picture, both the 
zeroth and the first time derivative of a commutator between dynamically 
different fields are zero in the limit X ,--X2. The application of (R3) to (R2) 
gives first 

0(12 - t,HO, + m~ + gtpQ(x,))O (t , - (2 ) 

X(02 + m~ + gtpQ(X2))tpA (X,)tpB(X2 ) 

X Ott, - t2)(02 + m~ + gtpQ(X2))0(t2 - t , ) 

X(O, +m~ +gtpQ(X ,))tpB(X2)tpA(X,), (R5) 

The expression (R5) is then seen to be zero by realizing that 

(0, + m~ + gtpQ (X,))tpB (X 2 )tpA (x,) 

= g[ tpQ (X,),tpB(X2)] tpA (x,), etc., (R6) 

followed by the application of (R4). 

Marian GUnther 2024 
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Generalized self-duality type relations for gauge fields in higher-dimensional spaces are discussed 
from the point of view of orbits, strata, and stability groups. It is explained how to obtain them as 
integrability conditions for first-order gauge-invariant linear differential equations. 

PACS numbers: 11.15. - q, 02.30.Hq 

1. INTRODUCTION 

In a recent article, 1 we have started to study the general
ization of the usual self-dual (or anti-self-dual) relations in 
four dimensions to gauge theories in dimension d higher 
than four. In that article, we asked the question of how to 
generalize the Belavin and Zakharov equations2 whose inte
gration conditions are precisely the duality relations for the 
gauge fields in four dimensions. We present here in Sec. 3 a 
solution to this problem after a somewhat more global pre
sentation of the duality equations given in Sec. 2. As we 
already showed, the dimension d = 8 possesses very specific 
properties. We will exhibit this case with more detail in Sec. 
4. Our conclusions are drawn in Sec. 5. 

2. SELF-DUALITY IN HIGHER DIMENSIONS 

We start with the potentials AI' of a gauge theory in 
dimension d, and for an arbitrary gauge group. The equa
tions of motion for the gauge fields F!Jv derived from the 
covariant derivatives D!J 

D!J = a!J + AI' ' (2.1) 

F!Jv = [D!J ,Dv] (2.2) 

are 

D!JF!Jv = 0 (2.3) 

while the Bianchi identities are 

D!J I\Fpu = 0, (2.4) 

where 1\ designates the full antisymmetrization of p" u, 
andp. 

It is obvious that, if F satisfies the linear relations 

AF!Jv = T!JvpuFpu' (2.5) 

where T is an arbitrary completely antisymmetric constant 
tensor, the equations of motion (2.3) are satisfied in virtue of 
the identities (2.4), provided TandA are nonzero. While (2.3) 
are second-order equations for the potentials A, the "secu
lar" relations (2.5) are simpler since only of first order in 
derivatives though still nonlinear. 

The secular Eq. (2.5) has many interesting properties, 
some of which we now outline. First, for T fixed (2.5) can be 
considered as an eigenvalue equation for the d (d - 1)12 vec
tors F with the symmetric d (d - 1 )l2.d (d - 1)12 matrix T 
(lines being indexed by p" v and columns by p,u). The matrix 

T has zero trace 

Tr T = T!Jv!Jv = 0 . (2.6) 

Hence, there are d (d - 1 )/2 eigenvalues and their sum is 
zero. Distinct eigenvalues correspond to orthogonal sub
spaces of the F space. The relevant metric is 

F(1)FI2) =Fll) F(2) (2.7) 
J.LV IJ.:V· 

On the other hand, the SOld ) space group acts on the F as the 
d (d - 1)12 dimensional adjoint representation, irreducible 
except for d = 4, where 

6 = (3,1) + (1,3) (2.8) 

under the SU(2).SU(2)1Z (2) decomposition ofSO(4). Under 
these transformations, Tbehaves as a C~ dimensional repe
sentation irreducible except for d = 8, where 

70 = 35s + 35a (2.9) 

a SO(8) self-dual and anti-self-dual decomposition; see (2.16). 
Since Tis a fixed vector, it has a little group or stability 

group L, i.e., the group of those transformations of SOld ) 
which leave T unchanged 

L C (SO(d). (2.10) 

Forh eL 

T=hT. (2.11) 

For any s e SOld ), if 

T=sT (2.12) 

the stability group I of T, the transform of T under s, is 
conjugated (and hence isomorphic) to L with 

iz = shs- 1 
• (2.13) 

When Tand Tare related by (2.12) they are said to be on 
the same orbit. Two T not on the same orbit can also have 
isomorphic stability groups (for example: T and a T for any 
constant a different from zero). They are then said to be on 
the same stratum. The strata are thus the unions of the orbits 
with isomorphic stability groups. [The uninteresting vector 
T = 0 is a stratum on its own, its stability group being the full 
SO(d).] 

Before applying these remarks to the secular Eq. (2.5), 
let us still note that the T space can be split completely into 
disjoint orbits and disjoint strata and that to any T there 
corresponds a stability group. Conversely we have not 
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proved that any given subgroup L of SO(d ) is automatically 
the stability group of some vector T. Given L, the simplest 
way to see if a T exists is to look if the decomposition of the 
C ~ dimensional antisymmetric representation ofSO(d) con
tains one or more singlets for the subgroup. 

Ifwe apply the transformations of Lon (2.5) we see that 
F and hF correspond to the same eigenvalue. Hence, the 
orbits of Funder h lead to vectors of the same eigenvalue A 
subspace. 

The number of different eigenvalues in (2.5) will clearly 
tend to be smaller if the stability group is larger and decom
poses F in fewer pieces. This stresses the interest of trying to 
find Twith maximal subgroups ofSO(d) as stability groups. 

Let us now briefly recall the application ofthese ideas to 
the cases d = 4 and d = 8 but refer to our first paper for 
details. 

The 50(4) case 

There exists only one allowed T tensor (up to a multipli
cative constant a) 

(2.14) 

Its stability group is SO(4) itself. The orbit has only one point 
and the stratum is given by aT. No true Sot 4) subgroup is the 
stability group of a T. 

Under SO(4), as already explained (2.8), the 6-dimen
sional space F splits into 3 + 3, corresponding to the eigen
values + I and - I of T and the usual self-dual and anti
self-dual decomposition. In this case, SO(4) self-duality 
coincides with the secular equation. This is not true for d > 4, 
where the generalized self-duality for the gauge fields F, i.e., 
the secular equation, is not identical, obviously, to SO(d) 
duality which relates an n-index (n < d) antisymmetric ten
sor with a (d - n)-index antisymmetric tensor. 

The 50(8) case (see Appendix) 

As is well known SO(8) contains SO(7) locally in two 
distinct ways. Here we are interested in the 80(7) embed
ding, where SO(8) contains the covering group ofSO(7). The 
eight-dimensional vector ofSO(8) is the spinor repesentation 
ofSo(7). Moreover the decompositions are as follows (2.9): 

A 8~8, (2.15a) 

Ta 35~35, (2.15b) 

Ts 35~1 + 7 + 27 , 

F 28~7 + 21. 

We see that the self-dual part of T (2.15c), 

(2.15c) 

(2.15d) 

Tl'vpu = -A El'vpuafJrti TafJr/j (2.16) 

contains a singlet. This T has 80(7) as stability group. There 
are two orbits for F, one seven dimensional, the other 21 
dimensional (strata are obtained by simple scale multiplica
tion) with two corresponding eigenvalues of (2. 5), namely A 
and Azi' Since the trace of the T matrix is zero (2.6) 

7,.1,7 + 21A21 = 0, (2.17) 

which shows that 

,.1,7= - 3 

and 
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(2.18) 

,.1,21 = 1 

by suitably normalizing T. 

3. LINEAR DIFFERENTIAL EQUATIONS. 
INTEGRABILITY CONDITIONS 

Let us now show how to obtain, in general, first-order 
gauge-invariant conditions whose integrability conditions 
are the generalized self-dual relations. Consider G I'V a gen
eral antisymmetric tensor spanning the space of all the eigen
values of(2.5) except one, say A. The linear differential equa
tions for G 

DI'Gl'v=O (3.1) 

imply, as integrability condition for all G, that Fbelongs to 
the space corresponding to the eigenvalue A of (2.5). Indeed 
(3.1) imply 

DvDI' GI'V = VVI' G/,v = O. (3.2) 

Making the gauge indices more explicit, (3.2) is equivalent to 

(3.3) 

where the A 's are the generators of the gauge group for the 
representation acting on G. Multiplying (3.3) by an arbitrary 
vector c and defining 

a_al a GfJ 
P/,v - C /L afJ I'V' (3.4) 

one sees that, when Gandcvary arbitrarily,p ranges over the 
adjoint representation. Since F has to be orthogonal to the 
space spanned by p, 

F;v P;v = 0, (3.5) 

it has to belong, for every a, to the space of the missing eigen
valueA. 

Equations (3.2) are the integration conditions of (3.1). 
Let us apply this first to the four-dimensional case and 

defer the eight-dimensional case to the next section. Let 

(3.6) 

where'T/;v (a = 1,2,3) are the self-dual (and 'T/';v the anti-self
dual) projectors. 

'T/;v = EOa/,v + oo/,oav - oovoa/' ' 

'T/';v = EOa/,v - (oo/,oav - oovoa/')' 

They satisfy, see (2.14) 

T/,vpu'T/;u = 'T/;v , 

T/,vpu'T/';", = - 'T/';v , 

'T/'~v'T/~v = 0, 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

i.e., 1/ belongs to the (3.1) space and 'T/' to the (1.3) space. The 
linear gauge-invariant differential Eqs. (3.1) with (3.6) imply 

Fp.v 'T/~vg> = 0 (or Fp.v'T/';vg,a = 0) , (3.12) 

which shows in virtue of (3.10) that F is of the form 

Fp.v = 'T/';vFa (or Fp.v = 'T/;vFa) . (3.13) 

In this simple case since the space (3.1) [or (1,3)] can be 
spanned by squaring the two-dimensional spinors (2,1) [or 
(1,2)] 

(2,I)X(2,1) = (1,1) + (3,1) (3.14) 
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and taking the symmetric part. One can write the 2 X 2 ma
trix 

D = Do + iuaDa 

and take as differential equation2 

DI[/ = 0 (or Dt 1[/' = 0), 

(3.15) 

(3.16) 

where the spinor 1[/ (or 1[/') has to be taken of the form 

1[/ = X (x)II (3.17) 

proportional to a constant but arbitrary spinor II. The con
nection with our general approach is obtained by consider
ing the 2 X 2 matrices 

G = l[/*ff(iu2 ) (3.18) 

(and analogously for G') which span the (3, 1) space [or (1,3)]. 
We also see here the requirement of constant II since (3.16) 
then implies 

DG = 0 (or Dt G' = 0) (3.19) 

the same equation as (3.1) with (3.6), except for notation. 

~ 

4. LINEAR EQUATION IN THE 50(8) CASE. 50(7) 
EMBEDDING 

Since the eight-dimensional case has very important 
properties we now present it with more details. 

We first present the general case using the results and 
notation of Appendix A, for theA ~v andM~~ (A,B = 1, ... ,7; 
/-L,V = 1, ... ,8) 7- and 21-dimensional solutions of the secular 
equations. 

The linear differential equations can be written 

(Case I) DJ.lA ~v I[/A = 0 , (4.1) 

(Case II) DJ.lM~~I[/AB = O. (4.2) 

In the first case !pA span the seven-dimensional (eigenvalue 
- 3) space and in the second case !pAB = - I[/BA the 21-

dimensional (eigenvalue + 1) space. In the first case (4.1) 
implies 

(Case I) FJ.lv = M~~FAB, 
while in the second case (4.2) implies 

(Case II) FJ.lv = A ~vFA 

(4.3) 

(4.4) 

so that Fis restricted to belong to the 21- (first case) or 7-
dimensional space (second case). Equations (A.l)-(A.12) of 
the Appendix justify these results. 

5. CONCLUSIONS 

In this paper we have shown the relevance of the stabil
ity groups of the TJ.lvpO' tensor which generalizes the four
dimensional EJ.lvW' and of the decomposition into orbits and 
strata of the spaces of antisymmetric tensors with two and 
four indices for the discussion of the generalized self-dual 
relations for the gauge fields in dimensions greater than four. 

These general results have been made more explicit 
when d = 8 and when Tis stable under an 80(7) subgroup of 
SO(8), a particularly interesting case. 
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We have also shown how to obtain, in general, the self
duality relations as integration conditions for first-order 
gauge-invariant linear-differential equations, giving again 
the d = 8 case explicitly. 

These results will be used in a subsequent article3 to 
obtain spherically symmetric solutions for eight-dimension
al gauge theories. 
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APPENDIX: 50(7) EMBEDDING IN 50(8) 

In our first paper we have shown that the 80(7) embed
ding in SO(8) leads to the set of seven democratic equations 

FSI + Fn + F45 + F36 = 0, (AI) 

FS2 + FI7 + F35 + F 64 = 0 , (A2) 

F83 + F74 + F52 + F61 = 0, (A3) 

F84 + F37 + F51 + F26 = 0 , (A4) 

F85 + F76 + F14 + F23 = 0 , (A5) 

FS6 + F57 + FI3 + F42 = 0 , (A6) 

FS7 + F65 + F43 + F21 = O. (A7) 

Corresponding to these seven equations it is convenient to 
define the seven (antisymmetric) 8 X 8 A ~v matrices 
(A = 1, ... 7;/-L,v = 1, ... ,8). [A ~v has elements + 1 only for the 
indices appearing in Eqs. (A1)-(A7), - 1 by antisymmetry 
and 0 everywhere else]. These A ~v are~e Clebsch-Gordan 
coefficients of the 8 X 8-7 product in SO(7). Define then the 
21 matrices (MAB = - MBA; A,B = 1, ... ,7) 

M AB - !(A A A B A B A A ) 
J.lV - - 4 J.lC7 av - }.leY av' (A8) 

generators of the 80(7) transformations 

[MAB,MCD] = {jBCM AD + {jADMBC _ {jACMBD _ {jBDMAC 

(A9) 

and also Clebsch-Gordan coefficients of 8 X 8_21. 
They satisfy the properties 

A ~vA!v = 8{jAB, 

MABMcD = 4({jAC{jBD _ {jAD{jBC) 
p.v J.1-v , 

A~vM!; =0, 

TJ.lvpO' A :0' = - 3A ~v , 

T MAB MAB 
J.lvpu pu = J.lV· 

(AlO) 

(All) 

(A12) 

(AI3) 

(A14) 

'E. Corrigan, C. Devchand, D. B. Fairlie, and J. Nuyts, "First order equa
tions for gauge fields in spaces of dimensions greater than four," Nucl. 
Phys. B 214, 452 (1983). 

2A. Belavin and V. Zakharov, Phys. Lett. B 73,53 (1978). 
3D. B. Fairlie and J. Nuyts, "Spherically symmetric solutions for gauge 
fields in eight dimensions" (to be published). 
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A formula is presented to generate expansions over U(N) characters. The procedure to obtain the 
corresponding U(N 1M) character expansions is also described. Several examples are worked out 
in both cases. 
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I. INTRODUCTION 

Character expansion techniques have been widely uti
lized in both particle and nuclear physics. In the context of 
particle physics, they have been used to evaluate certain 
U(N) group integrals l

,2 appearing in lattice gauge theories 
and the lattice version of the U(N) X U(N) sigma model, to 
investigate the role of internal symmetries in proton-anti
proton annihilation, 3 to study phase transitions in hadronic 
matter with internal symmetries,4 and to impose the color
lessness condition in the calculation of a quark-gluon gas,S 
In the context of nuclear physics they have been used to 
calculate the partition function 6 associated with a unitary 
ensemble 7 of random scattering matrices in a statistical the
ory of nuclear reactions, and to calculate the density oflevels 
of a spherical nucleus as a function of angular momentum. 8 

The purpose of this paper is to present a formula for the 
expansion of a product of arbitrary functions of the eigenval
ues of the fundamental representation matrix of the U(N) 
group in terms of its characters, and to obtain a similar result 
for the U(N 1M) supergroup. Previous results 1,2,6 are shown 
to be special cases of the present general formulas. 

In Sec. II the main result for the U(N) case is described. 
A number of examples for this case, which are potentially 
useful in physical applications, are explicitly worked out in 
Sec. III. 

In Sec. IV, we investigate how similar results can be 
obtained for expansion in terms ofU(N 1M) supergroup char
acters and give some examples. Finally Sec. V contains a 
brief discussion of the results. 

II. U(N) CHARACTER EXPANSION 

In the rest of this paper the notation det (A ij ) denotes the 
determinant of the matrix whose ijth element isAij' The re
presentations of the group U(N) are labeled by a partition 
into Nparts: (n l ,n2, .•• ,nN ), where n l ;;m2 > ... >nN >0 (see Ref. 
9). The character of the irreducible representation corre
sponding to the partition (n l ,n2 , ••• ,nN ) is given by Weyl's for
mula 10 

det(t7 j +N- j) 
Xln"n, ... ,n,I(U) = A ( ) , 

~ tl, .. ·,tN 
(2.1) 

where tj>i = 1, ... ,N, are the eigenvalues of the group element 
U in the fundamental representation, and L1 (t l,t2,· •• ,t N) is the 
Vandermonde determinant in the arguments tl, ... ,tN: 

L1 (t l,t2, ••• ,tN) = det(t[-i). (2.2) 

Equation (2.1) can be written as 

(2.3) 

where hn is the complete homogeneous symmetric function 
in the arguments tl, ... ,tN of degree n. One can write hn in 
terms of the group element U as II 

h =_I_,C ~ 1 (2.4) 
n 21Ti Yc zn+ I det( 1 - zU)' 

where C is a contour around the origin in the complex plane. 
Let us consider the following power series expansion: 

'" 
G(x,t) = I An(x) tn, (2.5) 

n=O 

where An = 0 when n < 0, and Ao = 1, and the series (2.5) is 
convergent for 1 t 1 = 1. Except for these restrictions the func
tion G (x,t ) is completely arbitrary. Next, given N different 
t 's:t 1,f2, ... ,t N, we calculate the expression 

L1 (tl, ... ,tN{IIIG(X,ti)) 

= [XIICtoAm(x)t;n)] det (t[-k) (2.6) 

= det[I; (tj )1, 

where the functions}; (t) are defined to be 
00 

};(t) I Am(x)tm+h- i. (2.7) 
rn = 0 

Using the restriction stated above, one can rewrite Eq. (2.7) 
as 

oc 

};(t)= IAk_N+i(X)t k
• (2.8) 

Using Eq. (2.8) and by manipulating the properties of deter
minants, one can calculate l2 

det[l;(tj )1 = I {det [An,+i_j(x)]}[det(t/)]. 
Ij>12>···>ln>O 

(2.9) 

Defining ni =li + i - N, the sum above can be rewritten as 

det[l;(tj)1 = I {det [An, + i _ j(x)]} 
n l >n2>···>NN>O 

(2.10) 

Finally putting together Eqs. (2.6) and (2.10) one obtains 

CUIG(X,ti )) = n,>n2;.,'~:>nv>o [det (An,+i-j)] 

( 
det( t n, + N - j) ) 

X L1 (t;, ... ,t
N

) • 
(2.11) 
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Equation (2.11) is valid for any set of ti 'so Taking 
ti,i = 1, ... ,N, to be the eigenvalues of the fundamental repre
sentation matrix U ofU(N), and using Weyl's formula, Eq. 
(2.1), we get the following character expansion: 

(2.12) 

Note that the summation is over all irreducible representa
tions ofU(N). 

III. EXAMPLES FOR U(N) CHARACTER EXPANSIONS 

In the previous section, the generating function G (x,t ) 
was taken to be very general, only subject to certain restric
tions. We not specify the form of G (x,t ) to obtain particular 
character expansions. Obviously the applicability of Eq. 
(2.12) is not limited to these examples. In this section r de
notes any representation (n l,n2, ... ,nN ) ofU(N). 

A. Example 1 

Let G (x,t) = exp(xt). Then An = xn In! for n;;.O and 
An = 0 for n < O. Using the fact that the matrix U can always 
be diagonalized by a unitary transformation, Eq. (2.12) 
yields 

where 

ar(X)=det( x
nj

+.
i

-

j

• )=xn,+n2 + .. +n N 

(nj + l - J)! 

nl! (n2 - I)! (n3 - 2)! 

1 1 

X (nl + I)! n2! (n3 - I)! 

1 1 

(nl +2)! (n2 + I)! n3! 

(3.1a) 

(3.1b) 

The same results have been obtained in Refs. 1,2, and 6 by 
explicit integration over the group manifold. Our result fol
lows from Eq. (2.12) immediately. 

B. Example 2 

Let G (x,t ) be the generating function for the Hermite 
polynomials 13: 

(3.2) 

ThenA n = [Hn(x)ln!] for n;;.O andAn =Oforn<O.Equa
tion (2.12) gives 

(3.3a) 

where 

2029 J. Math. Phys., Vol. 25, No.6, June 1984 

[Hn, (x)lnl!] [Hn, _ dx)l(n2 - I)!] 

[Hn, + dx)/(n l + I)!] [Hn,(x)ln2!] 

[Hn, + 2 (x)/(n l + 2)!] [Hn2+ dx)l(n z + I)!] 

(3.3b) 

IV. U(N/M) CHARACTER EXPANSION 

The representation theory of the unitary supergroup 
U(N IM)hasrecentlybeeninvestigatedbymanyauthors. II .14 

In this paper we need only class I representations construct
ed from covariant bases. We denote a particular covariant 
class I representation ofU(N 1M) by (n l,n2, ... ), where ni is the 
number of boxes in the ith row of the corresponding super
tableau. 11 The character of this representation is given by II 

Xln,.n, .... ) = det(lt, + i _ j)' (4.1) 

where Ii n' the graded homogenous symmetric function of 
order n, can be written in terms of the group element ~ in 
the fundamental representation as ll 

Ii(~)=_l_,[~ 1 
n 2rri Jc zn + I Sdet(l - z~)' 

(4.2) 

with C being a contour around the origin. Note that Eqs. 
(4.1) and (4.2) are formally identical to Eqs. (2.3) and (2.4), 
except that the determinants (and traces) are replaced by 
superdeterminants (and supertraces). 

We now go back to the U(N) case. Let us, for example, 
consider the character expansion given in Eq. (3.1). Instead 
of expanding in terms of characters, we can first expand 
exp(x Tr U) in terms of powers ofTr U, and then calculate 
(Tr u)n in terms of characters, using the fact that X(1.o ... ) 
= Tr U and Eq. (2.3). Because the expansion (3.1) is linear in 

characters, the powers ofTr U should also be expressed as a 
linear combination of characters. Furthermore, since the ir
reducible characters of U(N) are linearly independent, such 
an expression is unique, and the final result is the same as Eq. 
(3.1). For illustration, a list of some lower powers ofTr U is 
given in Table I. As one can also see from this table, the term 
(Tr U)" contains only the characters of the representations 
corresponding to Young tableaux with n boxes, and conver
sely those characters are the only ones included in the expan
sion of Tr( u)n . 

Suppose we want to expand exp(x Str ~) in terms of the 
characters of the supergroup U(N 1M), Str ~ being the su
pertrace of the fundamental representation matrix ~. We 
again first expand exp(x Str ~), in terms of powers ofStr ~, 
and then calculate (Str ~)n in terms of characters of the 
supergroup, usingthefactthatXII.o ... ) = Str ~ andEq. (4.1). 
The expressions we get for the powers of Str ~ are formally 
identical to those in Table I, except that the covariant char
acters of U(N IM)o 1) are substituted for the characters of 
U(N). One can then write the expansion 

exp(x Str ~) = I as(x)xs(~)· (4.3a) 

where as (x) is the same as Eq. (3.1b): 
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TABLE I. A list of some lower powers of Tr U as a linear combination of 
characters. 

Tr U = XII.O.O .. ) 

Tr U' = X 12.0.0 .... ) + XII.I.U .... ) 

TrU 3
=x).l.0.0 ... ) +X12.I.a ... ) +X)I.I.I.O. ) 

Tr U
4 

= X)'.a.o. ) + 3(x).l.I.a ... ) + XI2.1.1.0.)) 

+ 2X,2.2.0., + X)l.I.I.I.a .... ) 

as(x) = X n
, + n, +'det [l/(nj + i - j)!]. (4.3b) 

In these formulas s denotes any representation (n 1,n2, ... ) of 
U(N 1M) constructed from covariant bases only and the sum 
is over only such representations: contravariant and mixed 
representations do not enter. 

Starting from Eq. (3.3), similar arguments lead to the 
expansion 

exp(2x Str ~ - Str ~2) = I/Js(x)Xs(~), (4.4a) 

where 

/Js(x) = det [Hn, + i ~ j(x)/(nj + i - j)!]. (4.4b) 

The procedure to obtain expansions over the super
group U(N 1M) characters is now straightforward. One first 
writes down the corresponding expression for the U(N) case 
using Eq. (2.12). Such an expression should be expressed in 
terms of the invariants (traces, determinants, characters) of 
the U(N) group. To obtain the associated expression for the 
supergroup, one then simply replaces them by the invariants 
(supertraces, superdeterminants, characters) ofthe U(N 1M) 
and limits the summation only to the covariant characters. 
This result follows from the fact that Eq. (2.12) is essentially 
a combinatorial relation. 

V. CONCLUSION 

We have presented a formula to generate expansions 
over U(N) characters and described a procedure to obtain the 
corresponding U(N 1M) supercharacter expansions starting 
from those ofU(N). We have also worked out some examples 
for both cases. The coefficient of the character of a particular 
representation is the determinant of a given matrix, the di
mension of which is equal to number of the rows in the corre
sponding (super)tableau. These coefficients cannot, in gen
eral, be put into a simpler form. Hence, in practice, our 
expansions might be difficult to use if one is interested in the 
coefficients of the characters corresponding to larger tab
leaux. 

In studying systems with a particular symmetry one 
sometimes needs to calculate a specific quantity which trans
forms like a given representation of the symmetry group. 
However, in general, it is much easier first to compute the 
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quantities which are invariant under this group, expand 
them in terms of the characters, and then project out the 
desired component. Our formulas are potentially very useful 
for such applications. In addition, with suitable choices of 
the functions G (x,! ) and the group element U, one can write 
down new generating functions for other invariants such as 
dimensions and eigenvalues of Casimir operators. Further
more, character expansions can be used to obtain various 
combinatorial identities. 

The expansions in terms ofU(N 1M) characters we con
sidered in this paper include only covariant characters. It 
would be interesting to have expansions containing char
acters of contravariant and mixed representations as well. 
Work along this direction is in progress. 
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INTRODUCTION 

I. Recently a development of the supersymmetric the
ories in dimensions higher than four has increased an inter
est of physicists in algebraic properties of spinors I and in 
supersymmetrization of quaternionic groups. 2 In all these 
considerations the Clifford algebras are looked upon from 
"r-matrices point of view." Such a treatment is based on 
Witt's decomposition, which gives a complex representation 
of r matrices only. The properties of these matrices as well 
as an eventual quaternionic structure are looked for among 
isomorphisms of real forms of the complex Lie algebras. This 
forces frequently separate considerations for each pseu
doorthogonal metric. 

2. One of the aims of the presented note is to derive, in a 
canonical way, the results of above papers and to compare 
them with Kac's classification of the Lie superalgebras? 

3. Most of the information on '?J (p,q) Clifford algebra 
representations is taken from Ref. 4, and this is the content of 
the first section. 

4. In the second section the main goal of the paper is 
achieved: the extended Lie superalgebras aN(p,q) are con
structed in a canonical way and natural conditions for the 
construction to be realized are found. The role played by 
spinors in extended superalgebras is made evident by the 
construction. Tabularized results are the form of comparing 
the method with what is already known about the subject. 
The construction is, at the same time, the way to understand 
the role of spinors in algebraic problems of supersymmetric 
theories in any dimension. 

I. SOME PRELIMINARY INFORMATION ON '6'(p,q) 
CLIFFORD ALGEBRAS REPRESENTATIONS4-6 

1. Let E (p,q) be n = (p + q)-dimensional, real vector 
space with the nondegenerate quadratic form: 

E (p,q)3v-Q (v): = v~ + ... + v; - v;+ I - ••• - v;+qeR, 

and let '6' (p,q) denote its universal Clifford algebra with 
'6' + (p,q) being an even subalgebra of '?J (p,q). Due to univer
sality of '6' (p,q) an orthogonal transformation 

E (p,q) 3 v- - vEE (p,q) 

is uniquely extended to an automorphism inducing a Z2 gra
dation of '?J (p,q) = '?J + (p,q) ff! '?J -(p,q): 

'?J ± (p,q) 3 c----+a(c) = ± CE'?J ± (p,q) 

and a map 

Pin(p,q) 3S-+1Ts EO(P,q), 

where 

E(P,q)3v-'1Ts(v): = sva(s-I)EE(P,q) 

provides us with corresponding twofold coverings of O(p,q) 
and SO(p,q) groups, i.e., the sequences 

1T 

I-Z2_Pin(p,q)- O(p,q)_1 

1T 

I_Z2-Spin(p,q)- SO(p,q)-1 

are exact. 
The space of the fundamental representation ofPin(p,q) 

[or Spin (p,q)] group is then that of irreducible representation 
of '?J(p,q) [or '?J + (p,q)] algebra. Hence the construction of 
representation of twofold covering of O(p,q) [or SO(p,q)] 
group is achieved with the representation of '?J(p,q) [or 
'?J + (p,q)] algebra being given. For that purpose it is enough 
to consider '?J (p,q) Clifford algebras only as 

'?J+(p,q)-'?J(p,q - 1), q;;.l, 

'?J (p,q) - '?J + (q,p), 

'?J +(p,0)- '?J +(O,p), 

and, of course, not all signatures need to be taken into ac
count as 

'?J(p,q)-'?J(p - 4,q + 4), p;;.4. 

This isomorphism respects the Z2 gradation of Clifford alge
bras. '?J(p,q) algebras are simple iffp - q=j= 1 (mod 4); other
wise, they are the direct sums of two two-sided ideals 

'?J(p,q) = '?J(p,q)MI + J) ff! '?J(p,qH(1 - J), 

whereJ = E1 .. ·En and IE; H is the canonical "(p,q)-orthon
ormal" basis of E(p,q)C '?J(p,q). 

We know from Wedderburn's theorem7 that any semi
simple algebra with unity is isomorphic to the algebra of 
endomorphisms of an uniquely determined module over 
F = R,C, or H (quaternions). The representation module is 
an one-sided ideal of the algebra (we choose it to be left one). 
Clearly, an irreducible representation is obtained iff the ideal 
is minimal, i.e., iff it is generated by a primitive idempotent 
e(p,q)8.4 [(AI)], 

Y(p,q): = '?J(p,q)e(p,q). 

This left-sided ideal '?J (p,q) is a right module over the associ
ative division ring F(p,q): = e(p,q)'?J(p,q)e(p,q) according to 

Y(p,q)XF(p,q)3( if!J)-if!jEY(P,q). 

The modules Y(p,q) and Yf(p,q) (defined below) are called 

2031 J. Math. Phys. 25 (6), June 1984 0022-2488/84/062031·06$02.50 © 1984 American Institute of Physics 2031 



                                                                                                                                    

TABLE I. C(p, q). 

p -q(mod 8) 0 2 3 4 5 6 7 
p+q 

(mod 2) 0 R(2n) R(2n) Hln) H(n) 
1 2R 12n) C(2n) 2Hln) C(2n) 

with n = 21[1 p+ q)/2]- I 

pinor modules whence their elements-pinors. 
The irreducible representation 7" of Cff (p,q) algebra is 

now given by 

Cff (p,q):3 c-+7"cEEnd(Y(p,q)), 
(1.1.1 ) 

Y(p,q):3f/!-+7"c( t/J): = ct/JEY(p,q), 

and 7" is faithful iff p - q =/= 1 (mod 4) while for p - q = 1 
(mod4)ker7" = Cff(p,ql!(l +J)orCff(p,q)!(1-J).lnthissec
ond case a faithful but reducible representation of Cff (p,q) is 
defined by endomorphisms of the direct sum 

yf(P,q): = Cff (p,q)e(p,q) Gl Cff (p,q)a(e(p,q)) 

Y(p,q) Gl a(Y(p,q)) 

of a conjugate ideals. 
2. A representation of Pin (p,q) is induced by that of 

Cff(p,q), namely, 
Pin(p,q) :3s-+7sE Aut(Y(P,q)), 

Y(p,q):3t/J-+7s ( t/J): = st/JEY(p,q). 

One readily sees that 

ker7- {
I, p-q=/=l (mod 4), 

Z2' p - q = 1 (mod 4). 

In the case of Cff (p,q) being not simple (7 not faithful), one can 
introduce faithful (though reducible) representation induced 
on yf(p,q). 

3. We now proceed to construct a representation of 
Spin(p,q) on the space of representation of Cff (p,q - 1) using 
an isomorphism 

h:Cff +(p,q)-+Cff(p,q - I), 

which is explicitly given in (A2). The irreducible representa
tion 

7":Cff(p,q - l)-+End(Y(p,q - 1)) 

induces a representation 7 of Spin(p,q) group in 
Aut(Y(P,q - 1)): 

Spin(p,q) :3s-+7s EAut(Y(p,q - 1)), 

Y(p,q - l):3t/J-+7s ( t/J): = h (s)t/JEY(P,q - 1), 

7 being also irreducible. 
Note: The case of q = 0 could also be included due to the 

isomorphism Spin(p,O)-Spin(O,p). 
With the irreducible representation 7 of Spin(p,q) being 

now given, one finds for its kernel, depending on (p,q) signa
ture, the following: 

2032 

{

I, 
_ USp(2), 

ker 7" - Sp(2,R), 

Z2' 

p - q=/=O (mod 4) 

(p - q) = (0,4),(4,0) 

(p,q) = (2,2) 

otherwise. 
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Note: The kernels for p + q = 4 are "that big" as a con
sequence of self-duality of Cff (2)(p,q) subspace of bivectors 
which generate the Lie algebra ofSO(p,q) (this only happens 
for p + q = 4). The Lie algebras ofker 7 are generated by 
either self-dual or anti-self-dual bivectors. 

The faithful representation ofSpin(p,q),p - q = 0 (mod 
4), is that induced by the faithful representation of 
CCJ(p,q - 1) with the representation module yf(p,q - 1). 
The modules of irreducible representations of spin groups 
are called spinor modules, whence their elements-spinors. 

Note: In the important case ofSpin(4,O), the two compo
nent quaternionic spinor decomposes into a sum of chiral 
and antichiral parts, both carrying the representation of 
USp(2) group. This is, however, not true for four-dimension
al Euclidean pinors as the S (4,0) pinor space does not decom
pose into two chiral subspaces because of noncommutativity 
of chiral projectors with reflections. 

4. Matrix representations of C (p,q) are provided by Ta
ble 1,4.5 which we include for completeness. 

5. Let /3 ± denote the antiautomorphisms of Cff (p,q) 
uniquely extended, due to universality, from E (p,q), where 
they are defined by 

E (p,q):3 v-+/3 ± (v): = ± vEE (p,q). 

In the following we are going to use these canonical antiauto
morphisms /3 ( /3 + ) for a construction of F (p,q) valued se
milinear forms on Y(p,q) as well as spinor conjugations, i.e., 
certain transformations of Y(p,q) module onto Y(P,q)R 
module (right ideal).4.5 The construction relies on the exis
tence of an invertible element ill ± ECff (p,q), satisfying 

ill ± /3 ± (e(p,q))ill:;: 1 = e(p,q). (1.5.1) 

If Cff (p,q) is simple, then ill ± 's always exist and could be 
found among canonical basis elements. In this case we have 
then transformations 

Y(p,q):3 t/J-+t/JI ±): = ill ± /3 ± ( t/J)EYI ± )(P,q), (1.5.2) 

transforming the left ideal into the right one [(s)pinor conju
gations]. The transformations under consideration yield in
volutive anti-automorphisms of F(p,q): 

F(p,q):3j-+aJ±/3± (f)ill:;:l = jl±)EF(P,q) (1.5.3) 

and the maps e ± 

Y(p,q) X Y(p,q):3( t/J,t/J')-+e± (t/J,t/J'): = t/JI±)t/J'EF(P,q), 

define two (different in general) semilinear forms. 
6. Consider now the case of Cff (p,q) being not simple. Let 

P ± be central projectors onto respective two-sided ideals of 
Cff (p,q), i.e., 

P ± = ~(1 ±J); 

there exists such /3 's (either /3+ or /3 _) that 
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{3(P ±) =P ± 

and for the second antiautomorphism, which is a 0 {3, we have 

(ao{3)(P ±) =P+. 

For the {3 anti-automorphism there exists wE'1ff (p,q) satisfy
ing (I. 5.1) so that one can extend the spin or conjugation onto 
yf(p,q) according to 

Yf(p,q)3t/J->-w{3(P +t/I + P -t/l) 

= w{3(P +t/I)P + + w{3(P -t/lJP _Eyf(p,q)R' 

The above conjugation respects the direct sum structure of 
Yf(p,q), and the form on yfis the sum of the corresponding 
forms on subspaces of Yt. For a 0 {3, the spinor conjugation 

yf(p,q)3t/1-+(J}(a o{3)(P -t/l)P + 

+ w(a o{3)(P +t/I)P _Eyf(p,q)R 

is no more Zz-graded transformation. Nevertheless, a semi
linear form on yf(p,q) may be also introduced. 

7. Consider now the e ± form preserving groups 

G ± (p,q) = IgE'1ff *(p,q);e ± ( t/I,t/I') = e ± (gt/l,gt/l') I, 

where '1ff * (p,q) denotes the group of all invertible elements 
from '1ff (p,q). These groups are described in Refs. 4 and 5. 
One can prove that G ± (p,q) groups are the only form-pre
serving groups (that is to say, "metric") which contain the 
connected component of identity of Spin(p,q) group; hence 
G + (p,q)nG _(p,q) group is the minimal "metric" one that 
does so. 

Note, also, that if we consider the image of the connect
ed component of identity of Spin(p,q) in the '1ff (p,q - 1) by 
the isomorphism h [(A2)], then it is contained only in 
G _ (p,q - 1) group. 

8. The forms e ± have the definite symmetry with re
spect to the field conjugations (1.5.3) 

(e ± ( t/I,t/I'))I ± 1= W ± {3 ± (w ± {3 ± (t/I)t/I')w ± I 
= e ± (t/I' ,t/I)/3 ± (w ± )w ± I 
= :e ± ( t/I',t/I)sgn(w ± ). 

In the cases of nontrivial (=1= identity) field conjugations it is 
always possible to redefine the (s)pinor conjugation (1.5.2) by 
composing it with the left multiplication by some nonzero 
F(p,q) element [imaginary in a senseof(1.5.3)], thus obtaining 
a form with the opposite symmetry. The groups G ± (p,q) 
remain unchanged. It is therefore natural and sufficient to 
consider only a class of conjugations yielding the e + forms 
with fixed symmetry. We choose the class generating anti
symmetric forms, and only this class will be used later on. 
This enables us to define the symbol 

{
-I, e ± is antisymmetric w.r.t. (1.5.3), 

E .-
± . - + 1, e ± is symmetric w.r.t. (1.5.3), 

which depend on the signature (p,q) only. Note that the value 
+ 1 is possible if field conjugation is trivial. 

9. Exactness of the representation (1.1.1) leads to the 
following decomposition of Clifford algebra: 

'1ff(p,q) = yf(p,q)yfl ± l(p,q) = Yf(p,q)F(p,q)yfl ± l(p,q), 

thus for arbitrary element we can write 

'1ff(p,q)3c = uacaf3u~±I, caf3EF(p,q), (1.9.1) 
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{Ua I and I U~± II are the bases of yf(p,q) and Yf( ± l(p,q), 
respectively; l,,;;a,{3,,;;dimFYf(p,q). On the other hand, 

'1ff(p,q)3c = z' E" 

with z'ER and I E, I being the canonical basis of '1ff (p,q). For 
z' as a function of spin tensor (1.9.1), one easily obtains 

z' = ( ~ ) Re(caf3E '-f3~) 
with m = dimFyf(p,q), and for spin tensor being simple, 
i.e., c = t/I¢ ( ± lone has 

(t/I¢ (± I)' = ( ~) Re[ e ± (¢,E ,-It/I)] = :z'( t/I,¢). 

(1.9.2) 

Note also that for simple spin tensor we have 

{3 ± (t/I¢ I ± I) = E ± ¢t/ll ± I 

in accordance with subsection 1.8. 

II. DERIVATION OF CANNONICAL LIE! 
SUPERALGEBRAS 

(1.9.3) 

Now we come over to the main subject of this paper; i.e., 
we are going to construct a class of Lie superalgebras can
nonically derived from E (p,q) and its Clifford algebra '1ff (p,q). 

Since now on y(p,q) denotes the module ofjaith/ul re
presentation. 

1. Consider a naturally Zz-graded vector space 

V = IF (p,q) fl) '1ff (P,qll fl) IY(P,q) fl) y( ± 1(P,qll = : Vo fl) VI' 

Vis not a Zz-graded algebra under Clifford algebra multipli
cation; however, it could be made to be so after vector space 
isomorphism identification of Vwith Y'1ff(p,q), which is the 
algebra of 2 X 2 matrices with Clifford algebra entries and of 
the form 

Y'1ff(p,q): = If + c + ¢(t/lI,t/lZ): 

=/18;]0 + c®Iz + t/ll ®II + t/I~±I®I3; 
/EF(p,q), cE'1ff(P,q), t/lIEY(p,q), 

t/I~±IEYI±I(p,q)j, (11.1.1) 

where 10 = (~g), II = (~g), 12 = (g~), 13 = (g~). The Zz grad
ing is provided by 

Y'1ff(p,q) = Y'1ff(OI(p,q) fl) Y'1ff III (P,q) 

: = I(F(p,q) ®Io) fl) ('1ff(p,q) ®Iz)1 

fl) I (Y(p,q) ®Id fl) (YI ± l(p,q) ®I3)1 

: = IF(p,q)fl) '1ff"(P,qll fl) IY"(P,q)fl),Y'I±I(P,qll 

=(F(P,q) yl ± l(p,q)). (11.1.2) 
Y(p,q) '1ff (p,q) 

Y'1ff (p,q) is an associative Zz-graded algebra over reals un
der straightforward multiplication of direct sums and tensor 
product of algebras. Note that in additioll. Y '1ff (1) (p,q) carries 
a linear structure over the division ring F (p,q) - F (p,q) with 
the multiplication "*" by scalars being defined according to 

Y'1ff(II(P,q)xF(P,q)3(¢JJ.-~¢*f = [¢.f1 EY '1ff(I) (p,q) . 
(11.1.3) 

Ihis m2dule structure cannot be extended to Y'1ff(p,q) as 
F(p,q)'1ff(p,q) = O. The Lie superalgebra associated with 
Y'1ff(p,q), Zz-graded algebra (i.e., algebra with 
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[a,b J = ab - ( - l)deglaldeglblba) 

! ¢(¢I,¢2),q/'(¢1>¢2)J = (¢l¢ ~± I + ¢l¢~± I( 

+ (¢ ~± I¢l + ifJ2± l¢d
A 

E{? fp,q) Ei) F fp,q), 
A A A 

[C'¢(¢I'¢2)] = (e¢l) - (¢~±le)EYCG'lllfp,q), 
A A A ( A 

[J,¢(¢1'¢2)] = - (¢J) + if¢2± I)EYCG'(llfp,q), 

[C,C'] = [e,e']~{?fp,q), 
A A AA 

[J,f'] = Lf ,j'] EFfp,qj, 

[c,f] = 0 

(II.1.4j 

is our starting point for the construction of Lie superalgebras 
whose even part contain SOfp,q) Lie algebras in a distin
guished way. For that purpose note 

! YCG'lllfp,qj,YCG'lllfp,q) J 

- YCG' (01 fp,qj 

{
gl(I,Fj Ei) gl(m;Fj 

- 2g1(I;F) Ei) 2g1(m!2;F) 
fp,qj# I (mod 4) 

fp,q) = I (mod 4), 
(II. 1.5) 

where m = dimF yffp,q) (Table Ij, and this is due to the fact 
that simple spin tensors generate CG' fp,qj algebra. Thus 
YCG'fp,qj-l(l;m,Fj or _21(I;m/2,Fj in the notation of Ref. 
3. In the canonical basis! EJ J of CG' fp,qj the explicit form of 
(II.I.5) anticommutation can readily be obtained to be 

AA AAA A AA 

! ¢,</J J = Z J (¢,</J jEJ + e ± (¢,</J ), (II. 1.6) 

where real coefficients ZJ of the right-hand side are bilinear 
A A 

functions of ¢ and </J according to (I.9.2), and 
A A A e ± (¢,</J) = ¢ k± I¢l + ¢k± I¢l' 

Note that (II. 1.4) induces adjoint representation of CG' *fp,q) 
group on the module YCG'lllfp,q) 

CG'1*)fp,q)3g-+AdgE Aut(YCG'lllfp,q)), 

where (II. 1. 7) 

YCG'(llfp,q)3¢-+Ad g¢: = g¢g-IEYCG'111 fp,q). 
2. Weare now in a position to define canonical way of 

finding some important subalgebras of Lie superalgebras 
YCG'fp,q). We are looking for superalgebras, the odd part of 
which is the minimal module offaithful representation of 
(S)Pinfp,q) group. We must then reduce the number of(s)pin
orial generators as this minimal module has to be isomorphic 
to Yfp,q). One can easily prove that the only admissible, and 
preserving exactness of the representation (I.2) projection, is 
generated by the involution 

YCG'(11 fp,q) 3¢{¢I'¢2)-+j{¢A,¢I,¢2)): = ¢(¢2,¢dEYCG' 111 fp,q), 
(II.2.1) 

which has only antiautomorphic extensionsl'xt onto a whole 
YCG'fp,q), namely, these generated by /3+ or /3- anti-auto
morphisms 

YCG'(p,q)3¢ + c + I~rt(¢ + c + I) 
= j(¢) + /3 ± (e) + II ± lEY CG' fp,q), 

(II.2.2) 

according to whether yl+1 or yl-1 module is chosen in 
(II.l.I). One can now decompose YCG' (II fp,q) onto a direct 
sum of two subspaces 
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(1I.2.3) 

The condition for (s)pinorial generator to be (anti-) self-con
jugate is the following: 

j(¢(¢I'¢2)) = ( - )¢(¢1'¢2)' 

which implies 

¢l = ( - )¢2 for ¢(¢I'¢2)EY(AISfp,q). 

(II.2.4) 

One~hecks easily that neither Y(Slfp,q) nor Y(Alfp,q) carries 
the F fp,q)-linear structure in sense of (II. 1.3 ). 

The structure of anticommutators of self-conjugate and 
anti-self-conjugate generators is the same; more precisely, if 

YCG'(113¢ =;;r + ~ 
is the decomposition (II.2.3), then 

A AS ...... A 

! ~,</J J = - ! ~,</JA J, 
and both kinds may be equally used for contraction pur

poses. Note also that ydlfp,q) subspaces are minimal mo
dules of exact representations of (S)Pinfp,q) groups as they 
are isomorphic to Yfp,q) due to (II.2.3). 

The contraction procedure is now obvious; we rescale 
all the anti-self-conjugate generators by a parameter AER: 

YCG'(llfp,q) 3¢_¢).: =;Ps + A~EYCG'lllfp,q)· 
After anticommuting and taking the ,,1,-+0 limit 

" A ....1.-----0{) " A 

I ¢). ,</J). J - ! ~,</J S J, 

we obtain a resulting Z2-graded vector space 

afp,q) = ys fp,q) Ei) ! ys fp,q),Ys fp,q) J, 
which is the Lie superalgebra iff 

r'(! ;;r, $ 5 j) = - !;;r, $ S J, 

(II.2.5) 

due to the fact that the above property is the only one consis
tent with Lie algebra structure [defined by commutator on 
the even part of (II.2.5); see also 1.8 and I.9)]. 

From (II. 1.5) and (I.9.3) one easily deduces that 

rtO ;;r,$S II = E ± {;;r,$S J (II.2.6) 

so the afp,q) space closes to the Lie superalgebra iff ~ + or ~_ 
(or both) = - 1. For this very case our ultimate goal is now 
achieved thanks to observation 

{ YIS Ifp,q),YIS Ifp,q) I = g ± (I ;F) Ei) g ± fp,q), (II.2.7) 

where g ± fp,q) is the Lie algebra of G ± fp,q) group (1.7) and 
g ± (I,F) is the Lie algebra generated by purely imaginary 
(with respect to 1.5.2) elements of the ring F fp,q). Moreexpli
citly, 

I ;;r,$ S J = (¢¢ (± 1 + ¢¢I ± I) .+ (¢I ± I¢ + ¢ (± I¢) 

with properties 

/3 ± (( ;;r, ~ 5 J 12) = ~ ± 1;PS, ~ 5 J Iz = - 1;PS, ~ S J 12' 
(11.2.8) 

"AS -1 ,.. AS 
W ± /3 ± 0 t/f,</J llo)w ± = - (¢S,</J J 10' 

[{ , J Ii] means restricted to the block spanned by Ii; 
(II. 1.1)]. For {;;r,$ S J, in terms of canonical basis elements 
EJ , we then have 

(;;r,~S J = ZJ(¢,¢)EJ + e ± (¢,¢) (II.2.8) 

Hasiewicz, Kwasniewski, and Morawiec 2034 



                                                                                                                                    

with only nonzero coefficients ZJ for E/s satisfying 

/3 ± (E J) = - E J 

-the defining property of g ± (p,q) Lie algebra generators. 
For the case ofE ± (11.2.5) equal to 1, the nontrivial reduction 
is impossible; if we want for a(II(P,q) to be invariant with 
respect to a(OI (p,q), we have to contract a(OI (p,q) to the com
mutative algebra, which reduces it to zero in finite-dimen
sional representation we are working with. All the contract
ed Lie superalgebras are listed in Table II with N = 1. 

For the contracted superalgebra a(p,q) to be invariant 
under adjoint representation (11.1.8), it is necessary to re
strict it to the subgroup G ± (p,q), and then it has the form 

a(II(p,q)3~_Adg(~): =g~g-l 
= g~/3 ± (g)Eg(li (p,q), 

gEG ± (p,q). (11.2.10) 

Note that in general G ± (p,q) groups do not contain whole 
Spin(p,q) group; however, they contain part ofreftections, 
and this makes different the pinor and spinor structures on 
the superalgebra level. a(p,q) algebras correspond to the so 
called simple (N = 1) supersymmetries for E (p,q) space
times. 

3. The superalgebras a(p,q) can be extended by unique 
enlargement oftheg ± (I,F) [11.2.7] tog ± (N,F) as we will 
see below. Let us consider N-dimensional right F(p,q), mod
ule V, and let V * be the left module, conjugate with respect to 
some semilinear form n. Introducing extended spinor mo
dules 

TABLE II.' 

0 7 6 5 

yN(P,q): = Y(p,q)® V*, 

yN( ± l(p,q): = V ® Y( ± l(p,q) 

with obvious multiplications 

(t/l ® v*)(w ® ¢ (± I): = t/l(v*w)¢ (± i: = t/ln (v,w)¢ (± I, 

(w®¢ (±I)(t/l® v*): = we ± (¢,t/l)V*EV® V* = End(V), 

one can construct yN'Tf(p,q) algebras, which generalize 
(11.1.1), and associated superalgebras, ending up with 

YN'Tf 0 (p,q)~ {gl(N,F) Ell gl(m,F) p - q=/-1 (mod 4) 
( I 2gl(N,F) EIl 2gl(!m,F) p - q = 1 (mod 4), 

with arbitrary N [m as in (1.1.5)]. 
The involution (11.2.1) has obvious generalization, and 

one can introduce self-conjugate spinorial generators, analo
gous to that of (11.2.3). The consistency condition for self
conjugate generators built up from simple tensors 

.... '\' A SA"'" S 
/3 ± ({ t/I (t/l,v),tJ> (¢,w) liz) = - ! tf' (t/l,v),tJ> (¢,v)j 12 

implies the "hermiticity" of n 

n (± I(V,W) = n (w,v) 

with respect to (1.5.2) and this in tum gives a~I(p,q)lo being 
isomorphic to the Lie algebra of the group preserving the 
form n. Note that "hermiticity" condition fixes only the 
Cartan class of the above Lie algebra. The aN (p,q) superalge
bras are listed in Table II. 

4 3 2 I d(mod 8) 
0 

fJ+ Ua U(NI2n;C) II Usp(NI2n;H)2 Usp(NI2n;H) Usp(NI2n;H) Ua U(NI2n;C) fJ- 0 

fJ+ II <:J. fJ- Usp(N 12n;R ) Usp(NI2n;C) Usp(N In,n;H) Ua U(NI2n;H) 
d(mod 8) 0 2 3 4 5 6 7 ~ 

0 
Ua U(NI2n;H) Ua U(NI2n;H) 
Ua U(NI2n;H) Ua U(NI2n;H) 

2Ua U(NI2n;H) 
Ua U(N In,n;C) UaU(Nln,n;C) 

2 Usp(N 12n;R) 
Usp(N 12n;R) Usp(Nln,n;H) Ua U(NI2n;H) 

00- Usp(N 12n;R ) Usp(N In,n;H) Usp(Nln,n;H) 

'8 3 
Ua U(N In,n;C) Ua U(N In,n;C) 

g 20sp(N 12n;R) Osp(NI2n;C) 2Usp(N In,n;H) Osp(NI2n;C) 
<:J. Osp(NI2n;R) Osp(N 12n;R ) Usp(Nln,n;H) Usp(N In,n;H) + 
~ 4 Osp(NI2n;R) Osp(N 12n;R) Usp(N In, n;H) Usp(N In,n; H) 
II 20sp(N 12n;R ) Osp(NI2n;C) 2Usp(N In,n;H) Osp(NI2n;C) 
~ 5 Ua U (N In,n;C) Ua U(Nln,n;C) 

6 Osp(N 12n;R ) Osp(N 12n;R ) Usp(Nln,n;H) Usp(N In,n;H) 
Ua(NI2n;H) Ua(NI2n;H) 

7 
Ua U(N In,n;C) UaU(Nln,n;C) 

2Ua U(N 12n;H) 

(p - q) (mod 8) 

• In Table II n = ! dimFS (p,q) and even parts are given by9 

Ua U(NI2n;F)lo= { U(N)elU(2n), F=C, 
Sp(N) $ SO*(4n), F=H, 

Osp(NI2n' Fllo = { So(N; C) $ Sp(2n; C), F= C, 
, SO(N; R )$Sp(2n; R), F= R, 

Ua(N In, n; C)lo = U(N) $ U(n, n), 

Usp(N In, n; H )10 = SpIN) $ SpIn, n). 
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III. FINAL REMARKS 

1. An application of our approach to aN (6.2) superalge
bra is now in preparation to and another interesting case, 
namely, that ofOSp(N,4) [a N (3.1)] is also being considered 
there. 

2. Note that no particular choice of matrix representa
tion of Clifford algebra generators was needed to obtaining 
the general commutation relations of the superalgebras con
sidered above. 
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APPENDIX 

1. Following Refs. 4-6 we write for the primitive idem
potent e(p,q) 

e(p,q): = II !(1 + EJ ), 

J 

where the product is extended over the maximal set of pair
wise commuting, unimodular elements from the canonical 
basis f EJ j of~(p,q) algebra. Note that these elements which 
are products of others can be excluded from the product as 
they do not contribute nontrivially the projector e(p,q). 

2. The explicit formula for the isomorphism 

h:Y;+(p,q)=::;.~(p,q - 1) 

2036 J. Math. Phys., Vol. 25, No.6, June 1984 

is the following: 

~+(p,q)3e+=::;.h (e+) 

: = !(e+ - Ene+ En) - !(e+ + Ene+ En)En 

= He+,EnjEn - He+,En]E'G'(P,q - 1), 

where the vector E nEE (p,q) satisfies E ~ = - 1 and 
~ (p,q - 1) is considered as the subalgebra of ~ (p,q). 
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All the irreducible SO(2) extended scalar superfields are obtained in SO(2)-invariant form. These 
superfields can be labelled by the eigenvalues of three Casimir operators of the enlarged algebra 
containing chiral transformation. They may be still more simply classified by introducing two 
invariant simple superspaces. Lagrangians and supersymmetry transformation rules are obtained 
from the explicit form of the irreducible superfields. The highest superspin multiplet is identified 
as the multiplet for the linearized SO(2) Weyl supergravity. The linearized SO(2) Poincare 
supergravity is obtained by coupling this multiplet with the chiral superfields. 

PACS numbers: 1l.30.Pb 

1. INTRODUCTION 

Supersymmetryl permits a unified description ofbo
sons and fermions, allows a nontrivial unification of space
time symmetry and internal symmetry, and is compatible 
with relativistic quantum field theory. Its extension to super
gravity is less divergent in perturbation expansion than any 
other gravitational theory, and it is hoped, therefore, that 
this approach might lead us towards a renormalizable or 
finite theory which unifies all the fundamental forces in na
ture including gravity. 

However, the structure of the supermultiplet is very 
complicated in general, and it is only completely known for 
N = 1 and partly known for N = 2. In addition to the phys
ical fields, supermultiplets contain nonpropagating auxil
iary fields which are needed to close the algebra off-shell. 
Closure of the algebra is essential to construct the tensor 
calculus, to get the Ward identities, and to quantize the the
ory in a manifest supersymmetric way. 2 The concept of su
perspace and superfield introduced by Salam and Strathdee3 

has turned out to be very useful to find the supermultiplet 
structures. Since the algebra is guaranteed to close in a su
perfield representation, one can automatically find the auxil
iary fields which are needed to close the algebra. However, 
the superfields provide a basis for representation of an en
larged algebra which includes covariant derivatives. So, it is 
expected that the representation of the supersymmetry alge
bra in terms of general superfields is reducible. Besides, the 
number of independent field components in a real general 
SO(N) superfield is 24N

, and this number increases very ra
pidly as N goes from 1 to 8. So, instead of working with 
general superfields, one must try to work with irreducible 
superfields. 

In order to extract the irreducible superfields from a 
general superfield, one has to find a complete set of Casimir 
operators and their projection operators. Using these projec
tion operators, one can decompose a general superfield into a 
sum of the irreducible superfields. This has been done for the 
N = I case by Sokachev.4 The method of obtaining the La-

a) Present address: Center for Relativity, Department of Physics, University 
of Texas, Austin, TX 78712. 

grangian for the N = 1 case is developed by Ogievetsky and 
Sokachev.5 Taylor6 extended their method to SO(2) and 
SO(4) extended supersymmetry and found all the projection 
operators. In this paper, we follow the same path but in an 
SO(2)-invariant way and find all the irreducible superfields 
in manifest SO(2)-invariant form. Lagrangians and super
symmetry transformation rules are obtained from these irre
ducible superfields. 

In Sec. 2, we introduce the SO(N) extended supersym
metry algebra without central charges and its superspace 
representation. The Casimir operators are found, and the 
superspin decomposition is carried out in Sec. 3. In Sec. 4, we 
obtain the projection operators of the irreducible scalar su
perfields for N = 1 and N = 2. The SO(2) superspace is de
composed into two invariant simple superspaces, and simpli
fied constraint equations for the irreducible superfields are 
found in Sec. 5. These superfields can be labelled by the 
eigenvalues of the three Casimir operators. In order to solve 
the constraint equations, we introduce a complete set of su
pertensors in Sec. 6. In Sec. 7, we obtain the explicit form of 
the irreducible superfields. It turns out that some of the su
perfields obtained from the constraint equations can be re
duced further, and this introduces supersymmetric gauge 
invariance. The Lagrangian and the supersymmetry trans
formation rules for each multiplet are obtained. The highest 
superspin multiplet is identified as the linearized SO(2) Weyl 
supergravity multiplet. 7 By coupling this multiplet with the 
SO(2) tensor gauge multiplet and the SO(2) vector gauge 
multiplet, we obtained the SO(2) Poincare supergravity7 in 
Sec. 8. Notational conventions are given in Appendix A, and 
some supertensor reduction formulas are listed in Appendix 
B. 

2. EXTENDED SUPERSYMMETRY ALGEBRA 

The supersymmetry algebra is a graded extension of the 
Poincare algebra. In addition to the generators of the Poin
care algebra (Pa ,Mab ), the SO(N) extended supersymmetry 
algebra contains Majorana spinor charges Qm, Qui and gen
erators for SO(N ) transformation T,. They satisfy the follow
ing graded Lie algebra. 8 

(Pa'Pb) = 0, 

(Mab,Pc) = i(1]bc Pa -1]acPb)' 
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(Mab,Mcd ) = i(1JbcM ad -1JacM bd 

+ 1JadM bc -1JbdM ac)' 

(QaoPa) = (QaoPa) = 0, 

(TI,Pa) = (TI,Mab ) = 0, 

(Qai,Qaj)+ = - 'Mijo-:;aPa, 

(QaoQPj)+ = 0, 

(Mab,Qai) = - i(o-ab)aPQPi' 

(Mab,Qai) = - iWab)apQPi, 

(Qai,TI) = (tl)ijQaj' 

(Qai,TI) = (tl)ijQaj' 

(TI,Tm) = iClmn Tn' 

(2.1) 

where (tl)ij is a Hermitian representation of TI and Clmn are 
the structure constants of SO(N). This algebra can be real
ized in superspace as 

Pa = iaa , 

Mab = i(xaab - xbaa) + 2ab 

+ i(o-ab)aPoaiapi + i(Uab)apeai"!J3, 

TI = (tl)ij(oaiaaj + eaiaai) + tl , 
Qai = aai + io-:;aeaiaa' 

Qai = aai - io-:;aoaiaa' 

(2.2) 

In addition to the generators of the SO(N) extended su
persymmetry algebra, superspace contains con variant de
rivatives which anticommute with the spinor charges. They 
satisfy a similar algebra among themselves: 

The representation of these operators in supers pace is 

Dai = aa - io-:;aeaiaa, 

DUi = aa + io-:;a0 aiaa . 

(2.3) 

(2.4) 
Due to these covariant derivatives, a general superfield 

satisfies an enlarged algebra which includes the covariant 
derivatives. So, it is expected that the representation of the 
supersymmetry algebra in terms of general superfields is re
ducible. In order to find the irreducible superfields, we will 
find Casimir operators of the algebra from which one can 
construct the projection operators for the irreducible super
fields in the next section. 

3. SUPERSPIN DECOMPOSITION 

The supersymmetry algebra has two Casimir operators 
p 2 and C 2 , where C 2 is square of the generalized Pauli-Lu
banski vector 

C 2 = cabCab , 

Cab = PaCb - PbCa, 

C - 1 Mbcp d lQi -Qi a - 2Eabcd - 4 o-a . 

So, all the irreducible superfields can be labelled by the 
eigenvalues of p 2 and C 2

• 

In the rest frame, one has 
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(3.1) 

(3.2) 

(3.3) 

Cij = 0, i,j = 1,2,3, 

COi = mCo (3.4) 
(Ci,Cj) = im~jkCk. 

Thus, C ilm satisfies the algebra of angular momentum in 
the rest frame, and the eigenvalue of the Casimir operators 
C 2 is 

(3.5) 

where Yis an integer or half-integer called superspin.4 

Now, choose an irreducible superfield <PJ with external 
spin J such that 

Dujr/>J = 0, 

C 2r/>J = - 2m2J(J + 1)<PJ. 
(3.6) 

From (3.1), (3.2), and (3.3), one has 

(C 2,Dai ) = 4p2pb(o-ab)aPDpica - ~P4Dai' (3.7) 

So 

C2Dai<PJ = 2m3Dp;(Ou)aP<PJ 

- 2m4 [J(J + 1) + i]Dair/>J. (3.8) 

Since C k 1m satisfies the SU(2) algebra in the rest frame and 
since the eigenstates of u,Clm are superspin J ± ! states, D ai 
raises or lowers the superspin of r/> J by!. So, with proper 
Clebsch-Gordan coefficients, one can combine Dli and D2i 
such that it is either the superspin raising operator Y i + or 
the superspin lowering operator yi_ . Since i goes from 1 to 
N, one can get superspin states Y = J - N 12, J - (N- 1 )/2, 
... , J + N 12 by applying Y i + and Y i_to <P J successively, if 
J>N 12. The multiplicity of the superspin J - (N - k)/2 
state is (~N). 

By using the projection operator for C 2
, one can sepa

rate all different superspin states but the states with the same 
supers pin cannot be distinguished. In order to separate the 
degenerate supers pin states, one has to introduce a new sym
metry transformation r (chiral) into the algebra. It satisfies 

(QaOr ) = Qui' 

(Qa;.r) = - Qui' 

(Daor ) = Dai' 

(DUi,r) = - Dao 

(anything else, r) = o. 

(3.9) 

This enlarged algebra has a new Casimir operator for N = 1: 

G _(PaI2p2)Do-aD - 1. (3.10) 

For N = 2, one finds two more Casimir operators. 

G=(Pa!2p 2)D io- aD i - 2, 

E=i~j(PaI2P2)Dio-aD j. 

(3.11) 

(3.12) 

By using the projection operators of all the Casimir op
erators, we will obtain the projection operators for the irre
ducible superfields in the next section. 

4. PROJECTION OPERATORS 

A. N = 1 supersymmetry 

The generators Mab for a scalar superfield are 
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Mab = XaPb - XbPa + i(uab )a'3(} aap 

+ i(Uab(x/37Jai}· 

Substituting (4.1) into (3.2), one obtains 

Cab = - !(PaDuJj - PbDu Jj). 

Using (2.3), one finds 

C 2 = - W4(I-S), 

where 

S= (l/16P2)(D21F +1)2D 2), 

(4.1) 

(4.2) 

(4.3) 

S2 =S. (4.4) 

Since S 2 = S, C 2 satisfies the eigenvalue equation 

C 2(C 2 + W4) = O. (4.5) 

The eigenstates of C 2 correspond to the superspin states as 

follows: 

y = 0 for C 2 = 0, 

y =! for C 2 = _ ~P4. (4.6) 

The superspin projection operators for these states are 

nr, =S, 

nr12 = I-S. (4.7) 

In order to split two superspin-O states, one needs the 
projection operator for G. The eigenvalue equation which G 
satisfies is 

All the projection operators can be expressed as linear com
binations of A, B, K, G, G 2, E, E, 2, EG, and EG 2. We present 
the multiplication tables of these operators in Table I. 

Now consider an SO(2) scalar superfield. The genera
torsMab are 

Mab =xaPb -xbPa +i(Uab)aP(}aiap; +i(Uab)a/37Jai i}i. 
(4.12) 

From (3.2), one has 

Cab = - !(PaD iubD i - PbD iuaD i). 

Using Table I, one obtains 

C 2 = p 4(2K _ !G 2 
- 4). 

It satisfies the eigenvalue equation 

C 4(C 2 + ~P4)(C2 + 4p 4) = O. 

(4.13) 

(4.14) 

(4.15) 

The eigenstates of C 2 correspond to the superspin states as 
follows: 

Y=O forC 2 =0, 

y =! for C 2 = - iP 4, 

y= I forC 2 = _4p4. 

(4.16) 

The projection operators for these superspin states are 

n Y - 1 K _ 3G 2 + 3 A o -:2 4 2'" 

nrl2 = G 2 
- 4A, 

nr=I-~-!G2+~. 

(4.17) 

G(G+ I)(G-l)=O. (4.8) The Casimir operator G satisfies the eigenvalue equation 

The projection operators are 

n~= I-S, 

G(G 2 
- 1)(G 2 - 4) = O. (4.18) 

So, the projection operators are 

n~l =~(S± G). (4.9) ng=I-G 2 +3A, 

Combining (4.7) and (4.9), one obtains the complete projec
tion operators for the irreducible scalar supecfields labelled 
by (Y,G): 

n{l12.0) = 1 - S, 

nIO.±l) =~(S±G). 

B. N = 2 supersymmetry 

(4.10) 

In order to get explicit expressions for the projection 
operators, we introduce the following three projection oper-
ators: 

A =(l/1024P4)((D iD i)2,(D jD j)2)+, 

B =(l/1024P4)((D iD i)2,(D fjj jj2)_, 

K =(l/16P2)(D iD jJj iD j)+. 

TABLE I. Multiplication table. 

A B K 

A A B 3A 
B A 3B 
K 2K + 6A _~G2 

G 
G 2 

E 
E2 
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(4.11) 

G 

2B 
2A 

~G+3B 

G' 

n ~ 1 = ± ~G + ~G 2 - 2A + B, 

n~2 =~(A ±B). 

(4.19) 

The Casimir operator E satisfies the same eigenvalue equa-
tion 

E(E2 - I)(E2 - 4) = 0, (4.20) 

and its projection operators are 

n~= 1-!E2-iG 2 +3A, 

n~l =~G2_2A ±~EG2, (4.21) 

n~2 = iE 2 
- kG2 + ~ ±!E +!EG 2

• 

Now, multiplying three projection operators for Y, G, 
and E, one can obtain the projection operator which singles 

4A 
4B 

~G2 + 6A 

G+6B 
G 2 + 12A 

E 

o 
o 

2E - ~EG2 

EG 
EG 2 

& 

o 
o 

2E2_~G2+2A 

G-2B 
G 2 -4A 

4E-3EG 2 

4E2 - 3G 2 + 12A 

Jaegu Kim 2039 



                                                                                                                                    

out the irreducible superfield labelled by (Y,G,E): 

JIly,G,E) =JIYJIGJIE. (4.22) 

Collecting all the non vanishing products, one has 

JIlo,o,ol = !(2K - 2G 2 - E 2 + 2A ), (4.23) 

JIlo,o, ± 2) = §(E 2 - G 2 + 4A ± 2E + 2EG 2), (4.24) 

JIlo, ± 2,0) = !(A ± B), (4.25) 

JI(l/2,1,± II = !(G 2 - G - 4A - 2B ± EG ± EG 2), 
(4.26) 

JII1I2,_I,± II = !(G 2 - G - 4A + 2B +EG ± EG 2), 
(4.27) 

(4,28) 

There are ten irreducible representations. Taylor6 has 
made a similar analysis and has also found that a scalar su
perfield can be split into ten irreducible representations. 

5. CONSTRAINT EQUATIONS 

Using the projection operators, one can obtain con
straint equations for the irreducible superfields: 

JI(/> = (/>. (5.1) 

However, the projection operators are very complicated in 
general, and it is not easy to solve (5.1). Instead of solving 
(5.1) directly, one can obtain simplified but equivalent equa
tions due to the algebraic properties of the projection opera
tors. 

A. N = 1 supersymmetry 

(I) (/>10.11: 

!(S + G )(/>10.1) = o. 
Since 

Du(S+ G) =0, 

one obtains from (5.2) 

Du(/>IO.I) =0. 

Conversely, since 

(D2,15 2) = 8PaDO'a15 - 16P2, 

(5.2) 

(5.3) 

(5.4) 

(5.5) 

one can obtain (5.2) from (5.4). Hence (5.2) is equivalent to 
(5.4). 

(II) (/>10. _ I) : Since 

(/>(0. - I) = $10.11' 

one obtains 

Da (/>10. -I) = O. 

(III) (/>( 112,0) : 

(D 215 2 + 15 2 D 2)(/>1112,01 = O. 

Since 

(5.6) 

(5.7) 

(5.8) 

(D 2 ± 15 2)(D 215 2 + 15 2D 2) = 16p 2(D 2 ± 15 2), (5.9) 

one can obtain from (5.8) 

(D 2 ± 15 2)(/>1112,01 = O. (5.10) 

Conversely, since 

(D 2 ± 15 2)2 = ± (D 215 2 + 15 2 D 2), (5.11) 
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one can obtain (5.8) from (5.10). Hence (5.10) is equivalent to 
(5.8) 

B. N = 2 supersymmetry 

In order to understand the meaning of the simplified 
constraint equations, we introduce two simple superspaces 
with (0 + u,8 _ a) and (0 _ u,8 + a). These O's are defined by 

o ± u = (lIv1)(OUI ± W U2 ), 

8 ±a = (1Iv1)(8al ± i8a2 )· 

The spinor charges and the covariant derivatives are 

Q ±u = (lIv1)(Qul ± iQu2)' 

Q ± a = (lIv1)(Qal ± iQa2)' 

D ± u = (lIv1)(Dul ± iDu2 )' 

15 ± a = (lIv1)(15al ± i15a2 )· 

They satisfy 

(5.12) 

(5.13) 

(5.14) 

(D±u,D±{3)+ = (D±u,D+{3)+ =(D±u,15±a)+ =0, 

(D ±u,D+a )+ = 20'~aPa' 

Under SO(2) transformation 

II ± i<pll 
u±a---+e U±a o 

(5.15) 

Since the decomposition of (0 Ui,8ai ) into (0 + u,8 _ a) and 
(0 _ u,8 + a) is SO(2)-invariant, the SO(2) superspace is a direct 
sum of the two invariant simple superspaces with the SO(2) 
transformation replaced by the chiral transformation. The 
Casimir operators G and E can be expressed in terms of the 
Casimir operators G + and G _ of the two simple super
spaces: 

G=G++G_, 

E=G+-G_, 

where 

G ± = (PaI2p2)D+ O'a15 ± - 1. 

(5.16) 

(5.17) 

The irreducible superfields (/>(y,G.EI may now be described in 
the two simple superspaces. 

(I) (/>10,0,0) : 

JIlo,o,ol (/>10,0,01 = (/>(0,0,0)' 

From (4.23) and Table I, one has 

(K - G 2 - E 2)JIlo,0,01 = 2JIlo,o.01' 

So 

(1 - !K + !G 2 + !E 2)(/>10,0,01 = O. 

Since 

A(1-!K+!G2+!E2)=~, 

B(l -!K + !G 2 + !E2) = ~B, 

G (1 - !K + !G 2 + !E 2) = iG + !E, 

(5.18) 

(5.19) 
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E(l -!K + !G
2 + !E2) = 2E - iEG

2
, 

one can obtain from (5.19) 

A~(o,o,O) = B~(o,o,O) = G~(O,O,O) = E(/)(o,o,O) = 0. 

Hence, (5.19) is equivalent to (5.18). 

(II) ~(o,o. ± 2) : 

Il(o.o, ± 2) ~(O,O, ± 2) = ~(o,o, ± 2) . 

Since 

EIl(o,o, ± 2) = ± 2Il(0,0, ± 2)' 

one has from (5.20) 

E~(o,o, ± 2) = ± 2(/)(0,0. ± 2)' 

Using the relations 

GE 2 = G- 2B, AE=BE=O, 

(5.20) 

(5.21) 

one can obtain (5.20) from (5.21). Hence, (5.21) is equivalent 
to (5.20). Now, multiplying (5.21) by EG, one obtains 

G~(O,O, ± 2) = 0. (5.22) 

Rewriting (5.21) and (5.22) in terms ofG+ and G_, one has 

(G + + G -)~(O,o.± 2) = 0, 

(G + - G -)~(o.o, ± 2) = ± 2(/)(0,0. ± 2)' 

Hence 

G + ~(o.o, ± 2) = ± (/)(0,0, ± 2)' 

G _ ~(o,o, ± 2) = =+= ~(o,o. ± 2)' (5.23) 

Using the results for the N = 1 case, one can show that these 
constraints are equivalent to 

D _ a ~(0,0.2) = D _ a (/)(0,0,2) = 0, 

D + a (/)(0,0, _ 2) = D + a (/)(0.0, _ 2) = 0. (5.24) 

So, ~(o.o. ± 2) is antichiral (chiral) in the superspace with (8 + a, 

7J _ a) and chiral (antichiral) in the superspace with (8 _ a, 

7J + a). In a different context, Ogievetsky has called the con
straint (5.24) the Grassmann analyticity condition.9 

(III) (/)(0, ± 2,0) : 

Il(o, ± 2,0) ~(O, ± 2,0) = ~(o. ± 2,0) . 

Since 

GIl(o, ± 2,0) = ± 2Il(0, ± 2,0)' 

one has 

GIl(o. ± 2.0) = ± 2~(0, ± 2,0) . 

Using the relations 

G
3
=G+6B, 

G 4 = G 2 + 12A, 

(5.25) 

(5.26) 

one can obtain (5.25) from (5.26). Hence (5.26) is equivalent 
to (5.25). Since one can obtain from (5.25) 

E~(o. ± 2,0) = 0, (5.27) 

the constraint equations can be written in terms of G + and 
G_ as 

(G+ + G_)(/)(0,±2,0) = ± 2~(0.±2.0)' 
(G+ - G_)~(0,±2,0) = 0. 

Hence 
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G + ~(o, ± 2,0) = G - (/)(0, ± 2,0) = ± (/)(0, ± 2,0) . 

It can be easily shown that (5.28) is equivalent to 

D ± a ~(O,2,0) = 0, 

D ± a (/)(0, _ 2,0) = 0. 

(IV) (/)(112,1, ± I)' ~(1I2, - I, ± I): 

Il(1I2,g,e) ~(1/2,g,e) = ~(1I2,g,e)' 

Using the multiplication table, one can show that 

GIl(112,g,e) = gIl(1I2,g,e) ' 

EIl( 112,g,e) = eIl( 112,g,e) . 

So, it follows from (5.30) that 

G(/)( 112,g,e) = g(/)( 1/2,g,e) ' 

E~(I12,g,e) = e~(1I2,g,e)' 

Since one can obtain from (5.31) 

A ~(1I2,g,e) = B(/)( 1I2,g,e) = 0, 

(5.28) 

(5,29) 

(5.30) 

(5.31) 

(5,31) is equivalent to (5.30). In terms of the Casimir opera
tors G + and G _, (5.31) can be rewritten as 

G + ~(I12.g.e) = !(g + e)(/)(I12,g.e) ' 

G _ (/)(I12.g,e) = !(g - e)(/)(I12,g.e)· (5.32) 

Moreover, one can show that (5.32) is equivalent to 

D_a~(1I2.1.1) = (D+2±D_2)(/)(I12.I.I) =0, 

D +a~(1I2.1. _ I) = (D_2 ± D+ 2)~(112.1. -I) = 0, 

- 2 - 2 
D- a (/)(1I2.-I.I) =(D_ ±D+ )(/)(112,-1.1) =0, 

(5.33) 

- 2 - 2 
D +a~(1I2.-I.-I) = (D+ ± D_ )~(112.-I,-I) = 0. 

Hence, ~(1/2,g,e) is chiral or antichiral in one of the two invar
iant simple superspaces and the superspin-l/2 representa
tion in the other supers pace. 

(V) (/)(1,0,0): 

Il(1,o,o) (/)(1,0,0) = ~(I,O,O)' 

Since 
KIl(1,o,o) = 0, 

one obtains from (5.34) 

(5.34) 

K~(I,o,O) = 0. (5.35) 

Multiplying (5.35) by A, B, and G, one obtains 

A (/)(1,0,0) = B(/)(I,o.O) = G~(I,O,O) = 0. 

So, one can obtain (5.34) from (5.33). Hence (5.35) is equiva
lent to (5.34). 

We have seen that some of the irreducible superfields 
satisfy the constraints for the irreducible representation in 
the two invariant simple superspaces. In fact, all the super
fields can be classified according to the irreducible represen
tation of the two invariant simple superspaces. Both ~(O,O,O) 
and (/)(1,0,0) belong to the superspin-l/2 representation of 
each of the two invariant superspaces. They can be distin
guished by the constraints (5.19) and (5.35). The classifica
tion according to this scheme is given in Table II. 

6. SO(2) SUPERTENSORS IN SUPERSPACE 

In order to solve the constraint equations for the irredu
cible superfields, one has to apply the Casimir operators to a 
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TABLE II. Classification in invariant simple superspaces." 

(Y,G,E) 

± (0,0,0) (0,0,2) (0,0, - 2) (0,2,0) (0, -2,0) (P,I) (~,I, - 1) (~, - 1,1) (~, - I, - 1) (1,0,0) 

(/~+,8_) 0- 0+ 0- 0+ 0 ! ! 0+ 
(8_,0+) 0+ 0- 0- 0+ 0- 0+ 

a!, 0+, and 0- denote superspin !, chiral, and antichiral representations, respectively. 

general superfield and solve simultaneous equations. So, be
fore one tries to solve the constraint equations, one needs the 
most general superfield. In order to maintain SO(2) invar
iance, it should be a sum of contractions of irreducible com
ponent fields with irreducible SO(2) supertensors in super
space. Since the irreducible SO(2) tensors are either totally 
symmetric or totally antisymmetric in their SO(2) indices, 
one can obtain them by symmetrizing or antisymmetrizing 
the SO(2) indices. The list of all the irreducible SO(2) super
tensors and their number of components are given in Table 
III. The total number of components turns out to be 
28 = 256, as required. The definition of some supertensors in 
the table are 

e (v1 = (J i(Ji _ W/((J k(J k), 

(J li(J'a()11 = !((J i(J'a(ji + (Ji(J'a(j i _ tjiJ(J k(J'a(j k), 

(J li(J'a(ji] = !((J i(J'a(ji _ (Ji(J'a(j i), 

TABLE III. Irreducible SO (2) supertensors. 

Boson part 

Supertensors 

8 i8 i,OiOi 

e W1,lJ 1ij1, 
8 io""8i , 0 i 0"" Oi, 

8 io"Oi 
81i0" Oll 
8 [io" Oil 

(8 k8 kf, (OkOkf 
(8 k8 k)(8 io"O i), (0 kO k)(8 io"O i) 
(8 k8 k )81i0"0l1, (0 kO k )8lio"Oll 

(8 k8 k)8 lio" Oil, (OkOk)8 [io" Oi], 
(8k8k)8w1, (OkOk)e 1ij1 

(0 kO k )(8 io"b8i ), (8 k8 '.)(0 iO"~Oi) 
8 lik 1(8 ko""8i ), e lik 1(8 ko"b8i ) 

e lijk /) 

(8 k8 k)(0'01) 
e[ij] 

(8 ko"O k )(8 1d'0 I) 
(8 k8 k f(O '0 1), (8 k8 k )(0 '0 1)2 

(8 k8 k )28 lill, (0 kO k )2e lijl 
(8 k8 k )2(0 iO""Oi), (0 kO k )2(8 io"b8i ) 

(8 k8 k)(O '0 /)(8 io"Oi) 
(8 k8 k )(0 '01)8 1i0"0il 
(8 k8 k)(O '0 1)8 [io"Oi] 

(8 k8 k)2(0'O/f 

Total 
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# Camp. 

1 
1+1 

2+2 
3+3 

4 
8 
4 

1+1 
4+4 
8+8 
4+4 
2+2 
3+3 
6+6 

2 

10 
1+1 
2+2 
3+3 

4 
8 
4 
1 

128 

eU(ijkl = j(e(Jkl(JUi + e(ikl(Jui + e (V1(J uk) - trace, 

e(ijkll = i(e (V1e (kll 

+ e(ikle(J11 + elil)e(Jkl + e (Jkle (ill 

+ e(Jl)e(ikl + e(klleW1) - trace, 

e 1iJ] = !(e (ik Ie (kJ1 _ e (Jk Ie (kil). (6.1) 

When one does explicit calculations, one frequently has 
to multiply two supertensors and decompose the product 
into a sum of irreducible supertensors. Also, in order to con
struct a tensor calculus, one needs these reduction formulas. 
Some of the reduction formulas which are frequently used 
are given in Appendix B. 

7. IRREDUCIBLE SUPERFIELDS 

In Sec. 5, we derived the simplified constraint equa
tions. Although it is straightforward to solve those con-

Fermion part 

Supertensors # Camp. 

Ocri, Ott; 4+4 

(8 k8 k)8 ai, (OkOk)O"i 4+4 
e u(ijk I, 8

QWk
) 4+4 

(8 ko"Ok)8ai, (8 ko"Ok)Oai 16 + 16 
(OkOk)8 ai, (8 k8 k)0"i 4+4 

(OkOk)28 ai, (8 k8 k)20"i 4+4 
(8181)eaWkl, (0 '0 1)8"Wk I 4+4 

(0 kO k )(8 10"0 1)8 ai, (8 k8 k )(8 10"01)0"i 16+ 16 
(8 k8 k )(0 10 1)8 ai, (8 k8 k)(O '01)O"i 4+4 

(8 k8 k)(0101)28 ai, (8 k8 kf(0'01)0"i 4+4 

Total 128 
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straint equations, there are some ambiguities. Each term in 
the supedields can be multiplied by some powers of a 2, u·a, 
or (i·a and still can satisfy the same constraint equations. So, 
in order to give correct dimension to the component fields in 
the irreducible supedields, one should divide each term in 
the supedields by proper powers of a 2, u·a, or (i·a such that 
the solutions of the constraint equations are the same as the 
results obtained by applying the projection operators 
fl(y.G.E) to the most general supedield. 

It turns out that some of the solutions are still reducible, 
and this introduces supersymmetric gauge invariance. Since 
the Lagrangians and the supersymmetry transformation 
rules are much simpler in the Dirac four-component nota
tion, they are given in terms of the four-component Major
ana spinors. 

(I) eP(o.o.O): This mUltiplet contains 8 + 8 field compo
nents. The irreducible supedield corresponding to this mul
tiplet is 

;reP(o.o.O) 
(2) .ill (2) 

= !eJ2(M + iN) + !eJ2(M - iN) + e alii)a2v1ij) 

where the SO(2) supertensors are 

(2) 

e = OkOk + i(OkOk)(Olu a1J l )aa - !(OkOkf(1J I 1J I )a2, 

(2) 

e a[ij) = i[ 0 [iub 1J jl - i(O kO k)(1J 11J 1)0 [iUb 1J j)a2]flOb 

_ ![(1Jk1Jk)(O'o-abOj) + (OkOk)(1Ji(iab1Jj)]ab' 
(0) 

e = I - !(Ok{)k)(1J I 1J I )a2 + !(Oku a1Jk)({)lu b1Jl)ao ab 

+ ~(O kO k )2(1J 11J 1)2;r, 

(2) 

e IiJI = [0 (iU o1J j) - HO kO k)(1J 11J 1)0 liua1Jlla2] aa 

- F[(OkOk)8!i}1_ (1Jk1J k)e (i}1]a2, 

(I) 

e ai = oai _ i(OkOk)(1J i (i.at + i(Okua1Jk)oaiaa 

- !(O kO k)(1J 11J 1)0 aW 

+ i(O kO k)(O IUaO 1)(1J i (j.ataa 

+ ti(O kO k )2(1J 10 1)(1J i (j.a)aaZ• 

(7.1) 

(7.2) 

Here nab is the projection operator for the vector field: 

flab = 'Tjab _ aaa
b 

a2 • 

The invariant Lagrangian of this multiplet is 

LID,D.o) = 2 f d 80 eP10•O•D) ;reP(O.O.D) 

(7.3) 

= - HF(V)~g))Z + iii>c9xi + ~(aaM)2 + i(aaNf 

(7.4) 

The fields of this multiplet transform under the supersym
metry transformation according to 
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ov1ij) = - 2if'[iYaXiJ , 

OXi = F(V)1~)uabej - ic9(M + irN)~ 
+F~ + iG(ijlrei, 

OM=E"Xi, 

oN=iE"rxi, 

of = - i ~c9xi, 

oG (i}1 = U·.irc9x J1. 

(7.5) 

(II) eP(o.o. ± 21 : All the derivative terms of these super
fields are factorizable, and the rest of the supedields can be 
written in terms of 0 _ a and 1J _ a (0 + a and 1J + a). The irredu
cible supedields are 

eP(O.O. ± 21 = exp [ ± €",no mu b1J nab] 

X(A ± ~i~jB Iii) + !e(i}l(1 ± T)(Mli}l + iNIiJI) 

+ ~81iJ1(1 ± T)(M(i}l_ iN(i}l) 

+ 0 (iu a1J 11(1 ± T)A ~) 

+ !e (ijkl)( I ± T)e (ijkl) 

+ oai(l ± T)Xai + 1Jai (1 ± T)xai 

+ ea(ijkl(1 + TU + e (1 ± TIl a(ijkl) - """a(ijk) a(ijkl ,..." , 
(7.6) 

where the SO(2) supertensors are defined in (6.1) and 

TMIiJI = !i(~kM(kJl + ejkMlikl), 

TA. a(ijk I = F(€"IA. a(ljk) + ejiA. a(ilk 1+ eklA. a(ij/l), etc. 

(7.7) 

Since all the component fields in these supedields have 
different SO(2) tensor properties, they cannot be reduced any 
further. However, these supedields cannot give second-or
der gauge-invariant Lagrangians without central charges. 
So, we will consider the supedields with two symmetric 
SO(2) indices instead of eP(o.o. ± 21' For notational conve
nience, we will drop the label (0,0, ± 2) from now on: 

+ !8(i}I[M - iN ± F~I(M[kl) _ iN[kl))] 

+ o (iu a1J ll(A + li~/A [kll) 
a - 2 a 

(7.8) 

Rewriting these superfields in terms of () ± a and 1J ± a' one 
has 
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(/J =F =F = exp [ ± i(O -+-(Tao _ - 0 _(Tao -+-)aa ] 

X(C =F =F + !0=F 2[M + iN 

± !i€kl(M[kl) + iN[kl))] 

+ !0=F 2[M - iN ± !i€kl(M[kl) - iN[kl))] 

+ 0 (Tae (A + li~IA [kl)) 
=F =F a-2 a 

+ 0=F 20=F 2p ± ± + 20=FX=F 

+ 20 =F X =F + 20 =F 2( 0 =F I,b ± ) + 20 =F 2( e =F if ± )), 

where 
(7.9) 

X ± = (l/V2)(x1 ± iX2), 

C ± ± = COl) ± iC (2
). (7.10) 

These superfie1ds can be reduced further by imposing the 
constraint 

D qj 2(/J - - = + 16i)2(/J -+- -+- (7.11) 
-+- -+- ± - ±. 

Choosing the plus sign and solving the constraint, one ob
tains 

(/J! =F = exp[ ± i(O-+-(Tao_ - O_(Tao-+-)aa] 

X (C =F =F ± 0 =F 2 !i~J(M [ij) + iN [ij)) 

± 0=F 2!i~J(M[ij) - iN[ij)) 

+ 0-- (T 0- (JlabA + li€ijaaA [ij)) -+- a -+- b - 2 

+ 0 2o_2a2c±±+20 X-' 
=F -I- =F -+-

+ 20=FX=F + 2ie+ 2(0+ (T.aX ±) 

+ 2iO'f 2(0+ i7·aX ± )). 

With minus sign, one obtains 

(/J =!= + = exp[ ± i(e-+-(Tao_ - O_(Tao-+-)aa] 

X (C + + + !O + 2(M + iN) 

+ Ie 2(M - iN) - 0 _ 20 2a2c ± ± 
2 + -+- + 

+ 0+ (T)j+ (aaA ± !i€,iJlabA iij)) 

(7.12) 

- - ~ 2 -
+ 20+x+ + 20+X+ - 210+ (0+ (T·aX ±) 

- 2iO+ Z(O+ i7.aX ± )). (7.13) 

One can easily see that these superfie1ds (/J ! 'f cannot form 
physical supermultiplets by dimensional argument. Instead, 
they appear as supersymmetric gauge degrees of freedom. 

We now construct invariant Lagrangians. Since the su
perfields have two axial vector fields, they contain two su
permultiplets. The multiplet with Aa has the following La
grangian: 

L = 2fd SO ((/J -+--+-(/J -- + _1_((/J -- J... D 2Jj 2(/J--
-+- 32 az -+- -+-

+ (/J -+- -+- ~2 D _ 21) _ 2(/J -+- -+- )). (7.14) 

L -+- has supersymmetric gauge invariance. It is invariant un
der 

(7.15) 

There are 8 + 8 field components in this multiplet. Redefin
ing some of the fields as 

plij)_p{ij) - a2clij), 

l,bi_l,bi - iIJXi, 

L -+- takes the form 

L -+- = - 1(F (A )ab)2 + !iifiIJt/J 

where 

+ !(aaM[ij))z + !(aa N [ij))2 

+ !(PIY1)2 + !(G [ij))2, 

G[ij) =a·A [ij). 

(7.16) 

(7.17) 

(7.18) 

In the Wess-Zumino gauge, this multiplet transforms under 
supersymmetry transformation according to 

c5Aa = "liYsYa I,bi, 

c5l,bi = - iF(A lab Y(Tab€i + iIJ(M [ij) + iN [ij)y)€J 

+ (p{ij) - iG [ij)y)€J, 

c5M[ij) = 2"l[iI,bJ), 

c5N [ij) = 2i "l[iyl,bj) , 

c5p1Y1 = - 2i "lliIJI,bj), 

c5G W) = 2"l[iYIJI,bJ). 

(7.19) 

The second multiplet containing A 1ij) has the following Lagrangian: 

L = 2fd 80 ((/J -+- -+- (/J - - - _1_ ((/J - - J... D 21) 2(/J - - + (/J -+- -+- J... D _ 21) _ 2(/J -+- -+- )). 
- 32 a2 -+- ~ a2 

(7.20) 

L_ is invariant under the following supersymmetric gauge 
transformation: 

(/J++_(/J+++(/J!+. (7.21) 

This multiplet also contains 8 + 8 field components. Rede
fining plY1 and t/I as 

pIY1_pIY1 + a2c{iji, 
l,bi_l,bi + iIJXi, 

L becomes 
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(7.22) 

L_ = - A(P(A )~~))2 + !iifiIJt/J + !(aaM)2 + !(aaN)2 

+ !(p{ij))2 + !G 2
, (7.23) 

where 

G=a·A. (7.24) 

In the Wess-Zumino gauge, this multiplet transforms ac
cording to 
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t5A 1ij] = 2"€liYSYa ¢j], 

t51/J = iF(A )i~]raab€j - i~(M + iNr)~ + F1iJ1€j + iGr~, 
t5M=?¢i, 

t5N= i?r¢i, 

t5FliJ1 = - 2i t-i~¢ll, 

t5G=?r~¢i. 

(7.25) 

(/) If] = exp [ - i(O 'if 0 ')ac ] (A Iii] - iB Iii] + i(O kO k)G Iii] 

+ (8 iik )F(jk) _ 8 (jk)F1ik)) - 4i(0 iaabO j)aaAb 

+ !(O kO k )2a2(A Iii] + iB liil) + 40 IX jl 

+ 4i(0 kO k)O [ia.aX j ]). (7.32) 

The Lagrangian for this multiplet with 8 + 8 field compo
nents is 

(III) (/)10, ± 2,0): These supedields like the preceding ones L '+ 
are factorizable, and the rest of them can be written in terms 
of 0 ai or 0 iti : 

(/)10, ~ 2,0) 

= exp[ - i(O'ifO')ac](A + iB + !(OkOk)(M + iN) 

+ !8(iJ1(M@+iN(iJ1) + !(OiaabOj)T1~] 
+ !(O kO k )2(F + iG) + 201'i + 2(0 kO k)(O i¢i)), 

(7,26) 

(/) = (j) . (0,2,0) (0, - 2,0) (7.27) 

We will drop the label for the chiral supedield for notational 
simplicity from now on. The chiral supedield can be reduced 
further by imposing the constraint lO 

(7.28) 

Solving the constraint with plus sign, one obtains 

(/) + = exp [ - i(O 'if 0 ')ac ] (A - iB + i(O kO k)G + 8 (ij)FliJ1 

+ 2i(OiaabOj)aaA lij] + ~(OkOk)2a2(A + iB) + 20 Xi 

(7,29) 

There are 8 + 8 field components in this multiplet. The in
variant Lagrangian of this multiplet is 

L+ = - ~ Jd 40(/)+(/)+ 

= - !(F(A )1~])2 + !iXi~Xi + ~(aaA)2 + ~(aaB)2 

(7.30) 

The supersymmetry transformation rules for this multiplet 
are 

t5A 1ij] = 2"€[iYsYaXjl, 

t5Xi = iF(A )l~]r~aab€j - i~(A + iBr)€i + FliJ1€j + iGr€i, 

t5A = ?Xi, 

t5B = i"€iry, (7.31) 

t5F(iJ1 = - 2i t-i~Xj), 

t5G=?r~xi. 

It is interesting to note that this multiplet has the same La
grangian and supersymmetry transformation rules as the 
one in (7.23)-(7.25) but that they have totally different super
fields. 

One can change the SO(2) tensor property of the compo
nent fields by attaching antisymmetric SO(2) indices on (/) +: 
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This multiplet transforms under supersymmetry as follows: 

t5Aa = ?YsYaXi, 

t5Xi = - iF(A lab raab~ + i~(A Iii] - iB Iii]r)€j 

+ (FliJ1 - iG liilr)€j, 

t5A [ij] = 2"€I1' ji , (7.34) 

t5B I ijl = - 2i "€[irxj] , 

t5F(iJ1 = - 2i t-i~Xll, 

t5G liil = 2"€lirhj]. 

This multiplet has the same Lagrangian and supersymmetry 
transformation rules as the one in (7.17)-(7.19). 

The constraint (7.28) with minus sign leads to 

(/) _ = exp[ - i(O 'ifO')ac ] (A - iB + (0 kOk)F + i8(ij)G(iJ1 

+ 2(0 ia abo j)aa V lijl - ~(O kO k )2a2(A + iB) + 201" 

- 2i(0 kO k)(O ia.aXi)). (7.35) 

This 8 + 8 multiplet has the following Lagrangian: 

L~ =+ Jd
4
0(/)_(/)-

- !(F(V)1~])2 + ~iXi~Xi + ~(aaA f + ~(aaB)2 

+ V 2 + !(GliJ1f· (7.36) 

The supersymmetry transformation rules are 

t5xi = F(V)1~]aab€j - i~(A + iBr)€i + &' + iGiiJ1r €j, 

t5A =?Xi, 

t5B = i?rxi, 

t5F = - i €'~Xi, 

t5G(iJl = 2it-irhll. 

(7.37) 

This multiplet has the same Lagrangian and supersymmetry 
transformation rules as the (0,0,0) multiplet. 

Adding anti symmetric SO(2) indices to (/) _, one has 

(/) l,!il = exp [ - i(O 'if 0 ')ac](A liii - iB liil + (0 kO k)FIii] 

+ i(8 iik )G(jk) - 8 (jk)G(ik)) + 4(0 iaabO j)aa Vb 

- !(O kO k )2a2(A Iii] + iB Iii]) + 40 l1'j] 

- 4i(0 kO k)O lia.aX j ]). (7.38) 
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De Wit has called this 8 + 8 multiplet the SO(2) vector gauge 
multiplet. 7 The Lagrangian for this vector gauge multiplet is 

L '_ = ~ Jd 4() (/> lijl (/> [ijl 4 --

= - !(F(V)ab)2 + Fi>t9xi + !(aaA [ij1)2 + !(aa B lijl)2 

+ !(Fl i
iJ)2 + !(G@f· 

The supersymmetry transformation rules are 

I5Va = i €YaXi, 

15Xi = F(V)abaab€,' + it9(A [ijl - iB [ijlr)f J 

- (FlU] - iG\V'r)fJ, 

I5A [ij] = 2(!,I XJ), 

I5B lij] = 2i (!'[irxJ) , 

I5F [ij} = - 2i (!'Jit9X J] , 

I5G \i}) = 2(!'lir t9XJ'. 

(7.39) 

(7.40) 

We now consider the chiral superfield (7.26). There are 
two ways to construct the invariant Lagrangian from this 
superfield. The first one is 

Lr = 2 f d s() cP(/> - + (f d 4() (/> a2
(/> + h.c')' (7.41) 

This Lagrangian has supersymmetric gauge invariance. It is 
invariant under 

(/>-+(/> + (/> + . 

Redefining some of the component fields as 

T~~}-+T~~I + i(aaA bij) - abA ~ij}), 

¢-+¢+ ibx i
, 

F---+F + az A, 

G---+G - a2B, 

Lr becomes 

(7.42) 

(7.43) 

Lr = - !(a bT1~})2 + !i¢ib¢i + !(aaMf + !(aaN\ij))2 

+ ~(F2 + G Z
). (7.44) 

In the Wess-Zumino gauge, the supersymmetry transforma
tion rules are 

l5¢i = i~T~~}yafj - it9(Mf' + iNliI'rei) + (F + iGr)€', 

15M = €,¢i, 

I5N@ = 2i eir¢Jl, 

I5F = - i ?bt/J, 
I5G = €'rt9¢i. 

(7.45) 

De Wit has called this the SO(2) tensor gauge multiplet.7 

The second invariant Lagrangian can be obtained by 

Lll = 2 J d s() cP(/> + + (f d 4() (/>az(/> + h.c.). (7.46) 

It is invariant under the supersymmetric gauge transforma
tion 

(/>---+(/> + (/> - . 

With the field redefinition 

¢---+¢ - ibX" 

F---+F - aZA, 

G---+G + a2B, 

Lll takes the following form: 

(7.47) 

(7.48) 

Lll = - !(abT~~})2 + !i¢ib¢i + !(aaMlil1)2 + ~(aaNf 
+ !(F2 + G 2). (7.49) 

In the Wess-Zumino gauge, this multiplet transforms ac
cording to 

I5T ~~} = - 4(!,Jiaab ¢J], 

O¢i = - iabT~~)ryaEj + ib(MW)E j - iNrEi) 

+ (F + iGr)f', 

15M Iill = - 2e i¢Jl, 

I5N = - i €'r¢i, 

8F= -i€'Mi, 

8G=€rb¢i. 

(7.50) 

(IV) (/>(112.1, ± 1), (/>(112, _ 1. ± 1): The derivative terms of 
these superfields are partially factorizable, and the rest of 
them can be written in terms of three of () + a, 7J _ a , e _ a, and 
7J + a' The final result is written in terms of () Cti and 7J ai for 
manifest SO(2) invariance. The irreducible superfields are 

1M) 1M) 

+!8 ± [M + iN ± F€,j(Miiij + iN[ij])] + !8 W1(1 ± T)(Mi'j\ + iN(1) 

+ ~/e) + [Aa + iBa ± ~if'j(A 1ij} + iB 1ij])] + 1~) ± a2 [Va + iWa ± !if'j( V 1ij] + iW ~Ij])] 
ie) (V) (A) 

+ i8 Iij)(1 ± T)(CWI + W(ijl) + i8 aliJ1(1 ± T)(V:11 + iW:1') + !8 a
\iJ1(1 ± T)a2(A:1

' 
+ iB~l) 

(7,51) 
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where the SO(2) supertensors are 
IA) 

e ± = 1_ft,((}k(}k)(e'(}I)aZ 

_ !(() k(} k)((} iU b (} i + iE'J(} iUb (} i)J2 nab, 
IV) _ _ 

e ± a = (() iUb () i + i~i(} iUb(}J)n ab, 

~) - -e ai = () ai _ M(} k(} k)((}' (}')(} aiJ2 

+ ~(() k(} k )(() 'Ua(} I)((} i Ua )aaZ, 

l.p) _ 
e ai = () ai _ !i((} k(} k)((} i U.a)a 

+ !i(8 kU a(} k)((} iUaU.at, 

1f.) - -Ck. 
e ai = (}ai - !i(() () )(() 'U·a)a 

- !it () kU a(} k)( (} I U a U.a)a , 
IA) _ _ 

e ai = !i((} k(} k)((} i U.at + N((} kU a(} k)((} IUaU.a)a 

w 
£) :2i I'(ll'll')(£)(ijk) a) 
C7 a(ijk) = C7a(ijk) -,.' u u C7 U· a' 

(7.52) 

Here A ab is the projection operator which extracts the spin-
3/2 part from the vector spinorll: 

A ab=TJab_~ aaJb -~Y'Y' 
3 a2 3 

+ ~ ~Y'aa _ ~ ~Y'ab (7.53) 
3J2 3az ' 

$1112,1, ± I) = (PI liZ, -I,=J= I)' (7.54) 

All these four superfields form a single multiplet with 
64 + 64 field components. Each supertensor in these super
fields should be contracted with SO(2) irreducible compo
nent fields with at least four degrees of freedom for consis
tent supersymmetry transformation rules. All the Majorana 
spinors in these superfields are decomposed into four parts in 
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an SO(2) invariant way, and each superfield contains one of 
them, i.e., (I + T)tPao(l- T)tPai' (1 + T)¢aoor(l- T)¢al' 
Since the vector spinor is accompanied by the spin-3/2 pro
jection operator, one cannot obtain the Pauli-Fierz Lagran
gian for the vector spinor with this multiplet alone. So, this 
multiplet should be coupled to other multiplets to yield the 
correct Lagrangian. Since this multiplet does not have direct 
physical interest, we will not consider it any further. 

(V) $11,0.0) : This multiplet has turned out to be the multi
plet for the linearized SO(2) Weyl supergravity with 24 + 24 
field components. The irreducible superfield is 

ir$II,O,O) = 6en + (e abfij) + eabfij))T~Z) + 4eaazAa 

+ 2e alu!J2A Ijjl + 2eafij!J2v~ij] + eabirhab 

+ 6ie I u.aXi + 6ie lu.aXi + 4e al u.aaz7/Ja i 

- 4e alu.aJ2¢a\ 

where the SO(2) supertensors are 

(7.55) 

e = 1 + t((}kua(}k)((}'ub(}')aZnab + A((}k(}k)Z((} , (}'fir, 

e ab fij) = (TJacTJbd _ TJadTJbc _ i€,bCd) 

X [((} I ud.(} i)aJr - ii((} k(} k)8 [iud(} J)a2ac ] 

e a = [(}kUb(}k + !((}k(}k)((}' (}')((}lub(}i)aZ]nab, 

e alul = [() (iub(} Jl + !(() k() k)((}' (} ')(} (iub (} J1a2 ]nab 

+ ire (ik )(() ku ab() j) _ e Ilk )((} k Uab(} i)Jab, (7.56) 

e afij) = i [() [iUb (} J! _ !(() k(} k)((}' (} ')(} [iUb (} J)aZ] nab 

+ ~ [((} k(} k)((} iuab(} j) + (() k(} k)((} i uabfJ j) Jab' 

e ab = (() kUcfJ k)((} IUdfJ ')nab,cd, 

e ai = () ai _ !i((} kuafJ k)(} aiaa + !i((} kuafJ k)((} 'aau.a)a 

+ !((}k(}k)(fJlfJl)(}alaZ _ !((}k(}k)(() luafJl)({j lu.ataa 

+ !(8 k() k)((} 'ua{j l)(fJ i Ua tJ2 

+ M((} k(} k)Z((} I fJ 1)(0 I u.a)aa2, 

e aai = (8 kUb(}k)((}iA bat + F((}k(}k)((}'Ub(}')((}i u.aA bat. 

Here nab,cd is the projection operator for spin 2 II: 

nab,cd = !(nacn bd + nadn bC) _ !nabn cd. (7.57) 

The Lagrangian corresponding to this multiplet is 

LII,o,o) = f d 8
(} $11,O,O)ir$II,O,O) 

= ihabirnab,cdhcd + i¢a iJ2IA ab7/Jb i - (F(A )ab)2 

- !(F(A )'!i~f - !(F(V)1~)f - H(JbT1~))Z 

+ (JbT~g))zJ + 3ixi~Xi + 3Dz. (7.58) 

This Lagrangian has high degrees ofinvariance. It is invar
iant under 
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t>hab = 1Iab 1[/ + aaSb + abSa' 

t>t/!a i = aa~ + Ya A i, 

t>Aa = aa A , 

t>A !)j) = aaA ((I), 

t>V1ijl = aaA [ijl. 

(7.59) 

In order to identify the Lagrangian (7.58) as the linear
ized SO(2) Weyl supergravity Lagrangian, we expand the 
connection and the Ricci tensor up to order K: 

Wabc = - ~K(abhac - achab ), (7.60) 

Rab = ~K(aaJ<hbc + abJ<hac - a2hab - aaabh). (7.61) 

For the Rarita-Schwinger fields, we define the analog of 
field strength tensor as 

R ai = E"bcdYsYbact/!/. (7.62) 

The Lagrangian can now be rewritten up to order K2 as 

Lw = (l/~)(Rmn 2 _ !R 2) 

+ E"'npq( Rm i - !Ymy.R i)YsYnDp(R/ - !yqy.R i) 

- (F(A )mn)2 - !(F(A )~)nf - !(F(V)~2f 

- H(anT~2f + (anT~2n + 3ij>>>Xi + 3D 2, (7.63) 

where Dm is the covariant derivative 

Dm = am + !WmabUab. (7.64) 

Combining the spinor gauge transformation t>t/!m i = am~ 
with the global supersymmetry transformation, one obtains 
the following supersymmetry transformation rules: 

{)ea m = - iK~yat/!m i, 

t>t/!m i = (2/K}Dm~ - ~iT~luPqYmEj 

- iAm Ys~ + (V ~I + iA ~)y¥i, 

t>Am = -!i~Ys(Rmi-jYmy·Ri)-"€iYsYmXi, 

t>A ~) = 2i ?-iYs(Rm}) - !Y m y.R il) - 2?-iysY mXil, 

t>V~1 = - 2"€[i(Rmil- jYmy.R il) - 2i"€[iYmXi], 

t>T [ijl = 4€[iu pqu a ./, i] 
mn mn p'f/q 

+ Ii "€[iu y.R j] + 4"€[iU Xi] 
j mn mn , 

t>Xi = - D~ - jiapT~2~nt'Ej + ~iF(A )mn r~n~ 

+ j(F(V)~2 + iF(A )~)n r)~nEj, 

oD = i ~~Xi. (7.65) 

8. LINEARIZED SO(2) SUPERGRAVITY 

We have seen that the superspin 1 multiplet is the lin
earized SO(2) Weyl supergravity multiplet in Sec. 7. Its La
grangian contains a fourth-order derivative for the spin-2 
field and a third-order derivative for the spin-3/2 field. In 
order to get the Pauli-Fierz Lagrangians for these fields and 
to make the auxiliary fields nonpropagating, one should in
serta 2 in (7.58) instead ofa 4. This would produce some non· 
local terms which can be cancelled out by introducing com
pensating superfields. 12 Due to those compensating 
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superfields, part of the invariance for the physical fields and 
all for the auxiliary fields are lost. Before breaking the invar
iances that will be lost eventually by the compensating suo 
perfields, one should add gauge terms in the supersymmetry 
transformation for consistency. 

The full 40 + 40 multiplet consists of three irreducible 
superfields which are the SO(2) Weyl supergravity multiplet, 
the SO(2) tensor gauge multiplet, and the SO(2) vector gauge 
multiplet. 7 With proper field redefinitions for cancellation of 
nonlocal terms, the irreducible superfields become 

J4cJ>w = 6e(a·V - (l/3K)R) 

+ (eab[ij] + eab[ijl)(t 1tl - F(B )1t]) 

+ 2eaa2Aa + 2e aliJ)J2A!)j) 

+ 2ea[ii]a2v~ij] + eaba4hab 

+ 3ie i u.a(i + iu.a}. i - ~iu.R ') 

+ 3ie iu.alii + iU.aA i _ jiu.R i) 

+ 4e ai u.aa2A a bt/!/ - 4e aiu.aa2Aa b"¢b i, 

cJ>T = exp[ - i(Okua{jk)aa] [A + iB + (OkOk)(S + iP) 

+ eWI(SWI + iPWI) - (OiuabO i)(t ~t] - !F(B )~t]) 

+ !(OkOk)2[ - 2a.V + (l/K)R 

- ia·A + a2(A - iB ) 1 + 20 i¢ i 

(8.1) 

+ 2(0 kO k)O II + iU.aA i - iu.R i + iu.a?> i)], (8.2) 

+ 8(0 iUabO j)aa Vb 

_ (0 kO k )2a2(M [ij] + iN [ij]) + 40 [itt i ] - iu.}. i]) 

(8.3) 

The linearized SO(2) Poincare supergravity Lagrangian 
is given by 

Lp = - J d 80 cJ>wa2cJ>w + 2(J d 80"ii>T ~2 cJ>T 

-! Jd
4
0cJ>TcJ>T-! Jd

4
{j"ii>T "ii>T) 

+ J... Jd 40 cJ> [ij] J... cJ> [ij] 
8 v J2 V 

= !(Jchabf - !(Jah j2 - !(Jbhab )2 + !(Jbhab)(JUh) 

+ E"bcd"¢/YSYbJct/!/ - !(F(B )~t])2 +!(t ~t]f 

- !(Aa)2 - !(A!)j1f - !(V~ij])2 + (Va)2 + j?A i 

-!S2 - !(Plij))2 _ !(M[ij])2 _ !(N[ij])2. (8.4) 

Ignoring perfect divergences, Lp can be written in terms of 
the Ricci scalar as follows: 
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Lp = - (l!~)eR + ~miR mi - !(F(B)!,?~)2 

+ !(t !,?~)2 - i(A m )2 

_ i(A ~lf - !( V!,?I)2 

+ (Vmf + i>A i -18 2 _ !(p@)2 

- !(M [ijlf - !(N [ij1)2. (S.S) 
The supersymmetry transformation rules for linearized 

SO(2) supergravity are 

{jeo m = - iK~~tPm i, 

{jtPm i = (2IK)Dm~ - !i(t !~I - F(B )~I)upqrmEj 

- !iA m r5~ + (V!,?I + iA ~lr¥j 

+ !irm(S~ + ipliJ1rEj +Ar~ - t !~Iupqd, 

{jB !,?I = 4£l itPm jl, 
& [ijl = _ 2E E'u·..5r PR qjl + 2E[iU ("jl + i~A jl) mn mnpq r mn \..{ , 

{jAm = -i~r5Rmi-~r5rm(xi+i~Ai-ir·Ri), 

{jA ~1 = 2i ~ir5Rm J1 - ~ir5(r mXJ1 - i~r mA J1), 

{jV!,?1 = - 2E'[iRm jl - iE'[i(rmX jl - i~rmA jl), 

{jVm =Y~(rmXi+i~rmAt 

{jXi = i~(S~ + ipliJ1rEj + Ar~ - t !,?~umnEj + M [ijIE j 

+ iN [ijlrd - am;~~ 

- am (;[ijl - iAliJlr)~Ej, 

{jA i = - t !,?~umnEj + i;~ +Ar~- i(;[ijl + iA iiJ1r )Ej 

- (M [ij) + iN [ij)r)E j + S~ + ipliJ1rEj, 

{jS = ~(xi + i~A i - ir.R i), 

{jpliJ1 = 2i ~ir(xJ1 + i~A J1 - ir.R J1), 

{jM [ijl = E'[i(xj) - i~A j)), 

{jN [ij) = i E'[irlt j ) - i~A j)). (S.6) 

One might expect that this method can be extended to 
higher N. However, Taylor13 has proved a no-go theorem 
that prevents one from constructing supergravity with high
er N without off-shell central charges. So, it is essential to 
introduce off-shell central charges to construct supergravity 
with higher N. 
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APPENDIX A: NOTATIONS 

Latin letters a,h,c, ... are used for Lorentz indices, 
m,n,p, ... for curved space indices, i,j,k, ... for SO(2) indices, 
and Greek letters for spinor indices. Bars denote Hermitian 
conjugation. 
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'TJob = diag(l, - 1, - 1, - 1), E0123 = 1; 

. ( 0 1) EaP = ~p = EaP = ~p = _ 1 0 ; 

~J= . .. ( 0 1) 
-1 0 ' 

u::a = (1, - 0'), (j0aa = (1,0'); 

()ai = ()PiE{3a' ()ai = ~B()Pi; 

M . . . (Xai) aJorana spmors: X' = _ .. , 
Xal 

Xliy Jl = !(Xiy j + X jyi _ !{jijXkyk), 

X Jiy j) = !(Xiy J _ X Jyi); 

a .()Bi = {j B{jij lJiziO. = {j a{jij. 
al a' PJ p , 

(AI) 

(A2) 

(A3) 

(A4) 

(A5) 

(A6) 

(A7) 

(AS) 

(A9) 

(AlO) 

(All) 

(A12) 

APPENDIX B: SUPERTENSOR REDUCTION FORMULAS 

Here we list some of the reduction formulas which are 
frequently used in explicit calculations. Most of the formulas 
not listed here can be derived by taking Hermitian conjuga
tion of the formulas listed here or applying some of them 
successively. 

()ai()pj = !{jpaeiiJl + !{jpa{jij(()k()k) _ !(uob)pa(()iuob() J); 

(B1) 

()aioaj = !a::a(()liuoo J1 + () JiuoO J) + !{jij(OkuoO k )); (B2) 

e 1iJl0 ak = !({jij{jk/ _ {jik{jj/ _ {jil{jJk)(() m() m)() a/; (B3) 

e@()ak = ()a(ijk) + !({jij{jk/ _ {jik{jP _ {jil{jjk)(omom)()a/ 

+ !a::a({jij{jk/ - {jik{jP_ {jil{jjk)(() muoo mj'Oa/; (B4) 

(0 iu ob() j)Oak = - ~(uabu")aa ({jik{jJ/ _ {jil{jJk)(O mucO m)() a/; 

(B6) 

(() iuoO j)Oak = - !u::a e a(ijk) 

+ !u::a ({jij{jk/ + {jik{jP _ 3{jil{jjk)(0 mo m)o a/ 

+ ({jij{jk/ _ {jik{jP)(() muoo m)Oa/ 

- !((jbuOfa({jij{jk/ - 3{jik{jP 

(B7) 
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ea(ijk)Opl = !8pae(ijkl) _ -b(aab)pa[8ij8km8In _ 28im8j18kn 

+ sym(ijk )]e(mp)(OPaabO n) - f-,8p a [8ij8km8ln 

- 28i18Jm8kn + sym(ijk)] (0 PO Pie (mn); (B8) 

ea(ijk)oai = -ba:a[8ij8kmbln _ 2bil8Jm8kn + sym(ijk)] 

X (0 PO P)O (ma ao n); (B9) 

e Wkl)O am = _!( 0 no n) [8 ime a( jkl) + sym(ijkl ) - tr(ijkl )] ; 

(BIO) 

e [ij]O ak = !Wk8j1 _ 8i18 jk ) [(0 mo m)(o no n)o al 

+ et;a(o mo m)(o naaO n)Oal ]; 

(0 kaaO k)(O labO 1)0 ai 

(BII) 

= !('T}ac'T}bd + 'T}ad'T}bc)iI:t(O kO k)(O lac 0 I)O"i 

+ ~1Jab (0 kO k)(O I 0 1)0 ai; 

e(Vle(kl) = _ !Wk8jl + 8i18Jk _ 8ij8k/ )(omomf; 

(BI2) 

(B13) 

X [(omo m)(o non) - (Omaaom)(onaaon)] 

+ H8ik8Jm81n + sym(ij)(kl )]e Imn]; (BI4) 

e (ill(O ko-abO I) = Wk8Jm81n _ 8i1bJm8kn)o (mp)(o po-abo I); 

(BI5) 

e IiJl(O kaaO I) = ~(8ij8km _ 8ik8Jm _ 8im8Jk)(O no n)o (maaO I); 

(BI6) 

e (illO a(klm) 

= H8ik(onon)eaUlm) + sym(ijJ(klm) - tr(ij)(klm)] 

+ -b {bik8j1 [(0 no n)(o PO P)O am 

+ et;a(o no n)(o Paao P)O"m ] 

+ sym(ij)(klm) - tr(ij)(klm)}; 
e(mn)e Wkl ) 

(BI7) 

= 12(0 PO p)2 [(8kl8mn _ 38km81n _ 38knblm )e (ij) 

+ sym(ijkl)] + [(8 Jk8In + 8JI8km + biI8Jk)eum) 

+ sym(mn)(ijk/)] - W8kl + 8ik8jl + 8i18 jk )e(mn); 
(BI8) 

e(Vl(OkaaOk)(OlabO /) = _ !'T}ab(omom)2e lill ; (BI9) 

e(Vlelk/] 

= _ M8ikbJmbin + 8im8Jk81n _ bil8jm8kn _ 8im8j18kn) 

X (0 PO p)2e (mn); (B20) 

(0 iaabO J)(O kifdO I) = _ -b,('T}ac'T}bd _ 'T}ad'T}bc _ iE"bcd) 

X (bikb jl _ 8i18Jk )(0 mo m)2; (B2I) 

(0 iaabO J)(O kqcdO I) = - A tr(aaba"qcdo-f)(8ik8JI - 8i18 jk ) 

X (0 mae 0 m)(o nafO n); (B22) 

(0 iaabO j)(O kif 0 I) = i('T}ad'T}bC _ 'T}ac'T}bd + iE"bcd )(bik8Jm 

_ 8im8 jk )(O no n)(e mad 0 I); (B23) 
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(OiaabOJ)ea(klm) = !(aab)pa[8ik (Ono n)epUlm) + sym(klm) 

+ antisym[ij]]; (B24) 

(0 iaaO j)(e kabO I) = ~(8ij8kl _ 8i18Jk)(O maao m)(o nabO n) 

+ -b,'T}ab(38i18Jk _ 8ij8kl _ 8ik8J/ ) 

X (0 mifO m)(o nacO n) 

+ !'T}abe (ijkl) + A(8ij8km8ln 

+ bil8km8Jn + 8im8Jk81n 

+ 8im8ln8k/)e Imn] + ~'T}ab 

X [8ik (omom)8 UI) + 8j1(omom)e fik )] 

+ (8ij8kmbln _ 8i1bJm8kn)e (mp) 

X(O po-abon) + W8km _ 8im8Jk ) 

xe(mp)(o PaabO/) + ~8ik(omom) 
X (0 Jo-abO I) + !8j1 (0 mo m)(o iaabO k) 

+ ft,'T}ab(38ik8j1 _ 8ij8kl _ 8i18Jk ) 

X (0 mo m)(o no n); (B25) 

(0 iaaO l)e a(klm) 

= - f-,o-aaa(o no n){38ije"(klm) + [38lk e"(ilm) 

- 8ikealjlm) + sym(klm) - tr(klm)]} 

- H 'T}abbp a - !(abo-a)p aJ (0 no n)(o Pab 0 P) 

X [(8i18l '" + 8im8j1)O Pk + sym(klm) - tr(klm)] 

_ f-,o-aaa(o no n)(o PO P) 

X [(8i18Jm + 8im 8j1 )Oak + sym(klm) - tr(klm)]; 
(B26) 

(0 iaaO l)e (klmn) 

= ~(OPOP)(oqOq){(8kI8mn + 8km81n + 8kn8lm) 

XOfiaaO JJ _ [wnblm + bim81n 

+ 8i18mn)o uaaO k) + sym(klmn)] 

+ [(38im8Jn + 38in8Jm _ 8ij8mn) 

Xo(kaaOI) + sym(klmn)]}; (B27) 

(0 iaaO J)e Ik/] 

= !Wk8lm _ 8i18km)(O ne n)(o PO P)O [jaae m] 

+ !(8ik8i1 _ 8i18Jk )(O me m)(o no n)(o Paao Pi; (B28) 

(0 kO k)(O la ao I)(e rna bO m) = !'T}ab (0 kO k )2(0 I 0 I); (B29) 

(0 kaaO k HO labO 1)(0 mifO m) 

= !('T}ab'T}cd + 'T}ac'T}bd + 'T}ad'T}bc) 
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On the construction of amplitudes with Mandelstam analyticity from 
observable quantities 
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It is shown that the problem of the construction of scattering amplitudes with Mandelstam 
analyticity from knowledge of their modulus in the three physical channels can be reduced, within 
a rather large class of functions, to the second Cousin problem of the theory of functions of two 
complex variables. As a consequence, it can be solved completely and explicitly. We derive 
conditions on the modulus function, under which at least one solution exists, as well as criteria for 
the correct resolution of the discrete ambiguity at fixed energy. 

PACS numbers: 11.50.Nk, 11.80.Gw, 11.20.Fm, 03.80. + r 

I. INTRODUCTION 

The problem of the determination of the phase of the 
scattering amplitude from observable quantities (i.e., dol dfl 
for scattering of spinless particles, dol dfl and polarization 
for spin-O-spin-! scattering, etc.) has an obvious physical in
terest and has led, in the course of time, to a set of very 
elegant studies in mathematical physics. 1-8 These studies 
(see Ref. 9 for a review) have succeeded in establishing with 
precision the extent of the ambiguity that is left in the phase 
if one takes into account, at a fixed energy, data over the 
whole angular region and uses the unitarity property of the 
amplitude. 1-6.8 

It is profitable to recall right now in more detail the 
problem of phase shift analysis at fixed energy, for the case of 
a reaction between spinless particles. The modulus (squared) 
of the amplitude A (z = cos 0) (0 = c.m. scattering angle) is 
supposed to be known on the physical region 
- 1 < cos (j < 1, from measurements of the differential cross 

section 

do/dfl (z) = A (z)A *(z), - 1 <z < 1, (1.1) 

and the question is to understand the way the phase of A (z) is 
restricted by this information. The amplitude A (z) is sup
posed to be holomorphic, e.g., in the z plane except for the 
half-lines ("cuts") ( - 00, - z_), (z+, (0), z_, z+ > O. With 
this hypothesis on A (z), one can divide the ambiguity of the 
phase in two parts: the discrete and the continuum ambigu
ity. 

For their definition, one requires first an extension of 
Eq. (1.1) to the whole complex plane (minus the two half 
lines). This is done by simply writing the right-hand side of 
Eq. (1.1) asA (z)A *(z*); this expression is manifestly hoI om or
phic in z in the (cut) complex plane. We call JI (z) the func
tion obtained by this extension, 

JI(z)==A (z)A *(z*). ( 1.2) 

JI(z) can, in principle, be found everywhere by analytic con
tinuation from knowledge of dol dfl on - 1 < z < 1. It is real 
analytic and coincides with IA (z) 12 for all z on ( - z _, z +) 
(but not elsewhere). We can thus assume IA (zW is known not 
only on ( - 1, 1) but on ( - z_, z+). 

In general, j((z) vanishes at several pairs of complex 
conjugate points (z;, z~) in the complex plane. By (1.2), the 

amplitude A (z) will vanish at one of these points, but we can
not a priori decide at which. There exists thus a twofold am
biguity concerning the location of the zeros of A (z), corre
sponding to each pair (Zi' z~). It is easy to show that if N pairs 
of zeros are present, we can choose at will anyone of the 
zeros in each pair and construct an amplitude with the cor
rect modulus along (z _, z +), analytic in the cut z plane and 
vanishing precisely at those zeros. If we define 

JI(z) 
Jl 1 (z) = ------'--'------

n l(~ 1 (z - Zi Hz - zr) , 
(1.3) 

then a possible A (z) is given by 
N 

A(z)= IT (z-Zj)~~H"I(z), (1.4) 
j=l 

where the product extends over the given choice of N zeros. 
There exists thus at least a 2N ambiguity in the reconstruc
tion of the amplitude, for N distinct pairs of simple zeros. 
This is the discrete ambiguity "of the zeros." 

If the amplitude were a polynomial of degree N, this 
would exhaust the ambiguity in the determination of the 
phase. However, the amplitude has cuts along 
( - 00, - z _), (z +, (0) and it is easy to construct functions 
fl (z), holomorphic in the z plane minus the cuts and having 
unit modulus on ( - z._, z+). For instance, 

fl (z) = exp[i( ~ r-~ :~)z dz' 

+ ~ i oo 

~(z') dZ')] (1.5) 
rr z. z -z 

withf(z) any real function giving meaning to the integrals. 
Clearly, if A (z)isapossibleamplitude,A l(Z) = A (z)fl (z)isalso 
an amplitude. This gives the continuum ambiguity of the 
phase. 

If the unitarity property of A (z) is taken into account, a 
drastic reduction of these ambiguities occurs. In the elastic 
region, at most a discrete type of ambiguity (Crichton lO

) is 
allowed (see Refs. 1, 5, and 8), whereas, above the inelastic 
threshold, apart from possible discrete ambiguities of zeros, 
the continuum ambiguity gradually develops with increas
ing energy. 2-4,6 

The question which naturally arises is then to describe 
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the indeterminacy of the phase allowed by knowledge of the 
observables on larger intervals of energy and by the analytic 
structure of the amplitude. For 1T N scattering, use of a num
ber of specific experimental facts and of the linear relation 
between the amplitudes of measurable processes can even 
restore uniqueness within a certain class of amplitudes, in 
some interval of t values around t = 0, if analyticity in the 
energy is taken into account, together with data at all ener
gies. 11 

An "extreme" and interesting question was raised in 
Ref. 7: to determine the extent to which analyticity of the 
amplitude in two variables can fix its phase, e.g., in 1T1T scat
tering, if one assumes the differential cross section is mea
sured at all energies and angles in the three channels. In this 
connection, it is shown in Ref. 7 that if two amplitudes A 1.2 

(s,t,u) have the same modulus in the three physical channels 
and have the same (axiomatic) analyticity domain, then they 
differ by a factor 

R ( ) 
AI(s,t,u) 

s,t,u = 
A2(s,t,u) 

[(4m 2 
- s)(4m2 - t )(4m2 - u)] 1/2 - f(s,t,u) 

[(4m 2 
- s)(4m2 - t )(4m2 - u)] 1/2 + f(s,t,u) , 

(1.6) 

withf(s,t,u) the ratio of two entire functions, h (s,t,u) and 
g(s,t,u) of s,t,u (s,t,u are the Mandelstam variables, 
s + t + u = 4m2, m = mass of the pion). In Ref. 12, it was 
shown that, in a special class of amplitudes, holomorphic in 
the Mandelstam domain, continuous on the cuts and such 
that h (s,t,u) and g(s,t,u) are polynomials of s,t,u,J(s,t,u) can
not in fact be freely chosen; rather, there exists only a dis
crete l3 set of such functions: iff(s,t,u) does not belong to this 
set, A2(s,t,u)R (s,t,u) is not analytic in the Mandelstam do
main. Multiplying the amplitude A2(s,t,u) by an admissible 
factor R (s,t,u) amounts to the global reflection across the 
physical region of a certain complex of zero trajectories (see 
Sec. II) of A 2(s,t,u). The restriction to polynomial 
h (s,t,u), g(s,t,u) in (1.6) is not as drastic as it might seem: it is 
achieved in a class of amplitudes A (s,t,u) for which there 
exists an interval of t values, - 4m2 < t < 4m2, so that 
A (s,t,u) has a finite number of zeros in the complex s plane 
and an interval of real s (or u) values, - 4m2 <s < 4m2, 
where A (s ,t,u) has a finite number of zeros in the correspond
ing t plane. 

The result of Ref. 12 is qualitative: If all the trajectory 
functions are known at all energies in all three physical chan
nels, the amplitude is uniquely determined, from analyticity 
requirements, up to a trivial overall sign. A first open prob
lem is thus the actual construction of the amplitude from the 
available modulus. A second question is, given a certain re
solution of the discrete ambiguity at each energy in the three 
channels, i.e., a certain choice for the positions of the zero 
trajectories, to find a computational means to decide 
whether it is one of the "correct" possibilities, consistent 
with analyticity in two variables. Indeed, the reasoning at 
fixed energy made above would allow us in principle to re
verse the sign of the imaginary part of one whole trajectory 
function, without affecting the modulus of the amplitUde. It 
is not clear, however, that such a reflection would not des-
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troy the property of analyticity in two variables of the ampli
tude. In fact, it turns out it does so in most cases, and we call 
"correct" resolutions of the discrete ambiguity those for 
which the resulting amplitude function does not violate this 
requirement. In Refs. 14 and 15 a method has been proposed 
to pick out "incorrect" possibilities, on the basis oflocal two 
variable analyticity, under the assumption that the ampli
tude is also holomorphic in some domain of a second sheet. 

The present paper wishes to show that if the amplitude 
A (s,t,u) for the scattering of scalar particles belongs to a cer
tain class of functions, even more restricted than the one of 
Ref. 12, but still rather large and physically acceptable, and 
if its modulus and the position of the zero trajectories are 
known at all energies in (the physical region of) all channels, 
then A (s,t,u) can indeed be constructed and, in the opinion of 
the author, in a surprisingly simple manner. In fact, we show 
that the construction of A (s,t,u) can be reduced to the solu
tion of the second Cousin problem of the theory offunctions 
of several (in this case, two) complex variables; the latter 
problem is completely and explicitly solvable for the do
mains we are considering. The reduction is possible only if 
the zero trajectories are appropriately situated; this yields 
certain conditions (sum rules) that have to be fulfilled, if the 
discrete ambiguity of the zeros has been "correctly" solved. 
Thus, we can give an answer to the second problem above. 

It is important to realize from the outset that the func
tions that describe the modulus in the three channels cannot 
be prescribed independently. Indeed, consider the special 
situation of an amplitude which has no zeros in the whole 
Mandelstam domain. Then, knowledge of its modulus in two 
channels only (e.g., sand u) is sufficient for the determination 
of the amplitude. This is done by writing at fixed t, It I < 4m2

, 

a dispersion relation for the function In A (s,t,u)/ 
[(4m 2 - s)(4m2 - U)]1/2, whose imaginary part is known and 
whose real part is related to the phase of the amplitUde. A 
similar dispersion relation can certainly be written at fixed 
s, lsi < 4m2

, using the modulus in the t and u channels, and it 
must lead to the same amplitude (in particular in the domain 
lsi, It I, lui <4m2). This is impossible unless the modulus in 
the t channel is appropriately constrained. The presence of 
zeros in the analyticity domain will not modify this situation. 

In this paper, we shall assume that we are given in the 
physical region of the three channels the correct modulus 
function of an amplitude. The constraints that this function 
must obey will appear in the end as the condition that the 
amplitude constructed by two different routes is the same. 

In the following, we discuss an example in which the 
construction can proceed in a simple manner; this will clar
ify the difficulties arising in the general case. Consider the 
artificial case of an amplitudef(a,7), holomorphic in a and 7 
in a neighborhood of the direct product lffJ of the two unit 
disks lal <: 1 and 171 <: 1. We assume the modulus is available 
in the set! (1m a = 0, lal < 1) ® 171 = 1) u ! lal 
= 1 ® (1m 7 = 0,171 < I)) (this is the natural analog of the 

"physical" region if the amplitude has only two cuts, see Sec. 
II). 

We place ourselves in the following very particular situ
ation: for each a on lal = I,J(a,7) has precisely N zeros in 
171 < 1, is nonvanishing for 171 = 1, and for each 70n 171 = 1, 
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f(u,r) has no zeros in lui < 1. For this special case, we can 
easily determine a Cousin function Co(u,r), holomorphic in 
.%'=(Iul < 1) ® (Irl < 1) and vanishing precisely wheref(u,r) 
vanishes and nowhere else (in.%'). 

To this end, we first notice that the number of zeros in 
Irl < 1 off(u,r) for any u inside lui < 1 is always equal to N. 
This follows from the relation 

N = _1_ j c1f lc1r(u,r) dr (1.7) 
21Ti ~rl ~ 1 f(u,r) 

evaluated for u on lui = 1. Since for Irl = I,f(u,r) is non
vanishing in lui < 1 and holomorphic in a neighborhood of 
lui.;;; 1, we can extend the right-hand side to lui < 1; it repre
sents an integer-valued, holomorphic function of uin lui < 1 
and must therefore be the constant N itself. Let the N zeros, 
at a given u, lui < 1, be rl(u), r 2(u), ... , rN(u). They are local
ly holomorphic functions of u, with at most branch points of 
finite order, by Weierstrass' preparation theorem (see Ap
pendix A). At a branch point uo, a subset of the 
ri(u), i = 1, ... ,N, are connected to each other by analytic 
continuation around U o' As a consequence (see also Appen
dix A), the symmetric combinations 

N 

f31(u) = - I ri(U)' 
;= 1 

(1.8) 

N 

f3N(U) = II ri(u)*( - It 
;= 1 

are holomorphic functions of u in lui < 1. Their values are 
known on lui = 1, by assumption. We can determine them 
inside lui < 1, by Cauchy's theorem: 

1 f f3k(U') , f3k(U) = -. -, -du (k= I, ... ,N). 
2m u - u 

( 1.9) 

We conclude that the function f.8o(u)=I] 
N 

Co(u,r) = I r kf3N_du) 
k~O 

N 

= II (r - rj(u)) (1.10) 
;=1 

has the required properties: it is holomorphic in .%' and van
ishes only there wheref(u,r) vanishes. The function 

E (u,r) = f(u,r)ICo(u,r) ( 1.11) 

is then free of zeros and has a known modulus in the "phys
ical region." Its construction is straightforward. It can be 
done by writing Poisson integrals either at fixed r on 
1m r = 0 or at fixed u on 1m u = O. This freedom shows that 
the values of the modulus in the "two channels" cannot be 
prescribed independently, as remarked before. Further, a 
condition for the discrete ambiguity to be solved correctly (in 
a manner compatible with two variable analyticity), at each 
u on lui = 1 is that the functions f3i(U), known on lui = 1, 
are limiting values off unctions holomorphic in lui < 1; this 
is a nontrivial restriction (cf. Refs. 14 and 15). 

This example is very special; in general, zeros off(u,r) 
"enter" or "get out" of the unit disk Irl < 1, as we move 
along lui = 1, and the same happens for Irl = 1. At first 
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sight, a complete solution to the problem of constructing the 
Cousin function might seem out of reach. Nevertheless, it 
turns out it is possible to perform the construction complete
ly, for functions holomorphic in a neighborhood of?lJ and 
arbitrary distributions of zeros. Further, as announced, the 
treatment can be generalized to functions holomorphic in 
the Mandelstam domain, provided they are suitably restrict
ed, but still sufficiently free to be of physical interest. 

The paper is organized as follows. 
Sections II and III deal with the construction off(u,r), 

holomorphic in a neighborhood of ?lJ, from the values of its 
modulus in the "physical" region. In Sec. II we show that 
knowledge of the zeros off(u, r) on the boundary c1.%' of.OJI: 
a.%' = [lui = 1 ® Irl.;;;lj u [lul';;;l ® Irl = Ij determines 
the whole manifold!Y f of the zeros off(u,r) in all of.%'. This 
is, in fact, the essential progress claimed by this paper. If the 
manifold is known (the "Cousin data"), we can apply Cou
sin's method 16,17 to write down a function C (u, r), holomor
phic in :JJ and vanishing precisely on .!?! f' We do this and 
then construct/(u,r) explicitly in Sec. III. In Sec, IV, we 
consider amplitudes with Mandelstam analyticity and intro
duce and discuss some assumptions needed to imitate the 
treatment ofSecs, II and III. We then construct, from the 
"zero trajectories" known in the physical region, the Cousin 
data in the Mandelstam domain. In Sec. V, we show that the 
construction of the Cousin function of Ref. 16 can be gener
alized to the Mandelstam domain and thus obtain A (s,t,u) 
explicitly. Conclusions are presented in Sec, VI, together 
with a review of the assumptions delimiting the class of am
plitudes used in the paper, 

II. THE DIRECT PRODUCT OF TWO UNIT DISKS. 
CONSTRUCTION OF THE COUSIN DATA 

We consider a functionf(u,r), holomorphic in u and r 
in.%' ._[ lui < 1 + E® Irl < 1 + Ej, for some E>O and real 
analytic: 

f*(u*, r*) = f(u,r). 

We assume its modulus squared, M(u,r) = [f(u,rW, is 
known in the set 9 ==.9 (Tu9 r=[ lui = 1; 

(2,1) 

1m r = 0, Irl < Iju[ 1m u = 0, lui < 1; Irl = Ij. The values 
of M(u,r) for Irl = 1, u real, can be extended analytically to 
the interior of the disk lui < 1 + E, by means of 

M(u,r) =f(u,r)f*(u*,r)=Mr(u). (2.2) 

One obtains similarly M(T(r) by extending the values of 
M (u,r) for lui = 1, r real. [Clearly, if we perform the map
ping u ---+ s, r ---+ t, s = 4u/( 1 + U)2, and the same for 
tJ(q(s), TIt )) is holomorphic in a Mandelstam domain with 
two cuts and admits of extensions to the second sheet 
through the cut; the images of 9 a and 9 r contain the phys
ical regions ofthes and tchannels; the modulus of/is known 
on them, if it is known in the physical region, by analytic 
continuation; cf. Introduction.] 

For each u on lui = 1, we can solve the equation 

f(u,r) = 0 (2.3) 

and obtain a certain number of roots rj(u), Irj 1< 1 + c. As
suming that, for no u, lui = 1,f(u,r)=O, there can be only a 
finite number of such roots in Irl';;; 1, at each u, lui = 1. The 
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functions 1"i(U) are holomorphic in the neighborhood of ev
ery point u, lui = 1, where all roots ofl (u, T) = 0 are distinct. 
As u moves along lui = 1, they can acquire at most branch 
points of finite order (see Appendix A), if they stay inside 

11"1 < 1 + E. 

At a branch point uo, /uol = 1, several functions 1"iI (u), 
1",'2(u), ... ,1"in(U) acquire the same value. We define the con
tinuation of one function 1"iI (u) past Uo by analytic continu
ation along a small semicircle lu - uol = E, contained in 
lui < 1. We call "zero trajectory" 1"i(U) the whole function 
obtained along lui = 1 by analytic continuation from a func
tion element 1"?(u) with the convention above. It can obvious
ly be many-valued on lui = 1. 

The trajectory function 1"j(u) gives rise to a curve yj: 
1" = 1"j(u) in the plane, as u moves along lui = 1 and 1" stays 
inside 11"1 < 1. Such a curve is closed if, by analytic continu
ation along lui = 1 (with the convention above at branch 
points), we return to the same function element with which 
we started (after a number of turns). The curve Yj should not 
be confused with the image set of 1"j(u) in ITI < 1; it is possible 
that Yj consists of the same set covered several times as is the 
case, e.g., with the zeros of/(u,1") = 1" - ,u4

• The curve Yj is 
specified only if its parametrization Tj(U), lui = 1, is given. 
We assign an orientation to the Yj'S by letting u move coun
terclockwise along lui = 1. 

It is of interest to consider also the set of points in /1"/ < 1 
which are the images of lui = I under 1" = Ti(U), without 
reference to the trajectory function. It is possible that several 
trajectory functions have the same image set [e.g., the trajec
tory functions of/(u,1") = (2u 1" - l)(u - 21") have the same 
image set: the circle 11"1 =j]. It is thus reasonable to denote 
the distinct image sets by YI' I = 1,2, ... , and, if necessary, 
the curves parametrized by 1"j(u) and giving rise to rl' by 
Y/I' Y12' "'Yln' We say then that the set rl has multiplicity n, 
and to allow for the possible different orientations of the YIi, 
we distinguish between two "oriented" multiplicities, 
m»m2,m l + m 2 = n. 

In Appendix B we justify in detail the following intu
itively obvious picture of the curves Yi and ofthe image sets 
rl: (a) every Yj has a continuous tangent, except possibly for a 
finite number of points where it might have cusps; (b) the Yj'S 
have finite length; (c) each Yj has either a "beginning" at 
some 1"a and an end at 1" .. l1"a I = 1, l1"e / = 1, or it is closed 
(and lies entirely in /1"1<1); (d) there are a finite number of 
Yj'S; (e) two Yj'S can either intersect at a finite number of 
points or coincide; (f) let !l" T = uri; the complement of !l" T 

in 11"1 < 1 consists of a finite number of domains ~ i' 
We may state that "two points of a curve Yil are dis

tinct" if they correspond to different values of the parameter 
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u, lui = 1. We can thus define along the image set ri contain
ing Yil an "inverse" function Uil (1") as being equal to the 
value of the parameter u at the point 1"; even if ri contains 
just one curve YiI' Uil (1") may be many-valued [as in the ex
ample of/(u,1") = T - !u4

]. However, expressions like 
Jr. Uil (1") dT have a well-defined meaning: they are 

,I 

h71 = I u{d1"il /du) du and the integration may cover lui = 1 
several times. 

Clearly, if ri is multiple, several (possibly multivalued) 
inverse functions Uid1") may be defined. The functions uid1") 
are locally holomorphic on rj, except for isolated branch 
points, where they are Holder continuous. 

Starting from one function element 071 (1"), defined in the 
neighborhood of 1"0 on ri' we can construct by analytic con
tinuation along Yil the whole Uil (T). The only difficulty is at 
branch points of U il (1"). We understand then that the con
tinuation is performed along the image c' through the func
tion Til (u), defining Yil' of a small semicircle lu - uol = E, 

lui < 1, IUol = 1 in the sense induced by the clockwise sense 
in the u plane. 

The phrase "analytic continuation" of 1"?(u) along 
lui = 1 or of u?(1") along Yi will be used in the text with the 
convention above at branch points. For clarity, two exam
ples are now presented and sketched in Fig. 1. Consider 
l(u,1")=r-(u-l)first.Forunearlonlul = l,thereare 
two zeros in 11"1 < 1: 1"1.2 = ± (u - 1)1/2, which approach 
each other as u - 1. The image of the small semicircle c (Fig. 
1) consists of two arcs c' and c" in the 1" plane. The curves Yi' 
i = 1,2, are uniquely defined. The inverse functions 
UI ,2 (1") = r + 1 are regular at T = O. Consider nextthe zeros 
of/(u,1") = 1" - (u - W. We obtain for u near 1 a smooth 
curve T 1 (u) as image of lui = 1 in the 1" plane. However, there 
is a branch point of the inverse function at 1" = O. The image 
of the semicircle c consists of the (slightly deformed) contour 
c' in the 1" plane, and we understand that UI(1") "beyond" 
T = 0 is the continuation of u I (1") "before" T = 0 along the 
path c' (Fig. 1). 

As 1" moves around 11"1 = 1, we denote also by ui (1") the 
various roots of/(u,T) = 0 contained in /ul < 1. We can di
vide the unit circle 11"1 = 1 into a finite number of intervals 
(1"j,T j + I ),j = 1,2, ... ,N, 1"N = TI , so that the number nj of 
roots of/(u,T) = 0 in lui < 1 is constant for fixed 1" in 
(1"j, 1"j+ I)' We disregard zeros of/(u,1") on lui = 1 ® 11"1 = 1 
which are isolated in a(!g (see Appendix C). 

We can now part the various functions ui (1") associated 
with Yi and with intervals (1"i' Ti + I) into classes. Two func
tions ud1"), u/(1") belong to the same class if they can be ob
tained from each other by analytic continuation along the 
curves {Yj} and the circle 11"1 = 1. This partition clearly in-

t(e,n/l) = 
t(e,nll) 

FIG. 1. Paths of analytic continuation of 
T,(U) and U,(T) at irregular points of y, (Sec. 
II). 
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duces also a separation of the curves ri into classes. 
Explicitly, assume we start with an element u? (1') of the 

function 0'1(1') at 1'1' 11'11 = 1, and continue it counterclock
wise along 11'1 = 1. We might reach a point To, 0'1 (To) = 0'0' 
so that 10'1(1'0)1 = 1. If To is a regular point of 0'1(1'), dUll 
dr#O and finite, then 0'1(1') realizes a conformal mapping of 
a sufficiently small convex neighborhood Vo of To onto a 
neighborhood Uo of 0'0' The image of the piece of circle: 
CC = Von(ITI = 1) under 0'1(1') is a curve CC' in the 0' plane. 
Along CC', 10'1(1')1 < 1 for l' before TO and either 10'1(1')1 < 1 or 
10'1(1')1> 1 for l' past To, and sufficiently close to it. In the 
former case, we continue further 0'1(1') on 11'1 = 1 [as in the 
case Of/(U,T) = (0' - 1/2) - Tl2]. In the second case, con
sider the inverse mapping 7 = 1'1(0') and the image under 71 
ofa piece of circle Uon(lul = 1). Part of this image must 
coincide with the image set ofacurve r2: 7 = 72(0'), ending at 
70 and having 0'1(7) as inverse function, for 7 near 70, Thus, 
0'1(1') is identical with 0'2(1'), the inverse function associated 
with r2' We continue now 0'1(7) along r2 and can verify that, 
as we move away from 171 = 1, the value 0'1(7) moves coun
terclockwise on lui = 1 [see Fig. 2(a) for the example 
/(0',7) = 0'7 + 0' + 7 - 1]. 

In the general case (without restrictions on dulld7), we 
continue 0'1(7) analytically clockwise on a small circle 
around 70, starting at 7" before" 70, where 10'1(7)1 < 1. Either 
we reach in this process a first curve r2 on which 
10'1(7)1= 1 - then 0'1(7)=0'2(7), the inverse function associat
ed to r2 [see Fig. 2(b) for the example 
/(0',1') = 7 - 1 - (0' - W] or we do not meet any such curve 
[as for/ = 7 - 1 + (0' - In In the former case, we continue 
0'1(7) along r2' in the latter along 171 = 1. Ifwe continue 
along r2' we must reach again 171 = 1, since r2 has an "end" 
(see Appendix B). We continue again counterclockwise on 
171 = 1 and repeat the procedure until we recover the func
tion we started with. This must be possible, since there are 
only a finite number of roots of/(u,7) = 0 at fixed 7,171 = 1. 

The closed path of several curves ri and pieces of the 
circle 171 = 1, needed to return 0'1(7) to its original value is 
called rl' With this procedure, each curve ri falls into one 
class r k and only in one. A closed ri makes up a class by 
itself. 

We make next a simplifying assumption, which we dis
cuss and remove in Appendix C: 

(A) There exist only a finite number of points 7, 171 = 1, 
forwhichoneoftherootsO'{T)of/(u,T) = o has unit modulus 
(IO'{T) I = 1). 

(a) 

Clearly, the "end points" of ri are among these points. 
In fact, the other ones are isolated in a!!lJ, i.e., they are not 
limit points of other zeros of/(u,7) on a!!lJ. As indicated in 
Appendix C, we can ignore them in the following (since they 
are isolated in !!lJ). 

Weare now in a position to prove the following. 
Theorem 2.1. Define 

5(7)= I_I J~ 
j 21Ti Yj 7' - 7 

nj Jrj+ I d7' +"- --4 21Ti rj 7' - 7 
J Ir'l = I 

(2.4) 

with the sense of integration counterclockwise on 11"1 = 1 
and the sense of rj induced by the counterclockwise motion 
on lui = 1; n j is the number of roots Of/(U,T) = 0 in 10'1" 1 
for 171 = 1, l' E h, 7j+ d. Let further nIT) be the number of 
roots of/(u,7) = 0 in lui < 1 for fixed 7E (Cg'r)n(ITI < 1) 
(==u iit)J Then: 

(a) 5(7)=0, for 11'1 > 1; 
(b) 5(1') = No a constant integer, for 7 E it) 0 

(c) n(7) = Ni, a constant integer, for 7 E it) i; 
(d)Ni=Ni' 

Before proceeding to the proof, we point out that, ac
cording to this theorem, we find unambiguously the number 
of roots of/(u,7) = Oin lui < 1 forrfixed, l' E it) 0 only from 
information concerning the zero trajectories, available on 

the boundary a!!lJ: I 10'1" 1 ® 171 = 1 luI lui = 1 ® 171" 1 l· 
This is the first step in the construction of the Cousin data. 

Proof We can rewrite (2.4) as 

1 i d7' 5(7)= I-. -,-
k 21Tl r. 7 - 7 

(2.5) 

with r k the closed loops introduced before, needed to return 
Ui (7) to its original value. Since all r k are contained in 
171 < 1, (a) and (b) follow by application of the residue 
theorem. (Notice that closed loops contained in 171 < 1 may 
contribute negative values.) The fact that the ri have finite 
length gives meaning to (2.4). To prove (c), we write 

n(7) = _1_1. a/(u,7)lau dO'. (2.6) 
21Ti~ul = I /(0',1') 

For 7 in it) 0/(0',7) #0, if lui = 1, since it)i eCg' r' Since 
the right-hand side of (2.6) is continuous in 7 and n(7) is an 
integer, it must be a constant, as long as 7 does not reach a 
curve ri (or 171 = 1), Thus n(7) = Ni if 7 E .Pfl i' 

L 

(b) 

FIG. 2, The continuation of u,(r) at points, where lu;(r) I = 1 and the path described by u,(r) in the u plane (Sec. II); (a)f(u,r) = ur + u + r - 1; (b) 

f(u,r) = r - 1 - (u - W 
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To prove (d), we first consider a domain !iJ I adjacent to 
the boundary Irl = 1 along (rl, r2 ) and show that (d) is true 
for this domain. Indeed, since%(r)=O for Irl > 1, it follows 
from the Plemelj discontinuity formulas (Ref. 18, p. 43) that, 
for r in the domain !iJ I' %(r) = n I' By assumption (A), we 
can choose ro, ro E (rl, r 2 ), so that all n(ro) = n l roots of 
I(u,ro) = 0 lie in the interior of lui < 1. But, then, n(r) de
fined by (2.6) for r in a neighborhood Uro of r 0 stays constant 
in Uro ' as shown above (if Uro is sufficiently small). Then, 
however, n(r) is constant in all of!iJ I' and n(r) = n l. There
fore, (d) is true for r in !iJ I' 

To prove (d) for a domain !iJ 2 adjacent to !iJ I' we com
pute first %( r) for r in !iJ 2 by means of the Plemelj formulas 
from (2.4) and then show that, by crossing the boundary 
between !iJ I and !iJ 2' n(r) varies by the same amount at 
%(r). Assume that the boundary 1'1 between !iJ I and !iJ 2 is 
simple, given by ~ curve YI with an inverse function ul(r) 
single-valued on Y1 19; assume also that YI is such that!iJ 2 lies 
on its left. Then the discontinuity of %(r) is N2 - NI = 1. If 
air) is l'-valued rather than one-valued, then N2 - NI = k 
and ifYI is multiple and has multiplicities ml, ml(m l when it 
is oriented so that !iJ 2 lies on its left), 
N2 - NI = kl + k2 + ... km. - k; - k; - ... - k;;'1> 
where k;. k; indicate the many valuedness of the inverse 
functions U ik (r). 

For the computation of n(r) in !iJ 2' assume again first 
that 1'1 is simple and ul(r) is single-valued. Consider then a 
point roE 1'1 and a neighborhood Ur of it, where the inverse 
function <:'I(r) is holomorphic and iu/dr(ro)-=I=O. As r ap
proaches Y I' lUI (r) I -+ 1 and, if !iJ 2 lies on the left of Y I' 
lUI (r)1 < 1 in !iJ2nU1'o,luI (r)l> 1 in !iJ lnU1'o (conformal 
mappings preserve orientations of angles). Thus, as we cross 
1'1 from !iJ I' a new zero ul(r) "enters" the unit disk lui < 1. 
On the other hand, consider the other n(ro) zeros of/(u,ro) 
lying in lui < 1. By continuity, they stay inside lui < 1 forrin 
a sufficiently small neighborhood of ro. Altematively,20 one 
can verify that 

n(r) = _1_j B/(u,r)IBu du 
2mJc I(u,r) 

(2.7) 

is continuous across 1'1 in a neighborhood (small enough) of 
r 0; in (2.7) the contour C(i encloses the n( r 0) roots of 
I(u,ro) = 0 in lui < 1, is contained in lui < 1, and avoids a 
neighborhood of the point ul(ro)' Thus, in U1'on!iJ I' 
n(r) = n(ro) = nl, whereas in U1'

o
n!iJ 2 , 

n(r) = n(r) + 1 = n I + 1. These equalities hold then in all of 
~ I and !iJ 2' and this Enishes the proof if l' I is simple. If UI (r) 
IS not one-valued or YJ is multiple, we have to allow for 
kl + k2 + ... kml zeros to approach lui = 1 as r ap
proaches YI from !iJ 2 and for k; + k; ... k;;'1 zeros if YI is 
approached from !iJ 1 but the reasoning is strictly un
changed. This ends the proof of Theorem 2.1. 

L (i) . . et u/ (r), 1= 1,2, ... , be the Ni roots of/(u,r) for r 
mSld~ !iJ;. Since N; is constant in !iJ;, it follows that the 
functIons 

N, 

S;. dr)= L (d;l(rW (2.8) 
/=1 

are holomorphic for r in !iJ;. This follows from the symme-
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try of these sums under permutation of the ~'l(r) and can also 
be checked from the representation: 

Sdr) = _1_ j ~ B/(u,r)/Bu du (2.9) 
I, 21Ti ~(TI = 1 1 (u,r) 

[cf. Eq. (A7) of Appendix A]. 
We can now prove: 
Theorem 2.2: Define, with the same sense of integration 

as in (2.4), 

The summation in the second integral is performed over the 
n j roots up/(r') of/(u,r) = 0, r' E (rj , rj+ I)' Then: 

n(k)(r) = S;,dr ) (2.11) 

for r in !iJ; and 

n(k)(r) = 0 (2.12) 

for Irl > 1. 
Theorem 2.2 achieves the construction of the Cousin 

data: from information available on the boundary of the 
analyticity domain, we construct the symmetric combina
tions of the roots dk)(r) of/(u,r) = 0 for r in each!iJ;. If one 
knows these symmetric combinations and the numbers N of 
the roots in !iJ; by (2.4), one can construct the roots explicitly 
(see below) at each r, Irl < 1. Equation (2.12) can be seen as a 
condition for the "correct" resolution of the discrete ambi
guity (see below). 

Prf!..of It is enough to consider Sj,l (r). We prove first 
that, if Y j is the boundary between !iJ j and !iJ j + I , and has 
multiplicity one and a single-valued inverse function u(r) 
(!iJj+ 1 lies to the left of Y j) J 

For this, we simply repeat the argument at the end of 
Theorem 2.1, i.e., show the continuity of 

S(r) = _1_ j u BIIBaiu,r) du 
J 21Ti Jcc I(u,r) 

(2.13) 

(2.14) 

across Y j' for C(i chosen as shown there, i.e., a contour con
tained in lui < 1 en~osing all the roots in lui < 1 of 
I(u,r) = 0, for,!o E Yj' and avoiding a neighborhood of the 
point uj(rQ). [Sj is the sum over N j roots of/(u,r) = 0.] If 
the curve Yj is multiple or has a many-valued inverse func
tion ujdr), Eq. (2.13) generalizes in a straightforward man
ner to 

mjl m 

Sj+ 1,1 (r) - Sj,1 (r) = L uj/(r) - i ujl(r), (2.13') 
1= 1 1= mjl + I 

where the various inverse functions pertaining to 1'j have 
been ordered so that the first m·/ correspond to the sense on 
Y j leaving !iJ j+ 1 to the left. J 

We write now Cauchy's theorem for each S;,1 (r), 
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i= 1,2,···, 

_1_j S;.I(r') dr' = {S;.dr ), rE!»; (2.15) 
21Ti Jag, r' - r 0, 7 E C!» ;' 

where a!»; is the boundary of !»; and integration is per
formed in a counterclockwise sense. We now claim that, 
adding Eq. (2.15) for all i, for a fixed 7 E !» k' we obtain a 
value, SI(r), which is precisely the value assumed by n (1)(r), 
Eq. (2.10) at that rE !» k' Indeed, we recognize thecontribu
tions of the circle Irl = 1 are the same in_both SI(r) and 
n (1)(r). Consider now the inner boundary r j (simple and with 
single-valued inverse) separating !»j and !»j+ I' Both SI(r) 
and n (1) contain a term corresponding to the integral over 
this boundary of u j(7')/(7' - r); we only have to verify that 
the sense is the same. Assume that, with respect to the sense 
in Eq. (2.10), !» j + 1 lies to the left of r j' Then, Eq. (2.13) 
holds. It follows that, in S 1 (r), the integral is performed in the 
sense induced by the counterclockwise sense in !» j + 1 , that 
is, so that !»j+ 1 lies to the left of the integration path in 
(2.15). Thus the sensesinSI(r) andn (1)(r) are the same. Th~re 
is no difficulty in generalizing this reasoning to arbitrary r j • 

WeconcludeSI(r)=n (1)(r) and thepropertiesofn (1)(7) in the 
theorem follow from Eq. (2.15). This ends the proof. 

Given the sums S;.k (r) and the numbers N;, we can con
struct in each!»; the symmetric combinations: 

N 

al.;(r) = - L a'~1(7) (=S;.I (r)), 
k=1 

(2.16) 

aN,.;(r) = II a'k)(r)*( - It'· 
k 

These are the coefficients of a polynomial P; (U,7), of degree 
N; in u. this polynomial vanishes in !»; precisely at those 
points where/(u, r) vanishes and thus gives a complete de
scription ofthe Cousin data. Explicit formulae are known 
(Newton's formulae, Ref. 21, p. 74) to compute the a k. ;(7) 
from the Sk.;(7). It is amusing that, by using them and the 
notations of Eqs. (2.4) and (2.10), it is possible to write an 
expression for P;(U,7) valid for allirl < 1. Let 
N = maxlrl < 1 %(7). Then we construct 

=-) 1 ~ ()~ ~ p (2 17) Y (u, r = ~~..Y(r) pf;:o ap r . 

with 

ao(7) = 1, al(r) = - n (1)(7) 

n (1)(7) 1 

n (2)(7) n (1)(r) 

a (7) = (- 1)1' 
p p! 

0 .. ·0 

2 .. ·0 

p-l 
... n (1)(7) 
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(2.18) 

Resorting to Newton's formulas, one can check that, indeed, 
Y (u,r) = P;(u,r), rE !»;. Formula (2.18) ensures thatap (7) 
vanishes for p >%(r) (see Ref. 21, p. 74) and the factor 

~ ~ 'Ir) cancels the n - %(7) unwanted zeros of the numer
ator at u = O. The function Y(U,7) achieves, in a compact 
notation, the construction of the Cousin data, from informa
tion available on the boundary of lui < 1 ® 171 < 1. 

Before closing this section, we comment on the signifi
cance ofEq. (2.12). Ifwe start the construction of the ampli
tude from the modulus of/(u, 7), available on the set 9', we 
know the location ofr; and the values of U;(7) on 171 = 1 only 
up to a twofold ambiguity. For each solution of this ambigu
ity, we can construct the functions n (k )(7) [Eq. (2.10)]. How
ever only few solutions will obey (2.12). Only if (2.12) is ful
filled, are we sure that the value of n (kl(7) in a domain!» I' 
adjacent to 171 = 1, approaches indeed, as Irl - 1, the value 
SI.k (r), obtained from the known zero trajectories. In other 
words, for a correct solution of the discrete ambiguity, (a) 
St d7), known on an interval of 171 = 1 should admit of an 
a~alytic continuation to all of!» 1 and (b) this continuation 
should be identical with the value assumed in !» 1 by n Ik)( r). 
The fact that requirement (a) is not satisfied for an arbitrary 
resolution of the discrete ambiguity has been pointed out 
(essentially) in Refs. 14 and 15. In order to choose a correct 
solution of the discrete ambiguity, one required that, in sim
ple cases, the sum and product of two zero trajectories be 
analytic in a domain as large as possible around the physical 
region (171 = 1). Clearly, Eq. (2.12) gives the correct math
ematical expression for this method. Notice that its formula
tion does not require any continuation of/(u, 7) to the sec
ond sheet. Also, it is not guaranteed that only one resolution 
of the discrete ambiguity satisfies (2.12). There may be sever
al correct solutions (see Ref. 12). 

III. THE DIRECT PRODUCT OF TWO UNIT DISKS. 
CONSTRUCTION OF THE AMPLITUDE 

The first part of this section is concerned with the con
struction of a function, C (U,7), the "Cousin function," holo
morphic in both u and 7 in!!iJ = ( lui < 1 ® Irl < 1 J and such 
that it vanishes in !!iJ precisely at those points where/(u,7) 
vanishes. The second part deals with the construction of the 
amplitude itself. 

The construction of C (u, r) follows to some extent Ref. 
16, p. 259 ff. The proof of its validity is different and adapted 
to the needs of Sec. V. 

We define first 

[ 
1 1ln(u - U;(7')) 'J %t(u,r)=exp - L -. , dr . 

; 21Tl y, 7 - 7 
(3.1) 

The integration is performed in the sense assigned to r; in 
Sec. II. The determinations of the logarithm are to be chosen 
as indicated in Appendix D. The purpose is to make % l(u,r) 
one-valued and real analytic. We show in Appendix D that 
this is possible, if the amplitude/(u,7) from which the zero 
trajectories are derived is real analytic. However, the choice 
of branches will generate discontinuities of 2k /TTi, k j an in
teger, in the numerators of the integrands of Eq. (3.1) at cer
tain points rOj' on the curves r;; the positions of r Oj and the 
magnitude of the discontinuities are uniquely determined by 
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the prescriptions of Appendix D, given the curves 
Yj:T = Tj(U). As a consequence, the function %I(U,T) ac
quires poles at fixed values of l' = TOj in 11'1 < 1. 

To make this point clear, we give a (simple) example and 
refer for the general discussion to Appendix D. Consider 
f(u,T) = u/2 - 1'; the disk 11'1 < 1 contains just one curve YI: 
the circle 11'1 = !; the inverse function iSUI(T') = 21", 11"1 = !. 
For u real in Eq. (3.1), - 1 <u< 1, it is natural to choose 
that determination of the logarithm for which 
1m In(u - u l ( - m = 1m In(u + 1) = O. This implies, by 
continuity along 11"1 =!, that 1m In(u - u l (! + iE)) = - 1T, 
1m In(u - UI(~ - iE)) = 1T (E > 0). One can verify (cf. Appen
dix E, Example 1) that %I(U,T) is indeed real analytic with 
this choice. The integral in (3.1) along YI has a logarithmic 
singularity at l' = !; for (1' - !) small, it behaves like In(! - 1'). 
This leads to a pole of % I(U,T) at l' = !, for all u. 

It is thus natural to define 

(3.2) 

where the product runs over the possible TOj ' where discon
tinuities of the numerator of the integrand occur and k j are 
the integers (positive) giving the magnitude of the discontin

uity in the sense of integration. Clearly, the factors (1' - TOj)k j 
are supposed to remove the poles of % I (U,T) at TOj (see Ap
pendix D). In the example above, kl = + 1,1'01 =!. 

We define further, with Y(U,T) ofEq. (2.17) 

C(U,T) = Y(U,T)%(U,T) (3.3) 

and shall prove the following. 
Theorem 3.1: C(U,T) is (i) holomorphic in q); (ii) holo

morphic in 1', 11'1 < 1, for u on lui = 1; (iii) continuous in 
(lui..;; 1 ® 11'1 < 1); (iv) is real analytic; (v) is such thatf(u,T)/ 
C (U,T) has no zeros in q); if lui = 1, this ratio has no zeros in 
11'1 < 1. 

Proof (i) To prove holomorphy of C (U,T) in q) , we study 
a single factor .k1(U,T) of %(U,T), corresponding to a curve YI 
with a single valued inverse UI(T): 

/ ( ) _ [ 1 Lln(u - UI(T')) d ,] 
/1:1 U,T - exp - - l' . 

21Ti r. 1" - l' 
(3.4) 

Clearly, .k I (u, 1') is holomorphic in the neighborhood of every 
point (U,T) in ! lui < 1 J ® ! l' plane \ yd. Because! lui < 1 J is 
simply connected, it follows that .k1(U,T) is one-valued and 
holomorphic in this domain. Consider that part of Y I which 
is the boundary between two domains fiJ I and fiJ 2' fiJ 2 lying 
on the left of YI' Let F2(u,T)=Y(U,T), l' E fiJ 2' 

FI(u,T)=Y(U,T), l' E fiJ I' Equations (2.18) imply that the co
efficient of the leading power in u in all the determinations of 
Y(U,T) is unity. For l' on YI: 

(3.5) 

Applying Plemelj's formulas to .k1(U,T), for l' ---+ YI' one gets 
(if l' E YI is not a cusp of YI): 
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lim .k1(U,T) = (u - UI(T))-1/2 
r"""""'y, 
TE ii' 2 

[ 
1 P f In(u - UI(T')) d ,] (3.6) Xexp - - l' , 

21Ti y, 1" - l' 

lim .kl(u,r) = (u - UI(TW /2 
'T_y. 
TE g; I 

[ 
1 pLln(u - UI(T')) d ,] Xexp - -. , l' . 

21Tl y, l' - l' 

From (3.5) and (3.6), we see that limT~ y, C (U,T) = limT~ y, 

rE !:iJ 2 

C(U,T) = C(U,T), C(U,T) being defined only for l' on YI' Thus, 
defining C (U,T) = C(U,T) on YI' C(U,T) is continuous as a func
tion oftwo real variables at each point ofYI (see Ref. 18, p. 
38), as we approach it from fiJ 2 or from fiJ I' We still have to 
verify that the function so defined is actually holomorphic in 
lui < 1 ® (fiJ 2 u fiJ d. To this end (see, e.g., Ref. 22, p. 309), 
let C(J be a closed curve in fiJ 2 U fiJ I' intersecting YI in two 
points PI and P2 , and define the function: 

C( ) - 1 f C(u,T')d ' U,T - -. -,-- T. 
2m 'if l' - l' 

(3.7) 

C (U,T) is holomorphic and thus continuous in Tin the do
main D enclosed by C(J. Adding and subtracting in (3.7) the 
integrals along the segment P IP2 of YI of C(U,T')I(T' - 1'), we 
conclude, by Cauchy's theorem, that C (U,T) is equal to C (U,T) 
in both parts of D, on the right and the left of Y I' It follows 
that limT~y,C(U,T) = limT~y, C(U,T) = C(U,T) and thus 

C (U,T) coincides everywhere in D with our definition of 
C (U,T). Therefore, C (U,T) is holomorphic in l' at all points of 
Y I on the boundary between fiJ I and fiJ 2 at each fixed 
u, lui < 1. 

If r I does not have a single-valued inverse or the loga
rithm has a discontinuity, there is no change of the argument 
at points of 91 where there is no cusp, except that we must 

modify .k1(U,T), Eq. (3.4) by inclusion off actors (1' - Toll, to 
remove unwanted poles [Eq. (3.2)]. 

At an intersection To of two y;'s, i = 1,2, so that 
dUj(T)/dT=f. 0 and finite, i = 1,2, we consider two factors 
.kj(U,T), i = 1,2 [Eq. (3.4)]. If the four adjacent domains are 
fiJ I' I = 1, ... ,4, one checks as before that the four functions 
F1(u,T).k I(U,T).k2(U,T), 1= 1, ... ,4 are the analytic continua
tions of each other through Y I' Y 2 and that they are bounded 
at To' They admit thus of a unique analytic extension at 
l' = To, obtained by taking the limit l' ---+ To from any of the 
fiJ t's. 

The discussion of Appendix E shows that C (U,T) is holo
morphic in l' even at cusps of Yo at each fixed u, lui < 1. 

Further, for fixed 1', the expressions (3.6) and (El) are 
holomorphic functions ofu, lui < 1. Using Hartogs'theorem 
(see Ref. 16, p. 227 and Ref. 23), it follows that C(U,T) is 
indeed a holomorphic function of both u and 1', in 
lui < 1 ® 11'1 < 1. 

(ii) If lui = 1, C (U,T) is not well defined, since the argu
ment ofthe logarithm in (3.4) may vanish. We define C (uo, 1') 
for IUol = 1, TI(UO) = To, l' Ei YI' To E YI by taking the limit 
u ---+ uo, lui < 1, along any direction nontangent to lui = 1, 
at fixed T. Since the integration along Y I is performed so that 
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al(r') moves counterclockwise on lal = 1, it is natural to 
define 

arg(ao - al(ro + 0)) - arg(ao - al(ro - 0)) = 17". (3.8) 

This convention defineshl(a,r) properly foraon lal = 1 and 
r not on YI (the symbols ± 0 refer to the sense of integration 
on yd. The function thus defined is holomorphic in r, r not 
on YI' For r on YI' we can use Eq. (3.6) for lal < 1 and let 
a __ a o, laol = 1, using Eq. (3.8). There is no difficulty to 
conclude that C (ao, r) is holomorphic in r, r E YI' except if r 
is such that rl(ao) = r. Then the principal part integral be
comes meaningless and a separate study is needed. We per
form it in Appendix E and conclude that C (ao, r) vanishes in 
fact at such points and is holomorphic there. 

(iii) The continuity of C (a, r) at the boundary points can 
be read off the definition (3.1)-(3.3) ofC(a,r) and its exten
sion to lal = 1, except for those points with lal = 1, 
r = r i (a) E Yo Irl < 1. The continuity at such points is shown 
in Appendix E. 

(iv) One must check that, for a,r real, C (a,r) is real. The 
reality of % (a,r) is proven in Appendix D (for the choice of 
branches of the logarithm indicated there). Further, since 
the roots off(a,r) = 0 at real r are either real or fall in com
plex conjugate pairs, the sumsSi,k(r) [Eq. (2.8)], are real, and 
this is also true of the coefficients ai.dr) [Eq. (2.16)]. Thus 
C(a,r) is indeed real for a,r real. 

(v) If laol = 1, we must show that C (ao, r) vanishes at 
those points r E Yi so that ai(r) = ao' As stated above, this is 
not transparent from Eq. (3.6), but we show in Appendix E 
that this is nevertheless, the case. 

In !?iJ, %(a,r) does not vanish, so that C (a,r) vanishes 
whereY (a,r) = O. ForeachrE Ii' i,n! Yi' Y(a,r) vanishes 
by construction in lal < 1 whereverf(a,r) vanishes, with the 
same order and nowhere else. Then, it follows thatf(a,r)/ 
C (a, r) is free of zeros in lal < 1 ® Ii' i' For r E yp the zeros 
off(a,r) in lal < 1 are given by the determination of Y(a,r) 
in the domain Ii'i lying to the right of Yi' However, as seen in 
the proof of Theorem 2.2 [cf. eq. (3.5)], these zeros are the 
same as those obtained from the values of Y (a, r) in Ii'i + 1 
asr - Yi' Thus, the zeros ofC (a,r) in lal < 1 are well defined 
for r on Yi andf(a,r)lC (a,r) is nonvanishing in lal < 1 even 
for ron Yi' 

This concludes the proof of Theorem 3.1. 
We can now proceed to the construction off(a,r). We 

have seen that the function 

E(a,r) =f(a,1')lC(a,r) (3.9) 

is holomorphicin !?iJ and non vanishing in! lal.;;; 1 ® Irl < 1 J. 
For lal = 1, Irl < 1, we know from analytic continuation of 
the modulus off(a,r) away from 9 <7 [cf. Eq. (2.2)] the values 
of the combination [a = exp(ia)]: 

E (eia,r)E *(eia, 1'*) = M<7= eia(r)l(C (eia,r)C *(eia,1'*)) 

=gl(eW,r). (3.10) 

Since, by Theorem 3.1, C (eia,r) is a holomorphic function of 
1', it follows thatg1(eia,r) is a known, real holomorphic func
tion of l' in Irl < 1. 

We now define 

L (a,1') = In( ± E (a,r)), (3.11) 
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where the sign is chosen to make L (a, r) real holomorphic in 
!?iJ. We rewrite then (3.10) as 

L (eia,r) + L (e - ia,r) = In gl(eia,r), (3.12) 

wherewehaveusedL *(a,r*) = L (a*,r). At each fixed 1', it is 
apparent that L (eia,r) can be extended analytically to lal < 1 
and L (e - ia,1') to I al > 1. We expect in fact we can express 
L (a,r) by means ofa Cauchy integral over its boundary val
ues, L (eia,r). Assume for the moment we can do this. It is 
then also true that 

i L(1!a,,~)-L(O,r)da'=O. (3.13) 
1;<7'1 = I a - a 

We obtain then from Eq. (3.12) that 

L (a,r) + L (O,r) = _1_ i Ing1(eia,r) da. (3.14) 
217" j 1 - ae- w 

From (3.14) we obtain L (a,r) in all of!?iJ: 

(3.15) 

From Eqs. (3.15) and (3.11) we can calculate E (a,r) in all of 
!?iJ up to a sign ambiguity. This achieves the desired con
struction of/(a,r): 

f(a,r) = ± C(a,r)E(a,r). (3.16) 

The sequence of equations used implicitly in (3.16) is (3.15), 
(3.10), (3.11), (3.9), (3.3), (3.2), (3.1), (2.18), (2.17), (2.16), and 
(2.5). 

To justify the use of Cauchy's formula for L (a,r) in Eqs. 
(3.13) and (3.14), one needs to verify that ¢ IL (reia,r) I da 
stays bounded as r --+ 1 (see Ref. 24, p. 41). This follows in 
turn if ¢Iln C (reia,r) Ida is bounded, as r- 1, and we only 
have to verify this for the exponents of each factor hi(a,r), 
corresponding to the various curves Yi in Eq. (3.1). This is 
done in Appendix E, Subsection (d). 

Now, by symmetry, we could have written an equation 
similar to (3.10) for Ir = exp(i,B)1 = 1, lal < 1: 

E (a,eif3 )E *(a* ,eif3 ) = M
T

= e,p(a)/(C (a,eif3 )C *(a* ,eif3 )) 

(3.17) 

whereg2(a,eif3 ) is holomorphic in lal < 1. Indeed, if Irl = 1, 
but not an end point ofa ypC (a,r) vanishes in lal < 1 only at 
those points where Y(a,r), Eq. (2.17) vanishes, that is, by 
construction, wherever f(a,r) vanishes. As a consequence, 
g2(a,eif3 ) is also free of zeros in lal < 1 for almost all ron 
Irl = 1. The problem is that the expression C(a,eif3 ) is not 
well defined for all,B. We show namely in Appendix E that, 
at the end points rei of the curve Yi' C (a,r) is singular, in a 
manner that is dependent on a. However, for each fixed a, 
¢ lIn C (a, reif3 ) I d,B is bounded ar r --+ 1, as one verifies from 
Eq. (E 17) and one can consequently still write a dispersion 
relation for L (a,r) at fixed a. We obtain then 

1 f eif3 + r j3 L ( a,r) = - -.--In g2(a,e' ) d,B. 
217" e'f3 - r 

(3.18) 

The fact that the resultL (a, r) must be the same as in Eq. 
(3.15) shows that thefunctionsM<7 andMT used in (3.10) and 
(3.17) cannot be prescribed independently. The equality of 
(3.15) and (3.18) gives a condition that has to be fulfilled by 
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the modulus functions on 9 a and 9 T in order that the 
problem admits of a solution. 

IV. THE MANDELSTAM DOMAIN. CONSTRUCTION OF 
THE COUSIN DATA 

In order to adapt the procedure of Sec. II and III to the 
construction of amplitudes A (s,t,u), holomorphic in the 
Mandelstam domain uII, one has to overcome the difficulties 

. that uII has not the simple topological structure of the direct 
product of two domains in the sand t planes (which might 
appear as a major obstacle) and, more formally, get rid of the 
assumption that A (s,t,u) can be continued some finite dis
tance on the second sheet. 

In this section, we deal with the latter point and intro
duce a number of assumptions on A (s,t,u), sufficient to en
sure the validity of the operations ofSecs. II and III, without 
invoking second sheet continuations. It turns out that the 
construction of the Cousin data can then proceed, essentially 
in the same way as in Sec. II. The topological difference 
between uII and the domain fJj} ofSecs. II and III is apparent 
in the construction of the Cousin function C (s,t,u); the way in 
which the author believes this difficulty may be circumvent
ed is described in Sec. V. 

The Mandelstam domain uII consists of the set of points 
(s,t) E (?, lying in the complement of C~ u C~ u C~, with 
C~ = [(s,t )Is E Cs },Cs = [slIms = 0, s;;'4m2} and similar
ly for C~, C~, s + t + u = 4m2, m = mass of the pion. We 
denote by Ds = [sis E CCs } and, with similar meaning, D" 
Du' It is convenient to regard uII asDs ®D, nDu ®D,. 

An amplitude A (s,t,u) is said to have Mandelstam analy
ticity if (a) it is holomorphic in the Mandelstam domain, (b) 
as s approaches So E Cs ' 1m s > 0, the limiting values A (so,t ) 
exist and are a holomorphic function of t in a plane cut for 
t;;.4m2, t< - so; (c) property (b) holds also if Cs is replaced by 
C"Cu and A (so,t) by the corresponding limiting functions. 
Further,A (s,t,u)isrealanalytic:A (s,t,u) = A *(s*,t *,u*);since 
in general A (so + iE,t )#A (so - iE,t), So E Cs ' we denote by 
C'+ and C s- the upper and lower "lips" of the "cut" Cs • For 
each sin Ds U C'+ U C s- , we denote by Qs the interior of the 
corresponding cut t plane, i.e., the interior of the set of values 

of t, so that (s,t ) E Jt. Similar meaning is attached to Q, and 

Qu' 
The modulus of A (s,t,u) is measured in the physical re

gion of the three channels, assumed to extend down to s,t or 
u = 4m2 (normal thresholds). By analytic continuation in 
angle at fixed energy in each channel (see Introduction) we 
are free to suppose that IA (s,t,u) I is known in an "extended 
physical region" 9 s U 9, U 9 u' where 
fl's = [(s,t) E Rls;;'4m2

, u<4m2, t<4m2}, etc. 
The hypothesis thatf(0",7) can be extended to the sec

ond sheet was used in Sec. II mainly to justify the picture of 
the curves y;: 7 = 7;(0") in 171 < 1. The restrictions we are 
introducing next concerning A (s,t,u) essentially state directly 
the validity of the properties ofy;, as derived in Appendix B. 

(AI) The amplitude A (s,t) is continuous as a function of 
four real variables at all points on the (finite) boundary of uII 
[i.e., all finite (s,t,u) with at least one of them on the corre
spondingcut]. The derivatives aA fas(fixedt ),aA fat (fixeds), 
and a fas(aA fat) are continuous (as above) at the points on 
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the boundary of uII with s E Cs ' except possibly for a finite 
number of points s,,;, where aA las, alas(aA lat) might be 
unbounded. A similar statement is true for that part of the 
boundary of jl with t E C, or u E Cu' 

Let us notice that the statement about the continuity of 
the derivatives at the boundary means, e.g., that at fixed 
tED" the holomorphic function of s,s E Q" aA I as(s,t ) has a 
well-defined limit at points of the cut Cs and implies (see, 
e.g., Ref. 24, p. 42, Theorem 3.11) that the value of this limit 
can be computed from the variation of the complex function 
A (s,t ) along the cut. In particular, the derivative with respect 
to s in the direction normal to the cut exists and is equal to 
the derivative along the cut (the Cauchy-Riemann equations 
are valid for s E Cs )' 

As a consequence of (A 1), we can make some statements 
about the behavior with respect to s of the isolated solutions 
of the equation A (s,t) = 0, lying in the interior Qs of the cut 
complex t plane, as s moves along Cs or in its neighborhood. 
A solution t (s) is isolated for s in some interval (or domain) I 
if, for each s E I, there exists a disk d r: I t - t (s) I < r(s), 
dr C Qs' so that A (s,t) vanishes in dr only at t = t (s). 

Lemma 1: If A (so,t ), So E C'+ , so#s,.u has a simple root 
at to, to E Qso' there exists a neighborhood Ur of so: 
Ur = [slls - sol < r, 1m s> o} and a unique solution t (s) of 
the equation A (s,t ) = ° for s E Ur satisfying to = t (so), 
A (s,t (s)) 0, s E Ur' The solution is isolated for s E Ur. The 
function t (s) is holomorphic for s E Ur and with a continuous 
derivative for s E Ur. 

This can be proved from the representation: 

1 f aA lat t(s) = -. t--(s,t)dt 
21Tl I'-'ol~r, A 

(4.1) 

obviously valid for s = So and r 1 chosen so that we enclose 
justthe zero attoandA (so,t )#Ofor It - tol = ri • SinceA (s,t) 
is continuous on the closed set (Is - sol <a, 
1m s;;.O) ® (It - tol <r2 ) (r2 > r I ) (for some a > 0), itis uniform
ly continuous there and thus we can find r, valid for all ton 
It - tol = r l so that A (s,t )#0 for It - tol = r l and s E Ur: 
[slls - sol<r, Ims;;.O}. Therefore, Eq. (4.1) defines for 
s E Ur a function t (s), which is holomorphic for s E Ur and 
with continuous derivative for s E Ur [using assumption 
(AI)]. 

To show that t (s) defined by (4.1) satisfies A (s,t (s))=O for 
s E U" we notice first that, for s E Ur' the holomorphic func
tion of t,A (s,t) has only one zero inside It - tol = ri . This 
follows from the fact that for s E Ur , by the same argument as 
above 

_1_. i aA lat (s,t) dt = 1. 
21Tl ~,- '01 ~ r, A 

(4.2) 

Evaluating (4.1) by the residue theorem, we verify that, in
deed, A (s,t (s))=O for s E Ur. Equation (4.2) shows also that 
t (s) is an isolated solution of A (s,t) = 0, s E Ur. 

If So is a "threshold" St.;, the reasoning of Lemma 1 can 
still be done, but we only conclude that t (s) is continuous at 
S=So· 

Thus through any simple zero of A (so,t ) there passes a 
differentiable (if So =!=s,,i) "zero trajectory" function t = t; (s), 
SEC'+ . The curves r;:t = t; (s), SEC / , have even a contin-
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uous tangent at all points where dt; (s)/ds =10. These curves 
can be assigned an orientation, by letting s move to increas
ing values if SEC,+ or decrease if SEC $~ .25 

We now define the inverse functions s;(t) for isolated 
zero trajectories: 

Lemma 2: Let t = tItS) be an isolated zero trajectory, 
defined for Is - sol <r, SEC,+, so#- 1s,.; J, and dt)(s)/ 
ds(s = so) =10. Then: (i) for any sufficiently small R, the curve 
F):t = tItS) parts the disk VR : It - t)(so)1 <R into two disjoint 
simply connected domains; (ii) let V;- be that part of VR 

lying to the left of F); if R is sufficiently small, there exists a 
unique function s)(t), holomorphic in V;- and with contin
uous derivative in V ;- so that, for son C $+ , t) (s) E F) n 17;- , 
s)(t)(s))==s. 

For part (i), we use the fact that dt)lds is continuqus at 
so, and, therefore, dt)lds=lO for Is - Sol sufficiently small, 
SEC,+ . Then F) is near So a smooth arc in the sense of Ref. 
18. Property (i) follows from statement 1°, p. 9 of Ref. 18. 

To prove (ii), we show that the function tItS) defined on 
Ur of Lemma 1 realizes a conformal mapping of Ur (for r 
small enough) onto a domain dr lying to the left of F). We 
shall then see that tItS) maps actually U r one-to-one onto ar 
and s )(t ) is simply the inverse function ofthis mapping. Fin
ally, we show that dr :J V;- for R small enough. 

From Lemma 1, one deduces that dt)(s)lds is a contin-
uous function of s,s E Ur. Since dt / ds(s = so) =I 0, we can 
choose r so that dt / ds =I ° for s E Ur. In particular we can 
suppose that, e.g., Re dt)1 ds > 0, for s E Ur. It follows that, if 
s',s" E U" s' =Is", then t)(s')=lt)(s"). Indeed: 

Re((t)(s") - t)(s'))/(s" - s')) 

= (Re :!!.J.. (s' + A (s" - s')) dA > 0. 
Jo ds 

(4.3) 

Thus, tItS) applies conformally Ur onto its image domain dr 
and applies Ur one-to-one onto its image. Since t) (s) is contin
uous in Ur' the image of Ur is ar. Therefore, ar contains a 
piece of F). Further, using the continuity of dt)lds in Ur' the 
Cauchy-Riemann equations and a mean value theorem, one 
verifies that if.::1 s is real and sufficiently small, 
t (so + i.::1s) - t (so) lies to the left of t (so + .::1s) - t (so), i.e., dr 
lies to the left of F ,. 

Now, the inverse function of a one-to-one continuous 
mapping of a compact set is continuous itself (see Ref. 26, p. 
310) and thus there exists a continuous function s dt ), defined 
on a" holomorphic in dr and such that on F,. SI(t l (S))-s. 
The function SI(t) is differentiable where dt)lds=lO, i.e., in 
ar. Choose Ro < minlt)(s) - tdso)l, for s on the semicircle 
Is - Sol = r. Then V;- Cdr if R <Ro, and this finishes the 
proof. 

We next wish to follow trajectory functions, not neces
sarily isolated, on larger intervals of C ,+ ; we must allow for 
their intersections or for the possibility of multiple zeros. 
The following Lemma can be proved exactly as Lemma 1. 

Lemma 3: If A (so,t ) has N zeros inside the bounded do
main D C Qso (so =I s"; ), there exists a neighborhood Ur: 
Is - So I < r, 1m s > 0, of so, so that A (so,! ) has N zeros in D for 
all s in Ur ; these zeros are the roots of an equation 
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P(s,t)=tn+a)(s)t n--) + ... +an(s)=O, (4.4) 

where the functions a l (s), ... ,an(s) are holomorphic in Ur, 
with a continuous derivative in Ur • 

To obtain the statement about the coefficients ails), we 
use the representation 

± (t;(s))!. = ~ i t k aA lat (s,!) dt 
i ~ 1 2m hiD A 

(4.5) 

and express the ails) in terms of the sums in (4.5) by means of 
Newton's formulas, Eq. (2.18). 

There are a number of consequences that can be drawn 
from this lemma. 

(i) Consider first an "intersection" of several trajector
ies: A (so,t) has a zero of the nth order at to, but for s near So it 
might have only isolated roots titS). Then the polynomial 
(4.4) can be written relatively to a domain D: It - tal < r, 
enclosing no other zeros of A (so,t ), as 

P(s,t) = (t - tot + a; (s)(t - tot - 1 + ... + a~(s) (4.6) 

with the coefficients a~ vanishing at So [cf. Eq. (AI) of Ap
pendix A]. Since the a~ have a continuous derivative, P (s,t) 
cannot vanish outside a circle It - tol = E, if we choose 
Is - Sol so small that la~(s)1 <Ek 1(2n). Thus, the individual 
isolated trajectories must satisfy lims _ s" l; (s) = l; (so) = to, 
i.e., are continuous at so. The problem is whether we can 
follow them meaningfully on both sides of so' 

(ii) Ifa zero t = t (s) of A (s,t) has higher multiplicity over 
intervals of s, then we verify just as in Lemma 1, that the 
function t = t (s) is holomorphic in U" with continuous deri
vative in Ur (ifUr does not contain "thresholds"). The func
tion t (s) has an inverse s(t ), constructed as in Lemma 2, if dt I 
ds=lO. 

(iii) In Appendix A, we show that, given a point (so,to) in 
JI with A (so, to) = 0, we can part in a certain neighborhood 
Uo ® Va of (so,to) the set of zeros of A (s,t ) passing through 
(so,to) in several components; each component is described in 
Uo ® Va by an irreducible pseudopolynomial and is uniquely 
determined by just one root t = t (s) defined on U) C Uo, 
So Iii U), through analytic continuation in Uo. It may be that 
the point So is not a branch point of the function t (s). Given a 
domain Ur ® V, C JI, there will exist in general several 
points so.k E Ur , which are branch points of functions t (s), 
tis) E V"describinglocallythezerosofA (s,t)inJi. We shall 
postulate by (A2) that such points do not accumulate to Cs ' 

for any choice of V, . 
(iv) If this is granted, we can define unambiguously the 

continuation past So of a zero trajec.tory t = t Irs), defined for 
SEC ,+ , S < So' by performing an analytic continuation along 
a semicircle Is - Sol = E, 1m s> 0, until we reach points on 
C,+- ,withs > So' Since A (s,t)(s})=O on this path, we can "tie" 
together zero trajectories titS) on larger intervals of energy, 
and talk about one "big" trajectory function; we denote the 
latter also by t; (s). The phrase.. "analytic continuation of t; (s) 
along C," will be used having in mind this procedure. 

(v) All the statements above are true if SEC,+ is a 
"threshold" s, k provided the words "continuous derivative 
in [J/' are replaced by "continuous in Ur ." 

(A2) The set of points (S,f) E JI with A (S,f) = 0, wheres 
is a branch point of a root t = t (s) of A (s,t ) does not accumu-
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late at C~(C~ = ((s,t )Is E Cs )). Further, there are only a fin
ite number of points Sk ,Sk E Cs ' which do not have the prop
erty that lims ~ Sk dt;l ds exists and is finite and nonzero, for 
any trajectory t;(s) lying in Qs' At such points, a change of 

variable can be done, S;.k = (s - S k ) Vi,k so that lim~ ~ ° 
dt;l dSi•k is finite and nonzero. The same is true for t E C" 
U E Cu and the corresponding trajectory functions. 

Several comments concerning (A2) follow. 
(i) The functions ti(S) which can now be defined even at 

points where they do not correspond to isolated trajectories 
are, by (A2), Holder-continuous functions of s,s E Cs • For 
sufficiently small r, they are holomorphic in Ur(so) and con
tinuous in Ur(so), So E Cs [by comment (i) following Lemmas 
3]; Ur(so) = (slls - Sol < r, 1m s> OJ. 

(ii) We need to assume thae7Iim;~odt Ids is nonzero 
only from one side of s I' since we can show that it must be the 
same from the other side and that, in fact, dt Ids is contin
uous as a function of S in the image U; through S = (s - SI)V 
ofUr(sd. To prove this, we have to show thatdt Ids is bound
ed in U; by const/s P, for some p > 0, since the statement 
follows then by an application of the Phragmen-Lindelof 
theorem to dt Ids at S = O. To see this, we notice that: (a) the 
derivative of(s - sdkt (s) is continuous on [Sl - r, Sl + r], for 
k sufficiently large; (b) the function (s - Sl)kt (s) is continuous 
in Ur; (c) we can represent (s - sdkt(s) by means ofa Poisson 
formula in terms of its boundary values in Un and we can 
obtain its derivative by differentiating the formula and then 
integrating by parts (see Ref. 24, p. 43). The result is that 
d I ds((s - s It (s)) can be written, up to factors as a Poisson 
integral, over its continuous boundary values, and therefore 
is itself continuous, and thus bounded in Ur. This gives the 
desired bound on dt Ids. 

(iii) It could be that trajectories intersect at some point 
(so,to), So E C" but, nevertheless, lims ~ So dt;l ds exists and is 
finite along one (or several) of them. The same argument as 
above shows that dt;l ds is then a continuous function in 
Ur(so) (defined as above). The existence of the inverse func
tion associated to each trajectory is then proved exactly as in 
Lemma 2. 

(iv) The argument of comment (ii) above is valid also at 
thresholds St,;' 

(v) Assumption (A2) allows us to define the inverse 
function s I (t ) on the curve rl:t = t I (s) even in the neighbor
hood of a point So where dt II ds = 0 or is not finite, Indeed, 
we can show that t I (s ) makes a one-to-one conformal map
ping of U; onto its image. If U; is convex, the proof of 
Lemma 2 carries through unchanged (the curve r l is 
"piecewise smooth," according to Ref. 18). If it is not con
vex, it is easy to verify that, iflim;_o dtl/ds is finite, then 
the change of variables () = (t - t l (SO))lIv makes 
lims _ So d() Ids finite, and we can repeat the argument of the 
lemma for the inverse function s I (() ). We can then go over to 
sIt). 

(vi) The curves r;:t = ((s) have at most a finite number 
of cusps; the angle a of the cusp is related to the power Vi,k of 

(s - s k ti,k needed to render lim;i,k _ 0 dt;l dS;,k finite by 
a = Vi,k 1T - 2n1T, with n the smallest number for which 
0<a<21T, 

(vii) The inverse functions s;(t) are Holder-continuous 
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functions along r;; they are defined in a neighborhood of r; 
on their left and can be obtained there starting from an ele
ments?(t) by "analytic continuation alongr;." As in Sec. II, 
this means that, at a point to where ds; I dt = 0, we must con
tinue S; (t ) along a circular path starting clockwise on the left 
of r; and proceed until the complex number s;(t) - s;(to) 
rotates by an angle 1T. When this has happened, the argument 
t has reached the branch of r; lying beyond to, and the func
tion so obtained coincides with the inverse function already 
defined on that piece of r;. 

(A3) As s moves along C s+ , there are only a finite num
ber of zero trajectories t = t;(s) in the complex t plane. The 
same is true for t E C t+ , U E C u+ . 

This assumption means (i) for each SEC s+ , there exists 
only a finite number Nz(s) of zeros t;(s) of A (s,t) in the complex 
t plane Q" including the cuts; (ii) the number Nz(s) stays 
bounded as s --> 00; (iii) among the intervals In (s) of C s+ on 
which the zero trajectories tn (s) are defined ("exist on the 
physical sheet ofthe t plane"), there does not exist a sequence 
InJs) = (Sk h') of intervals with Sk --> 00; in fact, there are 
only a finite number of such intervals In (s), of finite or infi
nite length, (iv) (A3) is true for SEC s- by real analyticity. 

We extend (A3) by an assumption analogous to (A), Sec. 
II: (A3') The set of points (s,t) E Cs ® C" where A (s,t) = 0 
consists of isolated points. (The same is true for Cu ® C" 
Cs ® Cu·) 

We study now the behavior of the trajectory functions 
t;(s), s E C,+ , as their values approach C, (t>4m2, 1m t = 0). 
From (AI) alone, we can prove: 

Lemma 4: If for some sequence Sn --> so, Sn <so, 
Sn E C s+, limn~ 00 t(sn) = to, to E Ct , then 
limn _ 00 t (s~) = to, for any other sequence s~ --> So, s~ < So. 

The (simple) proof of this lemma is given in Appendix 
G. 

As a consequence of this lemma, one can verify that the 
curve r I : t = t I (s) has even a tangent at the end point (so, to)' if 
aA I at (so,to) i= 0, aA I as(so,to) i= O. Indeed, in this case, along 
the trajectory 

dt 

ds 

-aA las 

aA lat (s,t) (4.7) 
and we use (AI) and Lemma 4 to show that the limit of the 
right-hand side exists, as s --> So. 

The next assumption concerns the behavior of the tra
jectories at end points: 

(A4) If (so,to) is an end point ofa trajectory t = t (s), then 
lims ~ So (s - sot dt Ids exists and is finite and nonzero for 
some a with Re a < 1. Further, we assume that the set of 
points with dt Ids = - 1 does not accumulate at (so,t (so)), 

As a first consequence of (A4), a trajectory t = t (s) with 
an end point at (so,to) is Holder continuous at So and so is its 
inverse function s = sIt ) at to. 

We now wish to investigate the continuation of the zero 
trajectory t (s) clockwise along a small semicircle around So' 
We prove, namely: 

Lemma 5: Let tds) be the continuation of the trajectory 
function with the same name, defined for s < So, SEC ,+ , 
1m tl(S) >0, inside Ur : Is -Sol <r, Ims>O 
[ t 1 (So) = to E C, ]. Then, for any r, sufficiently small, either 
t1(S) can be continued throughout Ur [and then (so,to) is a 
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"false" end point of the trajectory] or the continuation stops 
along the image F 2:s = S2(t) of a trajectory defined in the t 
channel for t > to and obeying lim, ~ '0 S2(t) = So. In this case, 
lims ~ r t 1 (s) exists and coincides there with the inverse 
functio~ t2(S) associated to F 2. 

Proof We assume 1m t1(S) > 0, so that to E C ,+. We first 
subject the choice of r, defining Ur' to a number of condi
tions: (i) we can find R, in fact as small as we like, so that 
A (so,t) does not vanish for It - tol = R, 1m t;;;.O. This follows 
from the analyticity in t of A (so,t ), its continuity on Cs ® C, 
and (A3'). Further, by (Al)wecanfindr = r(R ) so small that, 
for aIls E Ur,A (s,t)=I=0for It - tol = R. As a consequence of 
this choice, all possible continuations of the trajectory func
tionst = t (s),s E Ur' stay either contained in VR : It - tol <R, 
1m t> ° or reach the boundary of VR on 1m t = 0, 
t E [to - R, to + R]. (ii) Using (A2),dt Ids is finite and =1=0 for 
s E Ur' t E VR , if rand R are sufficiently small; otherwise, 
there would exist a set of points (s',t 'I, wheredt Ids = Oornot 
finite accumulating to C~ or C~. (iii) We can choose R so 
small that the image of no trajectories s = Si (t ), defined for 
t E C ,+ , t E [to - R, to + R ], crosses Ur> unless these tra
jectories satisfy lim, ~ '0 Sl (t) = so. Further, Rand r can be 
chosen so that none of these trajectories have two end points 
in [so - r, So + r] ® [to - R, to + R ]. As a consequence, the 
images of the various trajectories Fi:s = Si(t) that satisfy 
lim,~ '0 Si(t) = So are open curves when restricted to Ur' (iv) 
The functions s = Si (t ) have a continuous and non vanishing 
derivative for t E [to - R,to) or (to,to + R ]. As a conse
quence, the curves r i cross any semicircle Is - So I = r I < r in 
one point, for one value t E [to - R, to) or (to, to + R ] and in 
particular have no multiple points in Ur. (v) A (s,t) =1=0 if 
(s,t) E [so - r, So + r] ® [to - R,to + R], (s,t ) =1= (so,to)· Let ro 
be a number satisfying these conditions and Ur the corre-
sponding neighborhood. " 

Consider now the continuation of t (s) along a path 9 r: 
Is - sol = r, 1m s > 0, r < ro, starting on [so - ro, so). Con
tinuation along 9 r stops only if, for some sequence Sn -->- 5, 
t (sn ) -->- t, 1m t = O. If we can find no such sequence for any 
semicircle 9 r' then t (s) can be continued throughout Ur" and 
we are in the first case of the lemma. If such a sequence 
exists, then, with the same reasoning as in Lemma 4, we can 
verify that, for any other sequence s~ -->- 5, limn ~ 00 t (s~) 
= t; by (v) above [possible by (A3')] 1m 5> ° and [by (AI)] 

there exists one (or several) t channel trajectories s = Si(t) 
passing through (S,t). They all satisfy liml~ to Si(t) = so' 

Assume for simplicity there exists just one such trajec
tory: s = S2(t), 5 = S2(1). Now, let t (9) be the image of 9 r 
under t (s) in VR ; we can define along t (9) the inverse func
tions = Sl(t) [by (ii) above]. We now show thatsl(t) coincides 
with the analytic continuation to complex t of the trajectory 

r, bt, Is) ,V
R 

v, 

FIG. 3. To the proof of Lemma 5. 
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function S2(t ). This will establish that t I (s) coincides with the 
inverse function of that trajectory, as asserted by the lemma. 

To prove this, we make a reasoning analogous to 
Lemma I: we surround 5 by a circle C I of radius r I' C I C Ii , 
so that A (s,t) =1= 0, for son C I' There exists then a semidisk VI: 
It-tl<r;, Imt>O, VI C VR,sothatA(s,t)=I=OforsEc l, 
t E VI and for each t E VI there exists just one zero in 
d l : {slls - sol < rd, given by the analytic continuation of the 
trajectory S2(t ): 

I f aA las S2(t) = -. s -- (s,t) ds. 
21Tl Is - Sol = r, A 

(4.8) 

The set of points (S2(t ),t), t E VI' given by (4.8) exhausts the 
zeros of A (s,t ) in d I ® VI' But A (s,t ) vanishes on the contin
uum (s I(t ),t ), with t E t (.9') and this intersects d I ® VI' This 
means thatsdt) S2(t) (see Fig. 3). If there are several trajec
tories passing through (S,t) we can only conclude that Sl (t ) 
coincides with the continuation of one of them, but this is 
sufficient. 

The function S2(t ) maps VI onto a domain lying to the 
left ofF2:s = S2(t). The semicircle .9' r lies to the left ofF2 if 
the latter is such that S2(t ) moves away from so, as t increases. 
Thus s = S2(t) is defined on [to, to + aJ, a> ° (i.e., 
t E (to, to + a) and lim,~ 10 S2(t) = so· 

t> to 

Consider now the domain U delimited by F 2: S = S2(t), 
the semicircle Is - Sol = r, 1m s;;;.O, and the line 1m s = 0, 
s <so' Since F2 has no multiple points, U is simply connect
ed. Ifwe show that tl(S) is holomorphic at any point of U, 
then its continuation along any path in U leads to the same 
value and the proof of the lemma is finished. To this end, 
define tl(S) at points of Uby analytic continuation starting 
from s < so, SEC'+, along semicircles Is - So I = E < r, for 
decreasing E. Assume that, in this process, we find 51 E U, so 
that lims~s, 1m tl(S) ~ O. As before, we conclude there 
must exist a trajectory r3: s = S3(t), passingthrough51,t > to, 
so that, for s E F 3, tl(S) = t3(S), the inverse function of 
F 3. By assumption, F3 intersects Is - Sol = r in one point 
situated at the right ofF2; consequently,F3 intersectsF2 at a 
point P with coordinates [r,0), r < r. In the neighborhood of 
P, the function t I (s) must coincide with both t2(S) and t3(S), the 
inverse functions of F 2 and F 3. Then F 2 = F3 and t I (s) can be 
defined in all of U. This ends the proof of Lemma 5. 

We now turn to the behavior of the trajectories t,. (s) as s 
or t or both tend to infinity. We assume: 

(A5) (i) If, as lsi -->- 00 along some direction 
eiO", 0.;;;00 < 1T, titS) -->- to, Itol finite, then, for some a with 
Re a > 0, the function Cis) = sa(ti(s) - to) tends to Co =1=0 in 
all directions 0.;;;0 < 1T. The function titS) admits of an analyt
ic continuation counterclockwise along any circle of suffi
ciently large radius in thesplane until ui(s) = 4m2 - s - titS) 
reaches C u- • (ii) The function C (s) admits of an asymptotic 
expansion uniformly valid in 
0.;;;0 < 1T: Cis) = Co + Cl/fi + o (lIfi+<), 
Re p, E> 0, C I =1= 0; the same is true for the derivative of 
C(s),uptoO(lIsP+<+'); (iii) if, as Isl-->-oo along eiO, 
both Iti(s)I,lui(s)l-->- 00, there exists an angular interval 
¢;I < 0 < ¢;2' 0 = arg s, where t, (s) can be analytically con
tinued, on sufficiently large circles, until s,ti(S) or ui(s) reach 
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Cs' C" or Cu' The asymptotic expansion 
tj(s) =~(Co + CI/~ + O(1/~+E)) holds uniformly in this 
angular interval, Re 0, E> 0, C I =1= ° and the same is true for 
the derivative dt;i ds; (iv) properties (iHiii) are valid if s,t,u 
are interchanged in any order. 

One may verify that (AS) (i) is true if the amplitude and 
its derivative aA I at obey for large v = S - U a Regge for
mula, uniformly in all directions of the complex v plane, in a 
neighborhood of to: 

A (v, t) = r(t )v*1 + o(t )vPl'l + 0 (vPl'l- k) (4.9) 

with Re aft ) > 0, Re /3 (t ) < 0, a(t), /3 (t), r(t), o(t) holo
morphic in It - tal < r, Re (f3 (t) - k) < Re /3 (to) for 
It - tal < r,k > O. A zero t (v) of A (v,t )forlargev,t (v) ---+ to as 
Ivl ---+ 00 can occur only if r(to) = O. The validity of (AS) (i) 
follows then by evaluating 

1 f aA lat t(v)= -. t--(v,t)dt. 
21Tl I'-'ol~r,<r A 

(4.10) 

We next make an assumption similar to (4.9) about the 
amplitude itself. 

(A6) For each fixed s,s E Ds U C,+ U C s- , 
(i) IA (s,t)1 < Cit IN,IS), withNI(s) a function that is finite for 

all finites; (ii) for ton C, or Cu ' the phase <Ps (t ) of A (s,t) can be 
defined by continuity along C, or Cu ' except for a finite num
ber of points. The discontinuities at these points can be ob
tained by continuation of A (s,t ) along any sufficiently small 
semicircles around these points. The phase so defined obeys 
l<Ps(t)1 < CI(S), CI(s) finite for finite s. An analogous state
ment is true for each t and U in the corresponding sets. 

The functions NI (s), CI (s) are allowed to increase indefi
nitely, as s increases. 

As in Sec. II, we consider now more closely the pattern 
ofcurvesrj: t=tj(s), SECs' or r;:t=tj(u), UECu ' 

Without loss of generality, we assume as in Sec. II that tra
jectories t = const, U = const or S = const, do not occur. 
We denote by rj> r; the sets of image points in the domain 
D, (t plane'\C,) of the functions tj(s), S E Cs' and tj(u), 
U E Cu' Along r,., r; one can define the inverse functions 
s;(t), U j(t) as we have just seen. They may be many-valued. 
As in Sec. II, the sets r;, r; may have multiplicity higher 
than unity [i.e., t = tj (s) may be a multiple zero of A (s,t) = ° 
or two curves rj: t = t;(s), r j: t = t j(s) may have the same 
image set, although different domains of definition and pos
sibly different orientations]. As we have seen in Sec. II, mul
tiplicities higher than unity cause strictly inessential compli
cations, and we assume from now on that the r j 's or the r j's 
used in our argument are simple curves, with single-valued 
inverse, so that we shall not need to distinguish between r; 
and the image set F;. 

Assume now that a trajectory t = tl(S) "enters" the 
physical sheet of the tplane at So E C,+. Ass increases along 
C s+ , the value of the function tl(S) may either stay inside Qs' 
or return to the cut C, or reach a point uo>4m2 on the U cut 
Cu , for someS-a > so· In this last case, the image t = tl(S) inD, 
approaches a point to = 4m 2 

- So - uo< - 4m2 on the real 
axis of the t plane. We cannot follow the trajectory t = t I (s) 
for s>so in general and thus the curve r l: t = tl(S) appears 
to have in D, an "open end" at to' Loosely speaking, we 

2065 J. Math. Phys., Vol. 25, No.6, June 1984 

would like it to "return" somehow to C,' so that we can part 
D, in subdomains iiJ ; as we did with the disk 171 < 1 in Sec. II 
and thus repeat the arguments we used there. 

We can "move away" from to by applying Lemma S to 
the function28 uI(s) = 4m2 

- S - tl(S) and conclude that it 
can be continued around So in the S plane until one reaches 
either 1m s = 0, s > So, or a curve r;: S = S2(U), 
U E Cu ' limu ~ U

O 
S2(U) = So, where it will coincide with the 

inverse function U = u2(s). In the former case, the curve r l in 
the t plane is continued by t = tl(S) = 4m2 - S - UI(S) for 
S > So' In the second case, define the function 
t2(U) = 4m2 

- U - S2(U) for U E Cu ' for which 
limu _ U

o 
t2(U) = to' Then, the curve r;: t = t2(U) has in the t 

plane an end point precisely, where r l: t = tl(S) has its end. 
Moreover, its orientation is (Lemma S) such thats2(u) moves 
away from So if U moves in its natural sense (increasing on 
C;: , decreasing on C;;). Thus t moves away from to on r ; 
and r; can be regarded as a "continuation" of r l. This can 
be made more precise. 

Lemma 6: In case the analytic continuation of U I (s) 
stops atr;: S = S2(U) the inverse functionsl(t) defined onrl 
can be analytically continued around to to the left of r l, for 
It - tal sufficiently small, until one reaches r;; there SI(t) 
coincides with the function S2(t ) = 4m2 - t - u2(t ), with 
u2(t) the inverse function of t = t2(U), 

To prove this statement, consider the equation 

t = 4m2 - S - u2(s), (4.11) 

where u2(s) is the inverse function associated to 
A 

r;: S = S2(U), By Lemma S, the right-hand side of (4.11) is 
holomorphic in the domain ~ bounded by 1m S = 0, S < So' 
the curve r 2: S = S2(U), U E Cu , and an arc 
Is - Sol = r, 1m S > O. Near each S in ~, iff is the value of 
the right-hand side, Eq. (4.11) has a unique solution S = sit ), 
holomorphic in a neighborhood of f, since, by (A4) 
du21 ds =1= - 1, if r is small enough. For s on 1m s = 0, S < So, 
u2(s) = ul(s), and (4.11) reduces to t = tl(S), which defines 
the inverse function s = SI(t). Thus s(t) is the analytic con
tinuationofsl(t). Let us find thesolutionof(4.11) for sonr;. 
The value of the right-hand side is 
t = 4m2 - S2(U) - U = t2(u), U E Cu ' i.e., t lies on r;. The 
equation t = 4m2 - S2(U) - U defines the inverse function 
u2(t), t E r;: t =4m2 - S2(U2(t)) - u2(t). We claim that 
S2(t )==S2(U2(t)) verifies (4.11) identically. Indeed, 
4m2 - S2(U2(t)) - U2(S2(U 2(t))) = 4m2 - S2(U2(t)) - u2(t )=t. 
Thus, on r 2' sit )==S2(t ). Now, as s moves clockwise around 
So in 1m s> 0, starting at s < so, the right-hand side of (4.11) 
moves to the left of r l. If 9 is the path described by it untils 
reaches r 2' the continuation of s I(t ) along 9 yields S2(t ).29 

In Fig. 4, we show the pattern of the curves r j in the t 
plane for the amplitude A (s,t,u) = 2(4m2 - S)1/2 
+ (4m 2 - t )112 + (4m 2 - U)1/2 + 2, which we discuss in 
AppendixJ. 

There is another way in which a curve r l: t = tl(S) 
might have an "open end" in the t plane: as S ---+ 00, SEC s+ , 

tl(S) might tend to a finite (complex) limit to' Then, by (AS) 
(i), there exists a curve r 2: t = t2(u), U E C;; , with the prop
erty that limu ~ 00 t2(U) = to' The angle between the tangents 
to the curves r l, r 2 at their common point is, in general, 
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Imt 

FIG. 4. The pattern of trajectories in the t plane for 
A Is,t,uj = 2(4m2 - sjl/2 + 14m2 _ t jl/2 + (4m2 _ ujllZ. 

different from 1T. Indeed, by (A5) (ii), lims~ 00 SU(tj(s) - to) is 
independent of the direction of 5 and thus, for t near to, 

(t-to)I'Er; = exp(-i1Ta)(t-to)I,Er,' 

The inverse functionsI(t) is the solution of the equation 

(4.12) 

for ton rl' By (A5) (ii) the derivativedt Ids does not vanish if 
151 is large enough, and, consequently, Eq. (4.12) can be 
solved for It - tol sufficiently small. Equation (4.12) can be 
solved also for t on r; and for t on neither r l or r;: this 
defines the analytic continuation of SI(t) around to, until we 
reachr;. Weobtaintheres2(t) = 4m2 

- t - u2(t), withu2(t) 
the inverse function of r ; . 

We are now finally in a position to imitate the treatment 
of Sec. II: we join several curves r j, r; with each other and 
with pieces of the sets C ,+ , C ,- by considering the analytic 
continuation (in the sense described in this section) along C" 
r j, r; of a zero trajectory function sIt ) defined in the t chan
nel. We have seen that if, at some to, s(t) or 
u(t) = 4m2 

- t - s(t) becomes real and larger than 4m2
, ei

ther we can continue beyond to or there exists a curve 
r l: tl=tl(S) [or r;: t=tl(u)],sothattheinversefunc
tion SI(t) defined on it is the analytic continuation of s(t). 
Assume we continue now 5 I (t ) along r I: the continuation can 
be done until r l reaches C, or u I(t) reaches Cu ' or 
ISI(t)1 - 00 as t - to, or ISI(t )1- So (maybe infinite), as 
t _ 00 on rl' In this last case, by (A5) (i), (iii), and (iv) we 
can continue 5 I (t ) along an arc of a circle oflarge enough 
radius in the t plane, until t reaches C, or 
ul(t) = 4m 2 

- t - SI(t) reaches Cu ' i.e., t reaches a curve 
r;: t = tj(u). Theresl(t) coincides with 4m2 

- t - uj(t), 
with uj(t) the inverse function of r;. In all the former cases 
we can alsocontinuesl(t ) further. By (A3), we must return to 
the original function, after a finite number of steps. We call 
1\ the closed path made up of the set of curves r j, r; and 
intervals(tj,tj+ l ) of C,+,C,-thatareneededtoreturns(t) 
to its original value. There can exist closed paths entirely 
contained inD, (as in Fig. 4). As in Sec. II, a sense is attached 
to a path l' k : that of increasing (decreasing) t for 
t E C ,+ (C ,- ) and that defined on each component r j ,r ;. 
Every curve r j, r; falls uniquely into one path l' k' We call 
!?l, the union of all image points of r j, r;. We make now a 
last simplifying assumption. 

(A 7) A curve r j does not intersect itself or another 
curve r i (r;J an infinite number of times. 
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As a consequence of (A 7), the complement of !?l, con
sists of a finite number of domains 9 j (some of them un
bounded). All rootss(t ) of the equation A (s,t) = o are bound
ed if t is the interior of some domain 9 k' Indeed, if 
Is(t ) I - 00 as t -+ to, then we have seen that (A5) (i) allows us 
to find the inverse function t (5), satisfying Eq. (4.11) as 
151_ 00 for all directions 0<0 <1T(or1T< lh;;;21Tby real anal
yticity). We let then 5 - 00 along C,+ ; this generates 
r j: t = t,(s) with lims~ 00 tj(s) = to, so that to Ef int 9 k' 

Before stating the analog of the theorems of Sec. II, we 
introduce two notations. 

(i) We consider the function 

WIt) = exp( - Ott)) = exp( - (4m 2 
- t)1/4), (4.13) 

where the root is chosen with a cut along t > 4m 2 and positive 
real for t < 4m2

• The modulus of W (t ) decreases more quickly 
than any power in any direction of the complex t plane, in
cluding the cuts. Also, the integral 

I(rj) = L. I exp( - O(t))lldt I (4.14) 

converges for every r j. This is a consequence of (AI), (A2), 
(A4), (A5): I (rj) can be transformed into an integral along 
Cs or Cu ; the Jacobian Idt Ids I can diverge at most like 
1/(5 - sor (n > 0) at finite So or like 5\ k> 0 as 5 - 00. In 
both cases, (4.14) converges. 

(ii) We divide C,+, C ,- into intervals (ti' ti+ I), 
- N <j<N, to = 4m2

, so that the number n i of roots 
Sl(t), 1= 1, ... , ni of A (s,t) = 0, Sl(t) E Q" tE C" is con
stant for t E (t i' t i + I ). Negative (positive) indices of t i refer 
to C ,- (C ,+). 

We can now state: 
Theorem 4.1: Define: 

fi(t) = 1 (I ( WIt') dt' 
21TiW(t) i Jr;rJlt'-t 

i'j+ I WIt ') ) + Ini -,-dt' 
i 'j t - t 

(4.15) 

with the sense of r i (r ;J used above and W (t ) of Eq. (4.13). 
Then: 

(i) for t E 9 k' fi(t) = N k, an integer; 
(ii) if the boundary of 9 k contains (ti' ti+ I) E C" 

Nk = ni ; 

(iii) let N (t) be the number of roots of A (s,t) in JI, at a 
given t E 9 k;N (t ) is independent of t, for 
tEDk: N(t) =Nk ; 

(iv)Nk =Nk. 
Proof From the remark following Eq. (4.14), fi(t) is 

well defined. If we group together all r j, r; and intervals 
(t i' tJ+ I) that make up a closed path 1'1' we can write 

fi(t)W(t) = I-I. ( U:(t') dt'. 
I 2m JrJ t - t 

(4.16) 

The integral over each 1'1 gives rise in every 9 k' by the 
residue theorem, to an integer times W (t ). Then (i) follows by 
addition over the 1'1' 

It follows from the real analyticity of A (s,t ) that to each 
interval (t i' t i + I ) on C ,+ , there corresponds an interval 
(t_i_l,t_i)onC,-,witht_i_1 =ti + l , t-i =ti,and 
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n _) = n). Applying the Plemelj discontinuity formulas 
across (t), t j+ I) to ""Y(t) W(t), we obtain: 

vY(t + )exp( - e (t + )) - A/"(L)exp( - e (e)) 

= n) . 2i 1m (exp( - e (t+))), (4.17) 

where e (t+) is the value ofe (t) on C / . Equation (4.17) is an 
identity for t E (t), t) + I ) and can be satisfied for integer 
,Ar(t+), fi(t_) only if fi(t+) = fi(e) = n). This proves 
(ii). 

To prove (iii) and (iv), we consider, at fixed t E C / , 
t E (t »t2) a contour C(f L running along and a small distance 
away from the sand u cuts and closing by large pieces of 
circle of radius L in the complex s plane; L is chosen so that 
C(f L encloses all n 1 zeros of A (s,t). Now, 

N (t) = _1_. A: aA las (s,t Ids 
2m JV,L A 

(4.18) 

is, for t = t, independent of L (for L sufficiently large). Let 
!iJ 1 be the domain adjacent to (t l ,t2). Since A (s,t)#O for son 
C(f L' we can find a small neighborhood CiJ' oft, so that 
A (s,t )#0 for tE CiJ' n 9 1, s E C(f L' Then, by (AI), we con
clude that N (t) is independent of t, for t E CiJ' n !iJ I' and 
N (t ) = N (t) = n I' Altering slightly the contour C(f L' we can 
verify with the same argument that N (t ) is actually constant 
in the neighborhood of any point of ~ n 9 1 and, in fact, in a 
neighborhood (contained in!iJ I) of any point of!iJ I U (t»t2)' 
Thus,N(t) = NI = nlfort E!iJ I.Sincefi(t) = nlfort E!iJ I' 
(iii) and (iv) are proved for domains adjacent to C, (and not 
containing points t with 1m t = 0, t<, - 4m2-see below). 

Consider now a boundary r l between !iJ I and !iJ 2 and 
assume !iJ 2 lies to the left of r l . Then, as t approaches r l 
from!iJ 2' one of the rootss(t ) of A (s,t) = Oapproachesso E Cs 

[or Uo E Cu if the boundary is r;:t = tl(u), U E Cu ]' By sur
rounding the remaining N1(td zeros, tl E r l , by a contour 
running like C(f L and avoiding a neighborhood of So, one 
concludes, as in Sec. II, that, if r l has unit multiplicity 

liII! N(t) - liII! N(t) = 1. (4.19) 
/,-+1, ( __ I. 

IE,'J 2 tE·~1 

This is precisely the discontinuity obtained from (4.15) by the 
Plemelj formulas. The fact that 
N (t ) = N (td + 1 = N2 = constant for t E !iJ 2 can be shown 
as for t E !iJ I' provided !iJ 2 does not contain a piece of the 
real axis 1m t = 0, t < - 4m 2

• 

Weare careful about this last point, since for t real, 
t < - 4m2

, the contour C(f L can no longer be a simple closed 
curve: the sand u cuts overlap. However, fi(t ) has no dis
continuity across 1m t = 0, t < - 4m2

, unless a curve r j 

runs along it. Thus, we only have to convince ourselves that, 
for to on 1m t = 0, to < - 4m2

, to E !iJ 2' A (s,t) has indeed the 
same number of zeros as for 1m t #0. To verify this (rather 
obvious) statement, it is enough to observe that, e.g., as 
t -- to, 1m t -- 0, 1m t>O, no roots(t) of A (s,t) = ° can stay 
enclosed in the flat rectangle (4m 2

, - to, - to - i 1m t, 
4m2 

- i 1m t) contained between the overlapping cuts. In
deed, if this were the case, to would belong to a r j • Thus, for 
1m t small we can modify the contour Crf L to two disjoint 
semicircles and their diameters below and above the cuts (see 
Fig. 5). For N(t) defined via (4.18) through an integral over 
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L 
4m2 

4m2-iImt 

FIG. 5. The contour '1t L for overlapping cuts. 

these two contours, the continuity as 1m t --° is obvious. 
Since the procedure can now be extended from !iJ 2 to any 
finite number of domains !iJ j' the proof of Theorem 4.1 is 
finished. 

Following Sec. II, we now consider the symmetric com
binations of the roots sY'(t), uY'(t) of A (s,t) = 0, for t inside a 
domain!iJ j , j= 1,2, ... ,Nj • The sums 

N, N, 

Sj,dt) = I (s)'"'(t))\ Uj,k(t) = I (uy'(t))k (4.20) 
)~ I j~ 1 

are holomorphic and one-valued functions of t, for t E !iJ j' 
As t approaches to on a boundary of r j ,one of the roots S)jl(t ) 

may diverge, however, not worse than const/(t - toY', P > 0, 
according to (A5)(i). ToeachtoJ ED" where one of the roots 

st'(t) diverges, we associate a factor B (t,to,)) p J, defined by 
- z - ZO,) 1 - (1 - t /4m2)1/2 

B(t,to) = I-zz*.' Z= 1 + (1- t/4m2)1I2' 
O,J 

(4.21) 

If to,) E C" we associate to it the same B (t,to,)), however, 
with t in the definition of z replaced by tl = (1 - t /4m2) 112. 
In (4.21), zo.) are the images through z(t) [or z(tl(t))] oftoJ ' 
According to (A3), there are only a finite number of points 
to,)' Further, if It I -- 00 in an unbounded domain!iJ j' then. 
by (A5) (iii) the functions Sj,dt), Uj,dt) are polynomially 
bounded. We conclude that the functions 

Sj,dt ) = II(B (t,to)p}texp( - e (t ))Sj,dt) 
) 

(4.22) 

are one valued and holomorphic in !iJ j' continuous in 9 i 

and vanish as I t I -- 00 in an unbounded !iJ i [ similar defini
tion for Ui,k (t )]. We can now state 

Theorem 4.2: Define 
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Then, if t E !» I 

n~kl(t) =S,.dt), n~l(t) = U,.k(t). (4.25) 

The integrations in (4.23) and (4.24) are performed in the 
same way as in (4.15); sp, (t '), ... ,sP.(t ') are the n j roots of 

) 

A (s,t ) = 0 in Q, for t E (t j' t j+ I ). 

Proof In each!», one can obtain S,.k (t ) by means of a 
Cauchy integral along the boundary a!», 

tE!», 

tEG!», 
(4.26) 

since SI.k (t ) is continuous in g; I' As in Sec. II, one shows 
that, if!» I lies to the left of r l (assumed simple) 

SI.dt ) - S, _ I.dt) = (s,(t WGdt). (4.27) 

Equation (4.25) follows then by addition of Eqs. (4.26) using 
the constraints (4.27) and verifying that the sense of the inte
grals is correct. The same can be done for U"dt ). This ends 
the proof. 

The analog of Eq. (2.12) is 

lim n ~k I(t) = S,.k (ta ± iE), 
t----..toEC/(-) 

(4.28) 

lim n ~k I(t ) = UI.dto ± iE). 
t __ toEC/(--J 

The values on the left-hand sides of Eq. (4.28) can be ob
tained directly from experiment up to a discrete ambiguity. 
In general, an arbitrary resolution of the discrete ambiguity 
in the s,t,u channels will lead to a violation of Eqs. (4.28). 
These latter represent conditions to be satisfied by the zero 
trajectories in order that the construction of amplitudes with 
Mandelstam analyticity be possible. 

Theorem 4.2 achieves in fact the construction of the 
Cousin data in the Mandelstam domain: from knowledge of 
the zero trajectories on the boundary of JI, we have ob
tained the values of the symmetric sums (4.20) in each do
main!» '. We can now construct two functions Y s (s,t ), 
Y u (U,t)'by means ofEqs. (2.17) and (2.18) of Sec. II with the 
appropriate replacements and N = max JV (t). In each do
main!» " these functions equal a polynomial in s or U of 
degree N

" 
with coefficients that are holomorphic in t. These 

polynomials (one of them suffices) describe completely the 
zeros of A (s,t) in the cut complex s plane Q, at each tin!»,. 
For reference: 

c;z- '};:~a ap(t~-P 
.'it' s(s,t) = ~ -.V(tl (4.29) 

with ap (t ) defined as a function of n ~k I(t ) by (2.18). 

v. THE MANDELSTAM DOMAIN. CONSTRUCTION OF 
THE AMPLITUDE 

In the first part of this section, we construct the Cousin 
function C (s,t) which vanishes in JI at those points where 
the amplitude vanishes and nowhere else and, in contrast to 
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Y s (s,t ), Y u (u,t ) of the previous section, is holomorphic in 
all of JI. In the second part, we construct the amplitude 
A (s,t ), similarly to Sec. III. 

We define first: 

Ka(s,t) = exp( - L .1 J In(s -: Sl(t ')) wIt ')dt') 
, 21Tlw(t) r, t - t 

xexp( - L ? J In(u j~t') - u) wIt ')dt') 
j 21Tlw(t) r; t - t 

=:Kas(s,t )Kau(s,t) 

with (a possible choice) 
wIt) = WIt) = exp( - (4m 2 _ t)114). 

(5.l) 

(5.2) 

In (5.1), the curves r, are obtained from the s channel zero 
trajectories r,:t = t,(S), SEC,+, SEC s- , whereas 
r ;:t = t j(u), U E C u+ are obtained from the u channel. The 
sense of integration is the one of the previous section (i.e., S 

increasing, s E C,+; decreasing, SEC s-); the weight w(t) 
guarantees convergence of the integrals. 

The determination of the logarithm is chosen as fol
lows: (i) for a curve r,:t = t,(S'), s' E C/ , we take 
In(s - Sl(t ')) positive imaginary for s < 4m2; we can continue 
in s throughout D s ' so that In(s - s,(t')) has a right-hand cut 
for s > s, (t '). As a consequence, the integral 

I(st)= _l_J In(s-s,(t'))w(t')dt' (5.3) 
" 21Ti r, t ' - t w(t) 

has, at fixed t, a cut for s > min Sl (t '),t ' E r,; (ii) by the real 
analyticity of A (s,t), to each r,:t = t,(S'), s' E C,+ , there cor
responds a curve rj-rrt = tj(s'), s/ E C s-' 

t j(s') = t r{s/*), S/ E C s-; for t' Err, we choose 
In(s - s j(t ')) to be negative imaginary for s < 4m 2

• We con
tinue this choice in Ds so that In(s - s j{t ')) has a right-hand 
cut in s, for s > s j(t '). As a consequence, the same expression 
(5.3) taken along rr, has, at fixed t, a cut for s> min Sj(t '), 

t / Err and is equal at real s, t to the complex conjugate of 
(5.3). A minus sign comes from the opposite sense of integra
tion on r r. (iii) For a curve r;:t = t j (u/), U' E C u+ , we take 
In(u(t /) - u) to be real for u < 4m2

• The continuation in Du 
is m~de so that In(u j(t /) - u) has a right-hand cut in u, for 
u > u j(t '). (iv) For t / E r;*, defined as above in thes channel, 
r ~*=r k:t = tdu), u E C u-, tdu) = t j(u*), we choose 
In(u k (t') - u) again as real for u < 4m2

, and continue it with a 
right-hand cut in D u' As a consequence, the integrals 

1 f In(ui(t /) - u) w(t') d ' 
1/(st)= - - t 
I' 21Ti r; t / - t w(t) 

(5.4) 

have a right-hand cut for u > min u,(t '), at fixed t, and the 
same holds for the integral over r ;*. As for the curves r i , 

the integral over r ; is for real t,u minus the complex conju
gate of the integral over r ;*. 

By this definition of the logarithm, we ensured that 
Ka(s,t) is real for s,t,u real. However, there may appear end 
point singularities of 1, (s,t ), 1 ;(s,t), Eqs. (5.3) and (5.4) lead
ing to zeros or poles of Ka(s,t ) as a consequence of these defi
nitions: (i) If the continuation of a curve r i is the curve r r 
[as is possible if, e.g., a zero t = t (s) of A (s,t) becomes real as 
S __ 4m2, 1m s = - E < 0 and is then continued analytically 
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to 1m s = c> 0], then there is a discontinuity in the argu
ment ofln(s - Silt 'l) in (5.3) as t' -+- to, to real, s;(to) = 4m2: 
for s < 4m2, real, In(s - 4m2) = itT, if we take the limit from 
r; and In (s - 4m2) = - i1T, if we take the limit from r r. 
One can verify this leads to a zero of Ko(s,t ) at t = to for all s. 
No such discontinuity occurs when r; is continued by r ;*. 
(ii) Assume now a curve r; terminates at a point to on 
1m t = 0, t < - 4m 2

• It is then "continued", in the sense of 
Lemma 6 by a curve r ;(r ;*) and, by real analyticity there 
must also exist a curve r r "beginning" at to. This situation 
leads to a zero of Kos (s,t ) at to for all S; however, the sense of 
integration cannot be a priori known so that, in general, a 
pole might also appear at to. The curves r; with an end at to 
lead in a similar way to a zero or pole of Kou (u,t ) for all u. In 
Ko(s,t) these singularities may cancel, so that we can only 
state that, in general, Ko(s,t I-It - to;ri,k; = - 1,0,1 at 
these points. (iii) Let tOj be those end points of curves 
r;:t=t;(s), t;(s)-+-fojass-+-oo, SEC/ orsECs-.By 
(AS) (i) (and real analyticity) they are also end points of a 
curve r;, u E Cu- , or u E C u+ • We show in Appendix H 
[part (ii)] that Ko(s,t I-It - tOj )-2 at these points. 

We define thus: 

K (s,t) = IT(t - to,i f' IT (t - tOj )2KO(S,t). (5.5) 

In (5.5),p; = - 1 for points of the category (i),p; = - 2k; 
for points of category (ii). 

Theorem 5.1: Define 

C (s,t ) = Y s (s,t )K (s,t ). (5.6) 

Then: (i) C (s,t) is holomorphic in 1; (ii) is real analytic; (iii) 
for s E Cs , it is holomorphic as a function of t in the corre
sponding cut t plane; (iv) property (iii) holds for u E Cu ; (v) it 
is continuous at those (s,t,u) E::R with s E Cs or u E Cu' and 
the other coordinate in Qs orQu; (vi)A (s,t )IC (s,t )isnonvan
ishing in 1; for s E Cs or U E Cu , it is nonvanishing in the 
corresponding cosine plane Qs or Qu . 

Proof At each fixed t ~ r;, Kos(s,t) is holomorphic in 
the neighborhood of any point s E Ds. Since Ds is simply 
connected, Kos (s,t ) is holomorphic and one valued there. 
Similarly, Kou (u,t ) is holomorphic and one valued in D u. We 
conclude that Ko(s,t ) is holomorphic and one valued in 
Ds nDu at each t ~ rio 

We can differentiate (5.1) with respect to t at each t ~ r; 
and thus Ko(s,t) is in fact hoI am orphic in 
fiJ; ® Ds n fiJ; ® D u' with respect to both sand t. (See Ref. 
23.) The function Y s (s,t ) is manifestly holomorphic in sand 
t in the domain above and thus, so is C (s,t), Eq. (5.6). 

At fixed s,Ko(s,t) has discontinuities along r j and r;. 
The poles and zeros in t have been removed by the factors in 
(5.5). There exists apart from this a cut for 
t = - s - x, 1m x = 0, x> 0, coming from the logarithm 
in the exponent of Kou(u,t). The function Ys(s,t) has discon
tinuities along r;, r;, and a cut for t;;;.4m 2, present in 
f} ik )(s,t), Eq. (4.15). To establish holomorphy ofC (s,t) in~, 
we show now that the discontinuities across r; of Y.(s,t ) 
and K (s,t ) remove each other in their product. 

At points interior to Ds, there is no difficulty in apply
ing Plemelj's formulas to C (s,t ) since the integrands are 
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Holder continuous. If fiJ; + 1 lies to the left and fiJ; to the 
right of r;, which is assumed simple, and if t is not a cusp, we 
repeat the argument of Sec. III to obtain 

lim Ys(s,t)K (s,t) = F; + 1 (s,t lK (s,t)(s - Silt ))-1/2 
t~r, 

tE!iJ;+ t 

( Ii In(s - Si(t')) w(t') d /) Xexp -P- -- t 
21Ti r, t/ - t wIt) 

= Fi(s,tlK (s,t )(s - Silt W/2 

( 
1 Iln(s - Silt ')) w(t') d ,) Xexp -P- -- t 

21Ti r, t' - t w(t) 

= lim Ys(s,t)K(s,t), (5.7) 
t __ rj 

t E fjJ i 

where we have used the fact that F,. + 1 (s,t ) = (s - Si (t )) 
XFi(s,t), t E r;, and Fk(s,t) is the determination of Ys(s,t) 
in fiJ k; we have written in (5.7) K (s,t) = K (s,t ) ... t;(s,t) with 
It; (s,t ) the factor of Kos corresponding to r;. If t is a cusp of 
r;, application of(E 1) shows that C (s,t ) is holomorphic there. 
Thus, C (s,t ) is holomorphic in t at all points of r;, except 
possibly the end points. Since at fixed ton ro Eq. (5.7) is 
holomorphic and one valued for sin Ds ' we have succeeded 
in enlarging the analyticity domain of C (s,t ) to (fiJ; 

u fiJ;+ 1) ®Ds n (fiJ; u fiJ;+ 1) ®Du. 
Consider now a curver;: onlyKou(u,t )hasadiscontin

uity there; however, we have to take care that Ys(s,t) is a 
polynomial in s rather than u. We use then the fact that, for t 
on r;, u j(t) - u = s - Sj(t I [Sj(t) is defined in Lemma 6] 
and obtain 

lim Ys(s,t)K (s,t) 
t __ rj 

tEi:IJ)+ 1 

with 

- 1/2 = F j + 1 (s,t)K (s,t )¢(s,t )I(u j(t) - u) 

= Fj+ 1 (s,t)K (s,t )¢(s,t )I(s - Sj(t W12 

= Fj(s,t)(u j(t) - U)1/2K (s,t )¢(s,t) 

= lim Y s (s,t )K (s,t ) 
t __ rj 

tE g; j 

(5.8) 

¢(s,t)=exp -P- dt' . ( 
1 lln(s+t-sj(t')-t') ) 

21Ti r; t'-t 
(5.9) 

The reason why we chose opposite signs for s and u in 
the logarithms appearing inKos andKou is now apparent: the 
coefficient of the highest power of s in each of the determina
tions of Y s (s,t ) is unity and we would have obtained a minus 
sign on the right-hand side of (5.8) had we not made this 
choice. We have achieved thus analyticity of C (s,t ) in 
(fiJ j u fiJ j+ 1) ® Ds n (fiJ j u fiJ j+ 1) ® Du' and we can 
clearly obtain by this method analyticity in Dt ® Ds 
n D t ® D u ' except for isolated planes t = const. These cor
respond to intersections of several r; 's or end points of 
r;, r; (with the definitions of the previous section, such end 
points can lie in D,). 
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The case of the intersection of several trajectories is 
treated precisely as in Sec. II (possibly with the care indicat
ed in Appendix E for cusps). We have still to discuss (i) those 
points (on lm t = 0, t < - 4m2 at which a curve rj:t = tj(s) 
is "continue,!." (in the sense of Lemma 6) by r ;:t = t j(u); (ii) 
those points tOJ ED" with the property that 1ims~ = 

tj(s) = (oJ' 

We show in Appendix H that C (s,t ) is holomorphic in s 
and teven in the neighborhood of such points, and thus C (S,I) 
is hoi om orphic in all of JI. 

Statement (ii) of the theorem is obvious, since the 
branches of the logarithm in Ko(s,t ) have been chosen so as to 
make it real for s,t real and [l ~k I(t ) is real analytic by its 
property (4.25). 

Take now s = So, So ECs ' The argument of the logarithm 
in Kos (s,t ) in (5.1) has to be defined with care, since we distin
guish30 between curves rj:t = tj(S'), s' E C s+' rj*l:t = tj(S')' 
s' E C s-: Ifso E C s+ ,t' E r;: arg(so - Silt')) = 0 if so>s;(t '), 
arg(so - Sj(t 'I) = 1T if So <Silt 'I; if t' E rj*l, then 
arg(so - S j(t ')) = - 21T, if So >S j(t 'I, but = - 1T if 
So <s j(t '). If So E C s- , t' E rj: arg(so - Silt ')) = 21T if 
So >s;(t 'I, arg{so - Silt 'I) = 1T if So <Silt '); if t' E rj*l, 
arg(so - Sj(t')) = 0, if So> S j(t '), and arg(so - S j(t 'I)' = - 1T 
if So < S j (t 'I. With this, the functions C (so,t ) are well defined 
and even analytic at all points t, with t i= t; (so) for some i. The 
behavior at to = t;(so) is explored as in Appendix E: iftj(so) is 
a regular point of r;, we can repeat the proof without 
change. If to = t;(.so) is a cusp, we can still do the same, pro
vided we show that lim, ~ '0 (si;n (t ) - so)l(t - toy,; ,p > ° is the 
same from all directions as t - to' This follows from (A2) 
and the continuity of db /dt at the points of r j , with the 
notation of (E9). 

As for (iv), we define first the logarithm for u in Cu (we 
do not distinguish between r;, r /( 0

1): if U E C u+ , 

arg(u; - u) = 0 if u < u;(t') and arg(u j - u) = - 1T if 
u > u;(t 'I; ifu E C u-, u;(t') E r;, arg(u j - u) = 0 ifu < u;(t ') 
and arg(u j - u) = 1T if u > uj(t 'i. The property in (iv) is then 
proved precisely as for S E Cs ' noting that 
s;(t) - S = U - u;(t) for ton rj' 

The proof of (v) follows Appendix E in detail and the 
proof of (vi) is the same as that of the analogous statement in 
Theorem 3.1: K (s,t ) is constructed so as to be non vanishing in 
j(. This concludes the proof of Theorem 5.1. 

We can now construct 

E (s,t) = A (s,t )/C (s,t), (5.10) 

which is holomorphic and free of zeros in JI and also in the 
cosine planes corresponding to s or u on the cuts. Moreover, 
its modulus is known in the "extended physical region" 
9 s u 9, U 9 u' At each fixed s,t or u on the cut, its exten
sion to the corresponding cosine plane is also assumed to be 
known. We can compute 

L (s,t) = In( ± E (s,t I). (5.11) 

For a function/(s,t) continuous and nonvanishing in 
JI, we define lnf(s,!) along each ray s = 4m2/3 
+ A (Sl - 4m2/3), t = 4m2/3 + A (fl - 4m2/3), 

0< A < 00, passing through s = t = u = 4m 2/3 and 
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(Sl,t l, u l) by continuity from the value In/(4m2/3, 4m2/3); 
one can verify thatJl is such that, if(sl,tl'u]) E JI, then the 
ray passing through (SI,t],U 1) is entirely contained in JI. 

With this definition Inf(s,t) is continuous in JI and, if/(s,t) 
is holomorphic in JI, so is In/(s,t) [which can be written as 
f~~/,I f'(S(A ), t (A ))/f(s(A ), f (A ))dA.]Wecanchoosethesignof 
E (s,t) in (5.11) so that L (s,f) is real for s,t,u real. 

Then, at fixed SEC s+ , 
L (s,t ) + L *(s,t *) = In(E (s,t )E *(s,t *)) + 2k1Ti = hi (s,t ). 

(5.12) 

With the above definition of the logarithm, 
In(E (s,t)E *(s,t *)) can be chosen real for t real, s E C,+ and 
thus k = O. Clearly, at fixed u E C u+ , it is true that 

L (u,t) + L *(u,t *) = In(E (u,t)E *(u,t *)) = h2(U,t). 

(5.13) 

By real analyticity, L *(s,t *) = L (s*, [), etc. We define 

I (s,t) = L (s,t) (5.14) 
(4m 2 _ s)1I2(4m2 _ U)J/2 

with the root negative imaginary above the cut s;>4m2 
(u;>4m 2

). We can then write (5.12) and (5.13) as 

l(st)-l(s*t)= ihJ(s,t) SEC.c+, 
, , (s - 4m2)1/2(4m2 _ U)J/2 ' , 

(5.15) 

l(u,t)-l(u*,t)= ih2(u,t) UEC
u
+' 

(4m 2 _ s)J/2(u _ 4m2)I!2 ' 
(5.16) 

We show below that for t E !iJ j' '(s,t) satisfies an unsub
tracted dispersion relation as a consequence of assumption 
(A6). If this is granted, we can write, using (5.15) and (5.16) 

This defines E (s,t ) completely, and the construction of A (s,t ) 
is finished: 

A (s,[ ) = ± C (s,t )E (s,t ). (5.18) 

We must still show that I (s,t) satisfies the dispersion re
lation (5.17). To this end, we notice first that, at each fixed t, 
as a consequence of(A6), the amplitude A (s,t) can be written 
as 

A (s,t) = [l,(s)[l/(u)P(s,t) (5.19) 

with P (s,t) a polynomial in s, and [~,(s) is the phase of 
A (s,t), SEC,] 

[ 
s 1= ~,(s') ,] n / (s) = exp - " ds. 
1T 4m' S (s - s) 

(5.20) 

The argument that the representation (5.19) is valid under 
assumption (A6) is standard; with more general assumptions 
than here it can be found in, e.g., Ref. 31. Further, C (S,I) can 
be written as Y s (S,I ) K (s,t ) and Y s (s,t) reduces for t E g; ; 
to a polynomialins,F; (s,t ). By construction,Fj (s,t ) andP (s,t) 
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have the same roots at fixed t, so that we can write 

E (s,t) = colt )11, (s)I1, (u)IK (s,t) (5.21) 

with colt ) a constant at each fixed t. None of the factors on the 
right-hand side vanishes for SEQ, and our purposes will be 
attained if we show that, for f (s,t ) equal in tum to 
11,(s), 11,(u),K (s,t), 

I ( ) _ Inf(s,t) 
f s,t - I (4m2 _ s)1/2(4m2 _ U)I 2 

(5.22) 

satisfies a dispersion relation. To this end, it is enough to 
show that: (i) 1m I f(s,t) <K Iisla, for some a > 0 and that, 
(ii), as lsi ---+ 00 in all directions of the complex plane 

II f(s,t)1 < const Ilnlsin 8 II = B (lsl,8). (5.23) 
Isla 

If this is so, then, by (i) the right-hand side ofEq. (5.17) can be 
written for each 1m If and defines a function I f(s,t ) which 
obeys the bound (5.23) as lsi ---+ 00, in all complex directions. 
The difference Ll f = I f(s,t ) - I f(s,t ) is thus a function holo
morphic for all finite s and satisfying the bound (5.23). Writ
ing then that ILl f(s,t ) I is less than the modulus of a function 
having no zeros inside the circle of radius k lsi, k> 1 and 
having a modulus on that circle equal to B (k Isl,8), Eq. 
(5.23), we can verify that ILl f(s,t)1 can in fact be bounded by 
arbitrarily small numbers, provided k is chosen sufficiently 
large. Thus, Ll f(s)-O. 

We must therefore verify (i) and (ii) above. From (5.20) 
and (A6), for s sufficiently large, Re In 11, (s) < const X In s, 
for s E Cs and the same is trueforl1,(u). Also, one can verify 
that, for s complex, if (A6) (ii) is true 

lin 11,(s)1 <const In(lsl/lsin 8 I), (5.24) 

which implies (5.23) forf = 11,(s), 11,(u). There might still 
exist isolated points where Re (In 11,(s)) increases logarith
mically [the isolated zeros of A (s,t )). Then, the difference Ll n 
between In and In in the argument above might have isolat
ed singularities at these points; however, these are such that 
lims~sJs - so) Lln(s) = O(so is such a point); this means 
Ll n (s) is holomorphic at So and there is no change in the 
proof. Thus, iff = 11,(s), 11,(u), I f(s,t) does satisfy a disper
sion relation. To show that IK satisfies it, we shall establish 
for the exponent I (s,t ) of Kos (s,t ) the bound 

II (s,t)1 <K (r,t )1 1n ls II (5.25) 

with r the distance from t to the boundary ag; i of g; i' This 
bound is valid for all s in Ds U C s+ U C s- and its verification 
finishes the proof if t E g; i' It is enough to consider the con
tribution Ii (s,t ) of a single curve r i ; we write 

I Ii (s,t ) 1< 11 (b, Iln(s - s')lIw(ti(s'))1I dti Ids', 
21Tr w(t)1 Ja, ds' 

(5.26) 
where hi can be finite or infinite. If hi is finite, then (5.25) is 
straightforward. If hi is not finite, we write 

IIi(s,t)l< - + + I [i iSI 
- I flsl 

+ I foo ] 
21Tr a, lsi - 1 lsi + 1 

X ( Iln(s - s')1 I w(ti (s')) II dti IdS') 
Iw(t)1 ds' 

= Iii (s,t ) + 1'2 (s,t ) + IiJ (s,t ). (5.27) 
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Clearly, 

IIiI (s,t)1 < _1_ max Iln(s - s')I-1 _1_
1 21Tr a<s'<lsl- I w(t) 

1
00 

dt Mi(t) I 
X Iw(s')II-' Ilds'l< --llnlsl . 

a ds' 21Tr 

For 112 (s,t), we use (for s#s') 

Iln(s-s')I<llnls-s'li +const; Ilnls-s'li 

<In max(l/Is' - IslI,ls' + IslI) 

< - Inls' - Isil + Inls' + IslI, 

(5.28) 

II,2(s,t)l< M
2

;(t) + 1
2
n lsl M;'(t). (5.29) 

1Tr 1Tr 

For the third integral, we write 

Iln(s - s')1 <Inls - s'l + const<ln(lsl + s') + const 

<In s' + const, (5.30) 

where we have used that lsi <s', Is - s'l > 1. The resulting 
integral converges and tends to zero as Isl---+ 00. This proves 
(5.25) for t E g; i' With mor~ careful estimates, we show in 
Appendix I that the factor K (r,t) in (5.25) does not get un
bounded as t approaches r i , but rather stays finite if t is not 
such that ISi(t ')1---+ 00 a~ t' ---+ t. In the latter case, we can 
only show that II (s,t)1 <K (t) In2 lsl, which is still enough to 
justify (5.24). This is also shown in Appendix I. 

This ends the construction of A (s,t ). 
Clearly, we could have obtained A (s,t) starting from the 

modulus in the sand t channels instead of sand u. As in Sec. 
III, there is the difficulty that C (s,t ) is singular at the end 
points of the curves r i but, at each fixed s, lin C (s,t ) I is inte
grable, so that the construction can still be done. The condi
tion that the amplitude obtained by the two routes is the 
same gives a continuous set of sum rules, to be fulfilled by the 
modulus in the t channel, if the problem is to have a solution. 

An example ofthe construction of A (s,t ) in vb" is given in 
Appendix J. 

VI. CONCLUSIONS 

Equations (5.18), (5.17), (5.14), (5.11), (5.6), (5.5), (5.1), 
(4.29), (4.23), (2.18), and (4.15) allow an explicit construction 
of the amplitude A (s,t,u), holomorphic in the Mandelstam 
domain, starting from its modulus in the three channels and 
a certain resolution of the discrete ambiguity in all channels. 
This achieves the aim stated in the Introduction. 

The sequence of equations above has been derived start
ing from an amplitude A (s,t,u) obeying analyticity in two 
variables in the Mandelstam domain and certain restrictions 
(A1)-(A7), Sec. IV. In the course of the paper, it turned out 
that the data of the problem-the modulus and the position 
of the zero trajectories-must be suitably restricted in order 
to be compatible with the analyticity properties of A (s,t,u). 
These restrictions are given by conditions (4.28) for the posi
tion of the zero trajectories and by the equality of the results 
of the two possible constructions (5.18), starting from the 
modulus distribution in the sand u channels and sand t 
channels in tum. 

In fact, we can state that equations (4.28) are sufficient 
conditions for picking out a resolution of the discrete ambi-
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guity that is consistent with two-variable analyticity. In
deed, given oriented curves F;, F; [i.e., functions t;(s), tj(u), 
s E Cs'u E Cu ] and sets of n j functions Sk/(t), 1= 1, ... ,n j 
defined on intervals (t j' tj + I ) of C" we can construct a func
tion C (s,t ), holomorphic in two variables in the Mandelstam 
domain and having the prescribed zero trajectories, as s,t or 
U take on physical values. The function C (s,t ) is given by Eq. 
(5.6). 

In general, Eqs. (4.28) are not sufficient to eliminate all 
but one solution of the discrete ambiguity. It is easy to find 
examples where coherent reflections are possible, so that the 
identities (4.28) are left unimpaired. It is interesting to notice 
that, because of the reflection symmetry of the patterns of 
zeros inD" another solution of the discrete ambiguity leaves 
the pattern completely unchanged, except for the reversal of 
the sense of some curves F; (F ;) and the replacement of the 
inverse functions O"Jr) of these curves by their complex con
jugate; one might also need the replacement of some func
tions 0";(7) on C, by their conjugate. 

It is presumably true that if several solutions to (4.28) 
are available, and the given modulus of A (s,t ) satisfies the 
consistency conditions for one of the solutions, then it satis
fies them for all the others. However, a proof of this state
ment is lacking at present. 

The construction of amplitudes holomorphic in the 
Mandelstam domain required the use of a number of as
sumptions. We introduced them proceeding by analogy with 
the construction of Sec. II and III of amplitudesj(0",7), holo
morphic in a neighborhood of ~ = 110"1,;;; 1 ® 171,;;; 1 J. Let 
us recall these assumptions and their role shortly. 

Assumption (AI) concerns the continuity of the ampli
tude at boundary points; it ensures that we can talk locally 
about zero trajectories and that their images in the t plane 
have a continuous tangent vector, except for some special 
points. Assumption (A2) allows one to "continue" zero tra
jectories on larger intervals of energy and specifies the nature 
of the cusps. Assumption (A3) is the most drastic one: there 
are a finite number of zero trajectories. This is in particular 
violated if the amplitude saturates the Froissart bound32

•
33 

or obeys some form of geometrical scaling. 34 If (A3) is 
dropped, one has to account for the convergence of the var
ious series occurring in (4.15) and (4.23). Assumption (A3') 
states, e.g., that there are no zero trajectories running along 
the cuts of the t plane as s moves on Cs • By a treatment 
similar to Appendix C, (A3') may be dropped. Assumption 
(A4) restricts the behavior of the trajectories at end points 
and ensures that continuations of the inverse functions 
around these points can be performed (Lemma 6). Assump
tion (A5) restricts the behavior of zeros at infinity and (A6) 
restricts the behavior of both the modulus of the amplitude 
at large s,t,u and of its phase along the cuts. Finally (A 7) is 
rather artificial and ensures that only a finite number of do
mains occur in the complement of the images of the curves 
F; in D,. Presumably this assumption is unnecessary. 

The problem of constructing amplitudes starting from 
experimental information, in such a way that they are com
patible with analyticity in two variables, has been considered 
in the past in other works from a somewhat different point of 
view. In Ref. 35 the authors set up a family off unctions, 
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holomorphic in vI(, so that any amplitude satisfying an un
subtracted Mandelstam representation may be expended in 
terms of them. Applications to 17'17' scattering are discussed in 
Ref. 36. The clear difficulty of this method is that the func
tions in question are not orthogonal in the physical region, 
but rather in the double spectral domain. Consequently, the 
number of terms needed by the expansion to reproduce the 
details of the amplitude is very large and not easy to control. 

In Ref. 37 (and papers cited therein) the authors discuss 
a two-variable (energy and angle) expansion of the ampli
tude, up to a given energy, in a certain channel, in terms of 
basis functions of irreducible representations of 0 (4). It is, 
however, not their concern to ensure the correct global anal
yticity properties of the amplitude. 

The interest in the problem of constructing scattering 
amplitudes given the modulus in the three channels stems 
mainly from the fact that its statement is very simple, and the 
differences between the treatment in one complex variable 
and that in two variables are substantial. It appeared to the 
author as a surprise that such a construction can be per
formed explicitly. From a practical point of view, it is diffi
cult to ascertain at present whether these methods can be 
applied in particle physics. However, related procedures are 
certainly of interest in optics, in the problem of phase retriev
al from a single, two-dimensional intensity distribution. 38

•
39 

APPENDIX A: WEIERSTRASS' PREPARATION 
THEOREM 

We use Weierstrass' preparation theorem many times 
in this paper. In this Appendix, we recall it and make some 
comments on its use and on the implicit function theorem in 
complex function theory. 

One possible statement of Weierstrass' theorem for the 
case of two variables is (Ref. 16, p. 86): 

Let F(s,t) be holomorphic in s,t in a domain D and let 
F (so,to) = 0, (so,to) ED, but F (so,t )¥O. Then, there exists a 
neighborhood U X Vof (so,to), where F (s,t ) can be written in 
the form 

F(s,t) = ((t - tor + al(s)(t - tor ~ I + 
= Wso (s,t )fl (s,t ) 

+ an (s))fl (s,t ) 

(AI) 

where n is an integer> 1, fl (s,t) is a holomorphic and non
vanishing function of s,t in U X V, al(s), a2(s), ... an(s) are 
holomorphic functions of s, for sin U and 

al(so) = a2(so) = ... = an (so) = 0. (A2) 

Thus the zeros ofF (s,t ) can be described in the neighborhood 
U X V of (so,to) by a "Weierstrass pseudopolynomial" 
Wso (s,t) "with peak at so," 

If one drops the assumption F (so,t )¥O, then it can be 
shown (Ref. 16, p. 89) that, for two complex variables the 
decomposition of F (s,t ) in U X V reads 

F(s,t) = (s - soY'Wso(s,t)fl (s,t) (A3) 

for some integer p. 
a. We first point out that Weierstrass' theorem contains 

the usual implicit function theorem for holomorphic func
tions. 

To this end, we verify first that aF jat (so,to)#0 implies 
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thatp = 0 and n = 1 in (A3). Then we see from (AI) that if 
F (so,to) = 0 and aF fat (so,to) =1= 0, F holomorphic in a domain 
DI ® Dz( :3 (so,to))' there exists a neighborhood U of So and a 
function t (s) = to - al(s), holomorphic in U, with values in 
Dz, such that t (so) = to and F (s,t (s))=O, for s E U, as stated 
by the implicit function theorem. 

b. Weierstrass' theorem makes precise the behavior of 
the solutions t (s) of F(s,t) = 0 at points where aF f 
at(s,t) = O. 

Namely, the solutions t (s) of F(s,t) = 0 can have at most 
algebraic branch points of order (2<)p<n at points 
so,to where aF fat (so,to) = O. In the neighborhood of these 
points a solution t (s) can be expanded as 

t (s) = to + al(s - so)l/p + az(s - so)2/p + .. , (A4) 

and the expansion has a finite radius of convergence. 
To show how these statements follow from Weierstrass' 

theorem, we shall quote some intermediate steps of the 
proof, to be found in Ref. 16, p. 92 fr. These statements may 
also clarify the meaning of Weierstrass' theorem: 

1. Each pseudopolynomial W So (s,t ) can be written in a 
unique manner as a product of irreducible pseudopolyno
mials W~~(s,t), with the same peak 

Wso (s,t ) = II W~~ (s,t) (AS) 

(see Ref. 16, p. 94). 
2. For an irreducible pseudopolynomial Wso(s,t) all the 

roots of the equation in t: WSo(s,t) = 0 are distinct, ifs lies in a 
sufficiently small neighborhood Uo of So (s=l=so) (see Ref. 16, 
p.94). 

Consequently, we can apply the implicit function 
theorem to the equation Wso(s,t) = 0 at all points in UoX Cfi, 
except for (so,to) to find a solution t (s) and then its continu
ation as s moves in Uo around So' 

3. If WSo (s,t ) is irreducible, then any root t (s) of 
W.o(s,t) = 0 at s=l=so, s E Uo, can be obtained from any 

other one t (Sl),sl E Ub C Vo,so Ef Ub, by analytic continu
ation along a suitable path in Uo, avoiding So (cf. Ref. 16, p. 
109). 

As a consequence, if Wso (s,t ) is irreducible and has de
greep with respect to t, if we continue analytically a root t (Sl)' 
defined on U b C Uo' So Ef U b, along a path surrounding So, 
we recover the function with which we started after precisely 
p turns. In other words, Wso(t) defines a function t (s) which 
has a branch point of order p at So. 

We now introduce the variable u by s = So + up. The 
function t = t (so + uP) = t (u) is then uniform with respect to 
u in a neighborhood ~ of u = 0 and, since it is bounded, it is 
holomorphic in ~ . We can thus write 

t(u) = I cnun = I cn(s - sot/P (A6) 
n n 

and the expansion converges in a disk contained in ~. 
c. Thus, a solution t (s) ofF (s,t ) = 0 withF (s,t ) holomor

phic in a domain Ds X D" will be a holomorphic function of s 
in Ds except for isolated algebraic branch points. 

There will exist, in general, several solutions t (s) with t 
in D, for s in D •. Assume that for each s in Ds there are n 
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solutions with tin D,. Then, although each of these functions 
have in general branch points in Ds, the symmetric sums 

n 

Sds) = I (t;(s))\ k = 1,2,00' ,n (A7) 
;=1 

are holomorphic functions for s in D •. 
This can be seen in two ways: the first is applying Weier

strass' theorem to those points where one of the t; 's has 
branch points. If we continue Sds) around such a point, we 
get a function which is uniform (and thus, since bounded, 
holomorphic even at so) because we just permute the indices 
of the branches of the algebraic function t (s). The other meth
od used in fact to prove Weierstrass' theorem (see Ref. 16, p. 
86), is to write Sk (s) as 

S ( ) - 1 f k aF fat (s,!) 
kS-- t , 

21Ti aD, F(s,!) 
(A8) 

where the integral is performed counterclockwise along the 
boundary of D" where F (s,t ) =1= 0 for s in D. (and we assumed 
for simplicity that D, is bounded and the length of aDt is 
finite). The functions Sds) in (A 7) are holomorphic in D., 
since the integrand is holomorphic in D. and the integral is 
done on a finite interval. 

If the Sds) are known, one can construct algebraically 
the "symmetric combinations" of the roots t; (s), defined as 

n 

PI(S) = - I titS), 
;=1 

pz(S) = I ti(S)!j(S) 
;>j (A9) 

n 

Pn(S) = II ((s)( - l)n 
;=1 

These functions are holomorphic functions of s in D. and are 
the coefficients of a polynomial P (s,t ) which vanishes in 
Ds ®D, precisely whereF(s,t) vanishes 

n 

P(s,t) = I tkPn_k(S), (A1O) 
k~O 

Thus, inD. ®D" we can write 

F (s,t ) = P (s,t )!J (s,t ), (All) 

with !J (s,t ) non vanishing in Ds ® D,. 

APPENDIX B: THE CURVES Y.: l' = 1'. (0') 

We prove in this Appendix properties (a)-(f) of the 
curves Yi' defined in Sec. II. We denote by Yi the image set in 
the l' plane of the trajectory function y;:1' = 1'i(a), 10'1 = 1. 

The curve Yi has clearly a continuous tangent (i.e., 
d Re l' f d 1m l' or the reciprocal are continuous functions of 
the parameter 0') at all points 1'0 where dri f d(J' =1= 0 and finite. 
At such points, we can define an inverse function (J';/'r), 
d(J';id1' =1= 0, holomorphic in the neighborhood of TO' The 
function ai(T) has unit modulus on Yi' 

If dT;lda is not finite at 0' = 0'0' 1';(0'0) = To, we know 
from Eq. (A4) that the change of variable 0- = ((J' - ao)l/p, 
p> 1, integer, renders d1'; f dO- finite or zero. Thus, 

Id1';idal is integrable at (J'o. Several curves Y j:1' = l' j((J') meet 
at 1'Oj = l' j(ao); we have a choice as to the definition of Y; on 
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both sides of TO' As stated in the text, we choose as continu
ation the image through T;(O") of a line making an angle trip 
in the U plane with the original direction (in a clockwise 
sense). We obtain thus, in general, a cusp of Y;. The inverse 
function a;(T) maybe holomorphic in a neighborhood of 
To = T;(ao), or have a branch point at To' 

lf dT; Ida = 0 at a = a o. a cusp of y; might appear, al
though not necessarily [compare the situations of 
T - (a - 1)2 = 0 which has a cusp at T = 0 with that of 
T - (a - 1)3 = 0 which has no cusp]. It is not necessary that 
other YI meet Y; at To. but this may certainly be so [see 
r - (a - 1)5 = 0]. The inverse function a;(T) has a branch 
point at r a and is Holder continuous along y;, with some 
rational index. 

We next show that there are only a finite number of 
points along lal = 1, where dTJda is not finite or zero. To 
this end, assume that an infinite sequence of such points ex
isted; then it would accumulate at (ao.ro) in 
fj, laol = I and/(ao.ro) = O. From Weierstrass' prepara
tion theorem. the zeros of/(a.T) are described in a neighbor
hood Uuo X Ura of (ao.ro) by a finite product of irreducible 
pseudopolynomials W~I (a.T). with coefficients holomor
phic in Uuo ' Each W~,'(a,r) describes locally a function rk(a) 

and for at least one of these, say rl(a). and infinity of points 
an - ao should exist where dr1/da = 00 or zero. However. 
(see Appendix A), there exists a neighborhood Uo of a o, so 
that all functions rda), described by W~.)(a,r), 
k = 1,2 •... , are holomorphic in Uo• except at ao. Conse
quently, there cannot be an accumulation to a a of points an' 
with dr J da not finite or zero, except if r 1 (a) is holomorphic 
at all an' and dr1/da(an) = O. This implies, however, that 
r l (a) = const = To. a situation which we can exclude for 
simplicity. 

The argument shows that, even if all zero surfaces of 
/(a,r) are included, the number of points where drJda = 0 
or infinite in fj is finite. 

We now consider property (c): if a curve YI stays entirely 
contained in Irl < 1, then we must show that it has to be 
closed. To this end we consider the images / k = (r\k I(a l ). 

~k l(a2)) of an interval (a l ,a2 ) along 
I al = 1 (I a II = 1, I a 21 = 1), under the successive branches 
~k Ita), reached by counterclockwise continuation along 
lal = 1 (with the usual convention). According to property 
(a). we are free to assume that there are no branch points of 
rita) on (a l ,a2 ). Also, if N is the number of roots in r of 
/(a,T) = 0 in ITI < 1 at a E (a l ,a2 ). it stays constant along 
(a l.a2) if the latter is sufficiently small; thus the zero trajec
tories of/(a,r) consist on (al,a2 ) of N functions of a, l' j(a), 
j = 1,2, ... ,N, holomorphic on (a l .a2 ) and whose images 
are the segments I j = (rj(a l ). l' j(a2 )). It follows that the 
images / k must coincide with a subset of the I j ·s. Thus, by 
analytic continuation, we can obtain only a finite number of 
images / k' Let the sequence of distinct images obtained by 
continuation from / I be / I' /2' ...• / m' We still have to 
show that, if we continue rl(a) further (with the usual con
vention at branch points). we have to reach fl' so that, 
indeed, the curve will be closed. Assume we obtained, how
ever. / k' k =1= 1, (1 < k < mI. If we continue counterclock
wise further, we must obtain a loop consisting of (/ k' 
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/ k + I, ... '/ m) by the uniqueness of analytic continu
ation. But continuing around lal = 1 in the reverse sense, 
starting from (a l ,a2 ) and /k we obtain either /k-I 
or / m' and /k-I =1=/ m' if k =1= 1. This is, however, im
possible and proves our statement. 

Consider now the situation of a curve Y I that "enters" 
Irl < 1; this means that. at some a = ao on lal = 1, 
h(ao) I = 1 and that, for a sufficiently close to 
ao, Irl(a)1 < 1 for a on one side ("forward") of ao,lrl(a)1 > 1 
on the other side. We claim that there must exist ao. 
lao I = 1, such that (i) the analytic continuation of rl(a), 
counterclockwise along lal = 1 reaches again Irl = 1 at 
a = ao;(ii) TI(a) takes on values larger than unity in a neigh
borhoodofao on lal = I (YI "leaves"lrl<I). 

To this end, we consider again a segment (al 'o"2) in a 
sufficiently small neighborhood of ao, on the unit circle; we 
can assume that all the roots r,(a) of /(a,T) = 0 in 
Irl < 1 + Eo < 1 + E are regular functions on (a l ,a2 ) and 
consider again the images /k of (a l .a2 ) through the contin
uations r\kl(a) of TI(a) counterclockwise around 1a1 = 1. By 
definition, there is one of them, /1' which contains points 
with Irl = 1 + EI• Eo>EI>O and is traversed from 
Irl> 1 + EI to Irl < 1+ EI. Now, if with increasing k, 
-rtt)(a) leaves Irl<1 + Eo, it must cross Irl = 1 atsomeab and 
the proof is finished. So assume -rtt Ita) stays inside 
Irl < 1 + Eo for all k; then, we have seen that we must reach 
/ I again. for sufficiently large k [k > N.N = the number of 
roots in ITI < 1 + Eo of /(a,r) = 0, a E (a l ,a2), lal = 1]. 
Moreover, we must traverse /1 from large Irl to smallirl 
on (a I ,a 2)' But. since 1"(a) is a continuous function of a, there 
must then exist a;, la; I = 1, so that ria) crosses 
Irl = I + EI from Irl < 1 + EI to Irl> 1 + EI. There 
must then exist also a ab with the same property with respect 
to ITI = 1. Property (c) is thus justified. 

We now go over to property (d): if there existed an infi
nite number of Y; 's, they can at most be of the type with "two 
ends": otherwise, they would lead to an infinite number of 
roots of/(a,r) = 0 at fixed a,lal = 1. Assume that a se
quence of "endpoints" l' j of curves Y /r = r j(a) exist-
ed, Irjl = 1, rj =r(Uj), la;1 = 1 and accumulated at 
some (ao,ro),laol = 1, Ira I = 1. By continuity, 
/(ao,ro) = O. Applying Weierstrass' theorem to/(a,T) in a 
neighborhood Uao X Ura of (ao,ro). we conclude there must 
exist an irreducible pseudopolynomial Wua(a,r) vanishing 
on an infinite subsequence ! U h' l' h J of ! U j' l' ; ). As a con
sequence, the function T(a) defined by WO"o(a,T) = 0 must 
obey: r(a)r*(1Ia*) = 1 [and T(Uj.l = r ik ]. But on the other 
hand, by hypothesis, in any neighborhood of each U i' there 
exist points a;. la;1 = 1. with Irj(aj)1 =1= 1, and such that 
/(aj.r;(aj))=O; as aj-uj , r;(aj)-r)' Thus,fora in 
a neighborhood of a;.' lal = 1, /(a.r) vanishes both at a 
point on [rl = I and atr;.(aj); ata=aik'/(a,r) hasthus 
at least a double zero, i.e., a/laT (a jk , Tjk ) = O. It follows 
by continuity that a/laT(ao.ro) = O. Further, from Weier
strass' preparation theorem applied to a/laT at (ao,To) we 
conclude as above that part of its zeros must be described by 
the same pseudopolynomial Wuo(a,r) as for/(a,r). Thus, 
/(a,r) has at r = ria) a zero of the second order for each ain 
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a neighborhood of ao. But then/(a h.7) must have a zero of 
the third order (at least) at 7 = rj •• etc. Since this can be 

repeated indefinitely. a:r lar (a j .,7) = 0 at 7 = r jk for alll; 

thus/ (a A' 7)=0. for allj k , or/ =0, a situation which we can 
a priori exclude. This concludes the proof of property (d). 

We now discuss property (e): assume two trajectories r l' 
r 2 are such that they intersect an infinite number of times. By 
this we mean there exist two sequences of points Ian I, I a~ I, 

so that 71 (an) = 7 2(a~) = 7 n' The sequence 7 n accumulates 
at 70, 170 1« 1. There exists a neighborhood of 70' so that the 
inverse functions a l(7). a2(7) are holomorphic in it apart 
from a possible branch point at 70' Both a l (7), a2(7) have unit 
modulus on rl' r2' respectively. Consider then a2(71(a)). At 
the intersection points 7n• Ian 1= lal(7n )1 = 1, 
and an --->- a o• as n --->- 00. Since la2(7,.)I = 1, it follows 
that la2(a) I = 1, if lal = 1, i.e., la2(7)I = 1 for 7 on rl' As
sume now that at 7 = 7., da2Id7#0. Then a sufficiently 
small neighborhood U~o of 7 n is mapped one-to-one by 

a 2(7) onto a domain U" containing an and part of lal = 1. 
o 

Bothsetsa2(rl n U~J, a2(r2 n Ur .) are contained in U"o,are 
segments of the unit circle, and contain a •. Thus the map
ping a2(7) assumes the same value at points on rl and r2' as 
close as one wishes to 7. and this is impossible, unless rl,r2 
coincide. If, however, da21d7(7 = 7n) = 0, for all n, it fol
lows that a2(7) = a20 = const. This latter situation we can 
exclude by dividing first/(a,7) by a - a20 (the correspond
ing curve Y2 consists of the whole plane). This proves proper
ty (e). The same reasoning shows that no Yi can intersect 
itself an infinite number of times. 

The fact that C( U. Yi ) consists of a finite number of do
mains [property (f)] follows directly from (e) and (d). Proper
ty (6) is evident from the proof of (a) and (c). 

APPENDIX C: COMPLEMENT TO SEC_ " 

We discuss the modifications needed in the definitions 
of JV (7), Eq. (2.4) and n (k 1(7), Eq. (2.10) if assumption (A), 
Sec. II, is dropped. Thus, we assume that there exists at least 
a root a = a(7) of/(a,7) = 0 so that la(7)[ = 1, at least for 
some interval (71,72) of values of 7 on the circle 171 = 1. 

We notice first that, if e > 0 is sufficiently small, as
sumption (A) is valid for 7 on any circle of radius 
1 > R > 1 - e. To verify this, suppose it were not true: there 
would exist then a sequence en -- 0 with the property that, 
on each circle 171 = 1 - en' an interval (7~ ,7;;) exists, so that 
a root a.(7) of/(a,7) = 0 has unit modulus, lan (7)1 = 1, for 
7 E (7~,7;;). Apply then Weierstrass' preparation theorem to 
a neighborhood U« XU, of the point 
(ao,70),laol = 1, 170'1 = 1,'~hichisanaccumulationpointfor 
the intervals (7~,7;;) and their images (an(7~), an (7;;)), 
la.(7)1 = 1,7 E (7~,7;;). A root a(7) of at least an irreducible 
Weierstrass pseudopolynomial (with peak at so) must then 
obey a(7)a*((1 - en )2h*) = 1, 7 E Ur ,since for n suffi-

o 

ciently large, Urn n (7~, T;;) # O. However, this entails 
a((1 - en )2h) = a ((1 - emfh), for an infinite sequence of 
integers m, which is impossible, unless a(7) is a constant. 

As a consequence, if we use the definitions (2.4) of 0/1'(7) 
and (2.10) of n (k )(7), for some circle of radius 
171 = 1 - e,e> 0 and sufficiently small, we can expect both 
Theorems 2.1 and 2.2 to stay true, only provided we know 
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values of n; and of a(7), 171 = 1 - e, that we should put in. 
We now show that this information can be obtained in a 
simple manner from the one on 171 = 1 for lal < 1: on each 
interval (7i,7; + tl of 171 = 1 where the number of zeros of 
/(a,7) in 10"1 « 1 is constant, divide these into three classes :(i) 
n l ; zeros with 1a(7) I < 1; (ii) n2i zeros with 1a(7) I = 1, moving 
counterclockwise as 7 moves counterclockwise on 171 = 1; 
(iii) n 3; zeros moving clockwise at a counterclockwise motion 
of70nl71 = l;thenn; =n1; +n2iinEq.(2.4)andonlyai(7) 
in classes (i) and (ii) should be used in Eq. (2.10). 

To see this, it is enough to check that, in a domain g; [ 
adjacent to 171 = 1, n(7) is indeed n l; + n2i . Since n(7) is con
stant in g; I' it suffices to find it in the neighborhood 
U[ n (171 < 1) ofa certain point 7[, 17d = 1, where a i (7) are 
regular functions, with da/d7#0. Clearly, the n li zeros 
stay inside lal < 1 for 7 in U I n (171 < 1). But aJT) maps 
U, n (171 < 1) onto the outside of lal < 1 in case (iii) and on the 
inside of lal < 1 in case (ii) (as one sees from the Cauchy
Riemann equations). This proves our assertion. 

As an example, if/(a,7) = (1 - cr7)(a2 - 7) on lal = 1, 
there are five roots of the equation/(a,7) = 0, all of them 
with unit modulus. However, for 171 = 1 - e, only two roots 
are inside the unit disk lal « 1. Thus n = 2 and only 

a = ±,fi- should be used in Eqs. (2.4) and (2.10). 
The construction of Sec. II was performed ignoring the 

possible isolated zeros of/(a,7) present on lal = 1 ® 171 = 1, 
i.e., which are not end points of Yi' Since the constructions of 
Theorems 2.1 and 2.2 require integrals over ri in order to 
find the Cousin data in ~, this procedure seems justified. 
We show now directly that, indeed, if a zero of/(a,7) on 
lal = 1 ® 171 = 1 is isolated in af%J (it is not an end point of 
Y;), it is also isolated in ~ [i.e., it is not a limit point of zeros 
of/(a,7) in f%J]. Consequently, it will not affect the counting 
of zeros in the domains g; ;' as done in Theorem 2.1. 

Indeed, assume (ao,70) were such an isolated zero, 
laol = Ira I = 1, and let U"o' U~o be sufficiently small neigh
borhoods of 0"0,70 , By Weierstrass' theorem, there exists (at 
least) a function 7(a), holomorphic in U"o' possibly with a 
branch point at ao, so that/(a,7(a))-0, 7(ao) = 70 , By hy
pothesis, (i) if a E U(7o' lal = 1, I 7(a) I > 1, and we may as
sume 7(a) E U~o; also, (ii) if lal < 1, aE U"o' I 7(a) I # 1, 
7(a) E U ro ' Assume nevertheless that, for lal < 1, (a deter
mination of) 7(a) is such that I 7(a) I < 1. Join then aE U"o' 
lal < 1 to a-I on lal = 1 by a small line contained in U"o and 
continue 7(a) along it. Since, for lal = 1, 17(a) I > 1, there 
must exist a-, a- E UOo ' !a-I < 1, so that 17(0-)1 = 1. This, how
ever, is impossible by hypothesis (ii) above about 7(a). Thus, 
our assertion is proved. As an example, 
/(a,7) = a(1 + 7) - 2 has an isolated zero at a = 7 = 1. 

APPENDIX D: THE CHOICE OF BRANCHES OF THE 
LOGARITHM IN EQ. (3.1) 

We show in this Appendix that the determinations of 
the logarithm in the integrand of Eq. (3.1) can be chosen so 
that %1(a,7) is real analytic. We treat separately open 
curvesYi (with ends on 171 = 1) andc10sed curves (contained 
in /71<1). 

(i) if y, ends on 171 = 1 at 7 = 7 a , take for lal < 1, 
1m a = 0, any branch ofln(a - a.(7a )) and then continue it 
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along YI' Since/(O",r) is real analytic, to YI: 7 = 71(0") there 
corresponds a curve Y2=11: 7 = 72(0") = t1'(0"*), which ends 
on 171 = 1 at 7 = 7:. Assume first 11#YI' We choose the 
logarithm for 7 E Y2' [along which the function 
0"2(7) = 01(7*) is defined] so that In(O" - 0"2(7)) = In 
(0" - 0"1(7*))*. It is enough to choose this at 7 = r:(lm 0" = 0) 
and follow by continuity along Y2 in the sense opposite to the 
one assigned in Sec. II [a possible example is/(O",7) = (0"/2 
- 7)2 + 1]. Once a choice of branches is made for 0" real, it 

follows by continuity for all 10"1 < 1. 
Assume now 11=YI' This means that to each function 

element 1'-(0") defining YI locally, there corresponds an ele
ment 1'-'(0") = 1'-*(0"*), which can be obtained from the former 
by analytic continuation (with the usual convention at 
branch points) along 10"1 = 1, and such that 11'-(0")1 < 1 in the 
course of the process. Especially consider the function ele
ment To (0") in the neighborhood of the point 0"0 where YI 
"enters" the unit disk 171<1. Then Te(O") = T:(O"*) is a func
tion element describing YI as it "goes out" of 171 < 1. Now, 
1'-, (0") can be obtained from To (0") by analytic continuation (in 
the counterclockwise sense) along a path 9 consisting of 
none or several copies of the unit circle plus the arc (0"0 ,0-:) 
along \0"1 = 1 (with possible indentations). It is easy to verify 
that the path 9/2 has an end at 0"\ = + 1 or 0"1 = - 1. We 
claim that the function element T'(o") obtained in a neighbor
hood of 0"\, by continuation along 9/2 from To (0") is real for 
0" real. Indeed, 7'(0") can also be obtained by continuation 
along 9*/2 starting from Te(O") = T:(O"*). The two results 
must be identical, so that 7'(0") = T' *(0") for 0" real. This shows 
that 71==,,1'-(0"1) is real. 

If 0" I = - 1, we choose the logarithm in (3.1) so that 
1m In (0" - 0"1(71)) = 1m In(O" + 1) = 0 for 0" real, 
- 1 < 0" < 1, and then follow by continuity along Y I' Here, 

0"1(7) is the inverse function associated to YI' In particular, it 
will follow that In(O" - 0"1(70 )) = In (0" - 0"1(7e ))*. 

If 0" I = + 1, consider 0"; near 0" I on the path 9/2 join
ing 0"0 to 0"1' and 0";' near 0"1 on the path 9* /2 joining 0-: to 
0" I . We choose, for - 1 < 0" < I, 
1m In(O" - 0"1(71 +))=Im In(O" - 0";) = 1T, 
1m In(O" - 0"\(7)_))-lm In(O" - 0";') = - 1T, and then follow 
by continuity along 9/2 and 9 * /2. There is a discontinuity 
of21Tiin the logarithm ofEq. (3.1) at 7 = 7). It always causes 
a pole in % \(0",7) so that in Eq. (3.2), kl = 1. If 0"1 = 1, the 
point 7\ will be among the points 701 [Eq. (3.2)] [the case 
0"1 = + 1 occurs in/(0",7) = 0"/2 - 7 - 1, the case 
0"1 = - 1 in/(0",7) = 0"/2 - 7 + I]. 

(ii) Assume now Y I is closed. It can happen that, if 71(0") 
is any function element locally defining it, its conjugate 
7; (0"*) = 7T(0") is obtained from it by an analytic continu
ation along 10"\ = 1 or not. In the former case, Y J =yT; in the 
latter case, another closed curve (denoted by Y2=yT) exists, 
generated by continuation of 72(0") = 7T(0"*) along \0"\ ~ 1. 

Consider this latter case first [as an example, conslder 
/(0",7) = (0"/8 - 7)2 + 114]. Since both YI' 11 are closed they 
contain (in turn) points 71,2 (0" = - 1) = 70, roo If 1'-J(O") is a 
function element of Y I' in the neighborhood of 0" = -- 1, we 
choose 72(0") = 7T(0"*) and define (for 1m 0" = 0) 
1m In(O" - a l (70 )) = 1m In(O" - 0"2(7~)) 
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= 1m In(O" + 1) = 0, [a l (7),a2(7) represent the local inverses 
of 71(a),72(0")], and then continue along YI in the counter
clockwise sense, and along 11 in the clockwise sense. If 0" \(7) 
rotates p times around 10"\ = 1, until it reaches its original 
value by continuation along YI' there will be a discontinuity 
of the logarithm of 21Tpi at 70 leading to a pole of % 1(0",7). 
Thus, 70 belongs to the collection of 701> ofEq. (2.3), with 
kl = p. One can verify that for 11, the discontinuity leads 
again to a pole of % I (0",7) at 7 = 7~, with the same value of 
k2=kl =p. 

Consider now the case YI=11. Among the k distinct 
function elements 7; (0"), ... ,rlk)(O") defining YI: 7 = 71(a) in 
the neighborhood of 0" = - 1 (assuming for simplicity 
d7 1

Ik )/da#O and finite at a = - 1), there exists either one 
whose inverse satisfies a; (7) = 0";*(7*) or a pair with com
plex conjugate inverses, 0"; (7), 0";'(7), 0"; (7) = 0";'*(7*). 

In the former case, let 7; (0" = - 1) = 7 a' 7 a real; in the 
latter 7; (0" = - 1)* = 7;'(0" = - 1( = 7a complex. Choose 
in both situations, for 0" real, 1m In(a - a; (7a )) 

= 1m In(O" + 1) = 0 = 1m In(O" - 0";'(7:)). 
Consider now the first case. Let 9 be the path de

scribed along \a\ = 1 by a; as we return it to its original 
value along YI' The point on 10"1 = 1 reached after 9/2 is 
either 0"0 = + 1 or - 1. The value 7; (ao) = 70 obtained 
from 7; (0") by continuation to that point is real as one checks 
by obtaining it along 9 * /2. Let r be the number (integer or 
half-integer) of turns of lal = 1 contained in 9/2. Defining 
the logarithm along YI by continuation along 9/2 and 9 * / 
2 away from 70 , we obtain a discontinuity of2rX21Ti at 70 
(counted in the integration sense), thus, 70 E 1701 J ofEq. (3.2) 
and the corresponding kl = + 2r [for an example, see Ap
pendix F Example 1]. 

We now turn to the second case. Let 9 be the path 
along 10"1 = 1 needed to obtain 71 "(0") from 7; (0") by counter
clockwise continuation. Again, the value obtained at 9/2 
(at O"e = + 1) is a real number 7 e • The discontinuity of the 
logarithm at 7. is again 2rX 21Ti, if we define it by continuity 
from 7; (a = - 1) = 70 , and 7;'(0" = - 1) = 7: along fJi /2 
and 9 * /2. If 9 I is the path along 10"1 = 1 needed to obtain 
7;'(a) from 7; (0") by clockwise continuation, we obtain again 
areal value 7;(0";), a; = + 1 being reached after 9 1/2. The 
discontinuity at 1';, in the integration sense is given by 
2r I X 21Ti, where r I is defined in the same way as r above, with 
respect to 9 I' Thus YJ is parted into two halves Y; ,y;*, with 
ends at 1'e'1';; 1'e'1'; belong to the set [70i J ofEq. (3.2) with 
values ke = r,k; = r l . An example is afforded by 
/(0",1') = 7

2 
- 0"/2. 

We now verify that, indeed, this choice of branches 
makes jz' (0",1'), Eq. (3.2) real analytic, i.e., realfor 0", Tfeal.It 
follows from the above discussion that the points! 1'011 in Eq. 
(3.2) are either real or fall into complex conjugate pairs. Con
sider next the factors of %\(a,7), Eq. (3.1), corresponding to 
the various Yi' If Yi # r1=Yi + I (closed or "open") then, as 
O"i(1') moves counterclockwise in the integral along Y" 
a i + 1(7*) = 01(1') moves clockwise, and thus against ~he inte
gration sense, 1'* E Yi + I ' Reversing the sense of the llltegral 
on Yi + I we obtain, according to the choice above for the 
determinations of the logarithm, the difference of two com-
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plex conjugate expressions in the exponent of % I (u, r), if u, r 
are real. The factor 1/(217'i) ensures then that the result is 
purely real. If Y 1 =r1', we have seen that, in both the "open" 
and "closed" case, we can part the curve into two halves, 
Y;, y;*, so that if rl(u) generates Y; , rT(u) generates y;*. The 
logarithms are constructed so as to be complex conjugate to 
each other, for u real, in correspondent points rl(o'), rT(u') 
on Y; , y;*. Thus, reversing the sense of integration on Y;* 
and taking the factor 1/(217'i) into account, we again obtain a 
real contribution to % I(u,r). 

APPENDIX E: BEHAVIOR OF C(a,r) AT SOME SPECIAL 
POINTS 

(a) Consider a cusp ofa curve YI: r = r l (a') at a' = ao, 
rl(ao) = ro and let a in Eq. (3.4) have lal < 1. The angle a of 
the cusp is measured clockwise on the left of YI' with respect 
to the sense described in Sec. II. In general, there might be 
several curves YI' 1= 2, 3, ... , k meeting at ro and having 
there a cusp. Consider a domain D around ro,D C (Irl < I) 
and such that it intersects no other curves Y I but those meet
ing at ro, and contains no other cusps of these latter. Every 
curve YI' I = I, 2, ... , k divides D into two parts 
DI + , DI _ , DI + lying to the left of Y I' Plemelj's formulas 
can still be applied (see Ref. 18, p. 428) to obtain the value at 
ro of the factor hi (a,r) corresponding to YI: 

[
Ii In(a - aJ!r')) d ,] Xexp - -P r , 

217'i y, r' - r 
(EI) 

[ 
I L In(a - aJ!r')) d ,] Xexp - -P r . 

217'i y, r' - r 

IfthereisjustonecurveYI havingacuspatro, useofEq. (3.5) 
establishes as in Sec. III the holomorphy of C (a, r) at r o. In 
general, there are 2k domains fiJi' whose boundaries have ro 
as a common point (see Appendix F for an example with 
k = 2). Let Fi(a,r) be the determinations of .7(a,r) in fiJi' 
f = I, ... ,2k. From Sec. III, we know that the 2k functions 
F, (a, r) rrt ~ I h, (a, r), i = I, ... ,2k are the analytic continua
tions of each other through the curves YI (for rED, r=l- r 0)' 
To prove that C(a,r) is holomorphic at r o, we only have to 
show that the 2k functions above are bounded there. But this 
is manifest for Fi(a,rO) and for each of the h,(a.r) from (EI) 
(for lal < I) [see Fig. 6 for a diagram in the case of 
/(a,r) = a-I- ~]. 

(b) We discuss now the behaviorofC(ao,r), laol = I in 
a neighborhood of those points ro ofYI: r = rl(a), for which 
rl(ao) = ro. For r near ro, the relevant factor of % (ao,r) is 
defined by Eq. (3.4), with the branch ofln(ao - al(r')) chosen 
such that, as atlr') moves past ao, in the counterclockwise 
sense, Eq. (3.8) holds. We noticed in Sec. III that C(ao,r) is 
one valued and holomorphic in a neighborhood of ro, except 
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FIG. 6. To the discussion of the be
havior of C (O',T) at cusps of r, [Ap
pendix E, Subsection (a)). 

maybe at ro itself. We wish to show that in fact 
lim

T
_ To C (uo,r) = O. This establishes both the holomorphy 

ofC (ao,r) at r = roand thefactthat C (uo,r) vanishes precise
ly at those points where/(ao,r) vanishes. 

Assume first that r 0 is a "regular" point of Y I: this 
means that dal/dr(r = ro)=l-O and finite. For r near r o' we 
write [restricting YJ to a neighborhood (ra,rb) of ro] 

hl(ao,r) = exp[ - ~ (Tb [In (ao - al(~'))]/(r' - r)dr'] 
217'l JT. ro - r 

(E2) 

In h21 (r 0' r) we choose a branch of the logarithm with a cut in 
the r' plane, starting at r 0 and running along Y I in the sense 
of integration, and we let limT • _ To ..::i arg(ro - r') = - 17' for 
r' above the cut. The integration in (E2) is performed along 
the lower lip of the cut. The branch of the logarithm in 
hi I (ao,r) is chosen so thatEq. (E2) holds [recall that the value 
ofln(ao - ul(r')) is already defined by the convention of Ap
pendix 0]. As in Sec. III, Eq. (3.6), one can verify that (fiJ 2 

lies to the left of Y d 

lim h ll(uo,r) = (duI/dr)T-=I~: ",(uo,ro) 
(E3) 7"-+ To 

TEfiJ 2 

lim h l1(uo,r) = (duI/dr)~;; To r/J(uo,ro) 
7"- / 0 

TE.!P. 

with ",(ao,ro) finite. Writing ao - al(r) = (ao - ul(r))/ 
(ro - r)X(ro - r) =F'(ao,r)F"(ro,r}, one verifies that the 
function Cll(ao,r) defined as F'(ao,r)h l1 (ao,r) r E §J 2' and 
hll(aO,r), r E §J I is holomorphic at r = roo To evaluate 
h 21 (rO,r)=exp - (QI(ro,r)) we consider the following inte
gral, performed clockwise on a path «f consisting of the seg
ment (ra,rb) ofYI' however, along the upper lip of the cut for 
r' E (rO,rb) and an arc «f I ending at ra,rb which avoids YI 
and is entirely contained in §J 2 (see Fig. 7), 

L FIG. 7. To the discussion of the be
havior ofC(a,7) at points 
(0',7 = 7,(0')),10'1 = 1 (Appendix E, 
Subsection (b)]. 
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I( ) - 1 1In(1"0 - 1"') d ' 1"0,1" - - 1" 
21Ti '(f 1"' - 1" 

= { - In(1"o - 1"), 
o , (E4) 

(E5) 

The second integral is holomorphic at 1" = 1"o, and the first 
one has a singular contribution canceled by I (1"0,1") if 1" E !» 2' 

Thus the remaining factor C21 (1"0,1") defined as 
(1"0 - 1")k21(1"0,1") for 1" E!» 2 and k 21 ('TO,1") for 1" E !» I is holo
morphic at 1"0 and has there a simple zero as announced. 

If 1"0 is not a regular point of Y I' more care is required: it 
can in particular happen (though not necessarily) that sever
al curves YI meet at such a point [if d(7l/d1"(1"o) = 0], each of 
them having a cusp (see Appendix B). This possibility corre
sponds to a multiple zero of C ((70,1") at 1" = 1"0' However, a 
cusp of YI does not necessarily occur at an "irregular" point 
ofYI (see Fig. 1). We call nevertheless ao, the "total angle of 
the cusp" at 1"0 the total angular variation measured clock
wise of 1"((7) around 1"0 when (7 moves clockwise on the half 
circle 1(7 - (701 = E contained in 1(71 < 1 (cf. with the curve c' 
in the 1" plane in Fig. 1). For a regular point 1"o, the angle is?T. 
"Irregular" points of Y I are characterized by ao i= 1T. If 1"0 is 
not regular, YI might still have a continuous tangent at 1"0 (see 
Fig. 1). The total angle a o is related to the power f.l-a ration
al number-of(1" - 1"0) needed to render lim((7I(1") - (71(1"0))/ 
(1" - 1"0Y' finite and #0. One can verify that a o = ?T/f.l. 

The "geometrical" angle a of the cusp, as defined at the 
beginning of this Appendix and occuring in Eq. (E 1) is 
a = ao - 2k1T, where k is chosen so that 0 < a < 2?T. 

We shall show that each factor of %((7,1") correspond
ing to a (simple) curve YI passing through 1"0 produces a sim
ple zero of C ((70,1"), so that a zero ofthe desired order is 

k+1 

obtained. The proof is analogous to some extent to the one 
for the situation with d(7l/d1"(1"o)i=O and finite. 

To this end, we consider again a domain D surrounding 
1"0 and contained in 11"1 < 1, so that no other curves Yk inter
sect it, apart from those passing through 1"0' and so that the 
latter curves have no other irregular points in it. A curve YI 
passing through 1"0 divides it into two parts, DI +, D I _, DI + 

lying to the left of Y I' It is convenient to change variables to 
(1"0 - 1"Y' = v, wheref.l = 1T/ao' This maps the two sides ofYI 
contained in D, "before" and "beyond" 1"o, onto a smooth 
curve y in the v plane; the change of the imaginary part of 
In v as one moves past v = 0 in the sense induced by that of 
YI' is + 1T. The domainDI+ is mapped inside the half plane 
lying left of y, if f.l >!. If f.l <!, this half plane contains k + 1 
images of DI + and k of D1 _, where k is the integer above 
relating the geometrical and the total angle of the cusp. 

We point out that, if f.l <!, although the multiplicity of 
YI is unity, there are at least k roots, (7'(1"), 0""(1"), ... , of 
1(0",1") = 0, approaching (70 as 1" -1"o, both from D I + and 
D I _. To make this clear, recall the discussion of the "total 
angle of the cusp" a o above and consider the continuation of 
a root (71(1")~0"0 + Co(1" - 1"0Y' clockwise away from a 
boundary L I of D I + (the side of Y I "before" 1"0) on a circular 
path around 1"o, starting in DI +. As we reach the other side 
L2 ofYI ("beyond" 1"0)' it is not yet true that 10"t!1")1- 1, as 
1" - L 2 • We have to perform k more turns around 1"0 in order 
to reach 10"1(1")1 = 1, as 1" - L 2• We obtain this way k + 1 
different values of (71(1") inDI + and k different values inDI _. 
All tend to 0"0 as 1" - 1"0 [cf.f(a,1") = 1" - (0" - W, Fig. 1]. 

Similarly to (E3) we consider now 

1 L (In v)v IIJt - I 
1" 1" = -- dv. 

QJt ( 0') 2' - I/Jt ( ) 1Tlf.l y V - 1"0 - 1" 
(E6) 

For definiteness, we choose the cut ofthe logarithm in the v 
plane to lie along y in the sense of integration starting at 
v = 0; the integral is performed along the lower side of the 
cut. The cut of vI/Jt lies in the domain to the right of y. As 
before, we add the clockwise integral along CtJ, a contour 
running along y, but on the upper side of the logarithmic cut 
and closing by a semicircle to the left of y 

L [1n(1"o - 1"Y;:], 1" E DI + 
n=} 

k (E7) 

L [In(1"o-1"fn],1"EDI_ 
n= 1 

0, if k = 0 

where the lower index on (1"0 - 1") denotes different determinations enclosed by CtJ (lying in the half plane left of ji). Adding (E6) 
and (E7) and using the fact that the result contains, as in (E5), an integral over the discontinuity ofln v, we obtain the behavior 
of k21 (1"0,1") = exp( - QJt (1"0,7)) for 7 near 1"0 in D1+,D I _ 

1"0 - 1" .,,() D or 70,1", 1"E 1+ 
(1"0 - 1"t .. , (1"0 -1"lt+ 1 

[ 
1"0 - 1" 1/1(1"0,1") 

(1"0 - 7t ... (1"0 - 1"lt 1" E DI 

(E8) 

(1"0 - 1")1/1(1"0,1"), if k = 0 

with tP(70,1") continuous at 1" = 1"o, from both sides of y. 
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On the other hand, consider the exponents of the contributions analogous to kll(al,r) in Eq. (E3): the only difference is 
that the usual "derivative quotients" are replaced by Holder quotients 

I lln[ aO-al,l(rl)]/(ro-r'Yt d 1 I lln[ao-al,k+l(rl)]/(ro-rIYt+1 d 1 

RI-'(ro,r) = -. 1 r +-. 1 r, 
2'TTl L, r - r 21Tl L2 r - r 

(E9) 

whereL I, L2 are the two sides of the cusp ofYI and the lower indices on (ro - r'Y' and al(r' ) indicate, e.g., that we perform k 
turns around r 0 before substituting in the second term of (E9). We can now evaluate the limiting values as r -+ roof 
kll (ao,r)=exp( - RI-'(ao,r)) using the formulas (EI), which take into account the existence ofa cusp of opening 1T/1-l - 2k1T 

(EW) 

k+1 
II (0'0 - d;/(r))kll(aO' r)k21(rO,r), rED I + 
;=1 

(Ell) 
k 

II (0'0 - oV/(r))k ll (ao,r)k21(ro,r), r E D I _ 

;=1 

has indeed a simple zero at r = roo Indeed, using (E8) 

k+1 

II (a _ d"(r))C 1/2JJ - k - I t,b(ro,r)<p (ro) 
o I 0 nk+ I( \JJ ;=1 ro-rJj '1'-'1'0 7 0 -7 T-To 

TED 1+ 'TeD , + 
i= 1 

By the reasoning of Sec. III, CI(ao,r) is holomorphic in the 
neighborhood of ro, so that (EI2) establishes that it is holo
morphic even at ro and has there a simple zero. 

We can do this reasoning for each curve Y I passing 
through ro, such that limr_roal(r) = 0'0 and having there a 
regular or irregular point. This might not be immediately 
obvious, since one might worry that the zeros d;/(r) in (Ell) 
could be required in several factors C/(ao,r), similar to (Ell) 
and associated to the y/s, I =1= 1. It is, however, true that the 
zeros generated by clockwise continuation around roof the 
inverse function ofYI' al(r) (starting from the side ofYI "be
fore" ro), are different from those generated by the other 
curves, One can verify that, in fact, in order to obtain the 
roots "belonging" to the other curves, one must continue 
al(r) on a path which rotates so long around ro, until 
al(r) - 0'0 rotates by 2m1T around the origin (m = 1,2, ... ) 
[cf. the example of[(a,r) = r - (a - W]. 

Thus each YI generates a simple zero of C/(aO,r) at ro 
and C (ao,r) vanishes at ro with an order equal to the number 
ofy/s passing through ro and verifying limT_T/a/(r) = 0'0' 

(c) We next wish to prove the continuity ofC(a,r) at 
ao,ro, 10'01 = I, ro = r;(ao), for some i, (say i = I) and 
hi < I, as (a,r) approaches (ao,ro) from 10'1 < I, Irl < 1. The 
reason why we need this is to show that all values C(a,r) for 
10'1 = I, Irl < I are properly defined, independently of the 
special procedure we adopted. We must thus evaluate 

IC(a,r) - C(ao,ro)1 < IC(a,r) - C(ao,r)1 

+ IC(ao,r) - C(ao,ro)l. (E13) 
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(EI2) 

The last term can be made as small as we wish, by choosing r 
correspondingly close to ro, since C (ao,r) is holomorphic at 
roo We need to show only that the first term can be made 
arbitrarily small, if 10' - 0'01 is chosen appropriately, but uni
formly with respect to r, for rin some disk I r - r 0 I <r I' r I a 
fixed number. To this end, it is enough to prove that the 
family off unctions C (an ,r), for a sequence an -+ 0'0' holo
morphic with respect to r in the unit disk, is uniformly 
bounded with respect to n, for r in a disk Ir - rol <r. Since, 
by definition, for r not on Yi> limn _ 00 C (an ,r) = C (ao,r), it 
follows from the principle of uniform boundedness (Vitali's 
theorem), that this limit is also uniform with respect to r, in 
I r - r 0 I <r - E, for any E> 0, and this will prove our state
ment. By the maximum modulus theorem, it is enough to 
prove the uniform boundedness on the circle Ir - rol = r, 
with r appropriately chosen. 

Further, it is enough to consider one factor kl (a,r) be
longing to one curve, say Y I' passing through r 0' and obeying 
limT _ To a I (r) = 0'0' and the purpose is to find a majorization 
of the absolute value of the exponent of k I (a, r), uniform in r, 
for 10' - 0'01 <d, 10'1 < I, d appropriately chosen. This is con
veniently done as follows: choose r so small that Y I intersects 
Ir - rol = r only twice and part the integral into two [for r 
on Ir - rol = r], one part contained inside a circle of radius 
kr, 0 < k < 1 and another one outside it. Choose then d so 
small that the logarithmic singularities of the integrand for 
0',10'1 = I,in la-aol<darecontainedinacircleofradius, 
say, kr/2. This is possible due to the Holder continuity of 
both rl(a), defining YI' and its inverseal(r). Then, the part of 
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the integral contained in the circle of radius kr gives a bound
ed contribution on Ir - rol = r, uniformly in u. The remain
ing part is the integral of a Holder continuous function with 
the Cauchy kemelll(r' - r) and is clearly bounded, e.g., by 
using the estimates of Ref. 18, p. 38. 

(d) We now show that, if ro = rl(uo), IUol = 1, ro E rl' 
then for lui < 1 near U O 

II I = I r e 

In(u,- ul(r')) dr' I <Cln2 lu - uol, (EI4) 
J a r - ro 

where the integral is understood as a limit r -+ r 0 from fiJ 2 

or fiJI (domains lying left or right of rd, r a , re E rl' 
ro E (ra' re) and Cis a constant. Equation (EI4) establishes a 
uniform bound on the integrals of lin C(re ie, r)1 onO<O<21T, 
as required at the end of Sec. III. To show this, we write 

(u=reie, r<l, ra =rl(ua), re =rl(ue)): 

111<11+12= fa, Iln(u-u')-ln(u-uo)1 
aa lu' - Uol 

X lu' - uol Idrl(u')I Idu'l 
IrI!u') - rol Idu'l 

(7, d' 
+ Iln(u - uolil J,.a r' ~ r/ 

(EIS) 

The second integral satisfies already the bound (EI4); in the 
first one, the last two factors make up a continuous function 
on (ua , ue ) and are thus bounded by a constant there, so that 
one is left with (for k I > 1) 

II<C({I<k,la_aol + {1>k,la-aJ 

X Iln(l - u/(u - uo))lldul 

lui 

<CI + C2 (b Inlvl d Ivl <C In2 1u - uol (EI6) 
Jk, Ivl 

with b = max (Iua I - uoi/iu - uol, lu[ - uoillu - uol) 
and we have used v = u/(u - uo), Idul <const d lui if the arc 
around u 0 is sufficiently small, lint 1 - v)1 < C In I v I, for 
Ivl > kl and C,CI, C2 are constants. 

(e) We discuss shortly the behavior of C (u, r) at points 
(ujO To) ,lUi 1< 1, ro an end point ofa curve rl:r = rl(u). Fol
lowing Ref. 18, p. 74, the behavior of the corresponding fac
tor k,(u,r), Eq. (3.4), near ro is given by 

kl(u,r) = exp [ - -1_.1n(u - ul{ro))ln(ro - r) - <p (u,r)] 
2m 

(EI7) 

where <p (u,r) is a function holomorphic in the r plane cut 
along r I and continuous at r = r o' Clearly, as r -+ ro, the 
phase of <PI(u,r) increases without bounds. However, 
In kl(u,r) has obviously an integrable modulus at ro, for 
fixed u, lui < 1. 

APPENDIX F: TWO EXAMPLES TO SEC. III 

We wish to illustrate the formulas in Sees. II and III by 
means of two examples; the first one is very simple, and 
could have been treated as shown in the Introduction [Eqs. 
(1.8)-(1.11)]. The second one would have been presumably 
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L 
0, 

0),=n Y, 
FIG. 8. Example 1 of Appendix F. 

• "to 
0, 

N,= 0 

difficult to treat without the Cousin method. 

Example 1:J(u,r) = a"/2 - r, n;;d, integer. For all u 
on lui = 1, there is one root in Irl < 1 and for Irl = 1, there is 
no root in lui < 1. We can apply the method of the Introduc
tion, and obtain immediately that,6\(u) = - a"/2 [Eq. 
(1.9)]. Thus, Co(u,r), Eq. (1.10), is r - a"/2, and 
E(u,r) = + 1, Eq. (1.11). ThefunctionJ(u,r) is reconstruct
ed from its modulus up to a sign ambiguity. 

We now treat the same example by the "complicated" 
way of Sees. II and III. There exists in the r plane one curve 
rl: r = a"/2, lui = 1; this curve is the circle YI:lrl =! cov
ered n times. The inverse function uI!r') = (2r')II" is many 
valued on Y I' It should be clear from the text that the integra
tions in Eqs. (2.4) and (2.10) are performed over YI covered n 
times. The determinations of %(r), Eq. (2.4), in the two do
mains fiJ I' fiJ 2 are shown in Fig. 8. To compute n (I)(r), we 
write 

n (I)(r) = _1_ ( (2r')lIo dr' 
21Ti Jy , r' - r 

1 0 f (2r')}:'" , =-2: --dr, 
21Ti k ~ I 17'1 ~ \ r' - r 

(Fl) 

where the sum runs over the n determinations of(2r') 1/". The 
integral is converted to the unit circle in the u' plane, by 
u' = (2r')I/o. 

n W(r) = ~ J: u'"du' 
21Ti ~a'i ~ I u'" - 2r 

{ 

0, 

= ± (2r)}:'" = 0, 
k~1 

(F2) 

Similarly, 

{ 

0 ifrEfiJ l 

n(l){r)= ktl(2r)~n ifrEfiJ
2

1=2,3,.... (F3) 

But the sum occurring for r E fiJ 2 vanishes if 1< n and is 
2rn if 1= n. The Newton formulas, Eq. (2.18) give then 

cr {I ifrEfiJ l 
Y(u,r) = . 

a" - 2r if r E fiJ 2 
(F4) 

With the same change of variables as above, [cf. Eq. 
(3.1)] 
cy/, ( ) - [ 1 f In(u - (2r')II") d ,] 

Jl I u, r - exp - -. , r 
21Tl y, r - r 

- [ n f '0 - I In(u - u') d ,] (FS) -exp - - u u . 
21Ti 10'1 ~ I U' - 2r 
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L A, 

0 , 

FIG. 9. Example 2 of Appendix F. 

The logarithm is chosen as explained in Appendix D: for (7 
real, this amounts to choosing a cut of the logarithm in the (7' 
plane from (7 to the right, 1m In ((7 - (7') = - 1Ti, if (7' is 
above the cut (r a = ( - 1 t /2, r 0 = ~). There exists a discon
tinuity of 21Ti at r = ro, producing a pole in % 1((7,r). We 
define thus 

%((7,r) = (r - ~)% I ((7,r). (F6) 

The function % I ((7,r) can be in this case explicitly computed 
by picking out the contributions of the cut of the logarithm 
and the possible pole; we obtain 

{

tT' - 2r if Irl >! (r E 9) I) 

% I ((7, r) = 1 ~ 2r 

if Irl <! (rE 9)2) 
1 - 2r 

(F7) 

Thus, 

C ((7,r) = Y((7,r)%((7,r) = - (tT' - 2r). (FS) 

One checks easily that E ((7,r) = !. 
Example 2:/((7,r) =~? - (7 - 1. The zero trajector

ies in the (7 and r planes are shown in Fig. 9. For 1(71 = 1, 
there are two zeros in Irl< 1 only along the arc EHF. For (7 
on the arc FKE, there are no zeros in Irl< 1. For (7 on EHF, 
the two zeros describe the curves A zBzOB IA I (yd and 
AICIOC~2(Y2)' There is a branch point of the trajectories 
r((7) lying at (7 = - 1. Thus, the curves YI' Y2 have a cusp at 
1"( - 1) = 0, and they are connected as described in Sec. II. 
Along the semicircles A2D~ I and A IDIA2' the zeros of 
1((7,r) are given by 

1-(~1+471)k 
(7k(r) = 2? ,k = 1,2, (F9) 

where the index 1 refers toAzD~ I and 2 to the othersemicir
cleo ForronAzD~I' the root is chosen to be positive at + 1, 
and for r on A IDIAz the root is chosen positive at - 1. The 
images (71.2(r) describe for Irl = 1, thecurveFGE,onceforr 
on AzD~ I and once for r on A IDIAz. Thus (reversing the 
roles of (7 and r in the text), the curve FGE has multiplicity 
two. There is nothing special about the pointsA I.A2(YI'Yz 
cross there). The path r I needed to return (71 (r) to its original 
value isA2D~ICIOC~2' Indeed, as we continue (71(r) from 
D2 to A I we reach the value (70 = -! + i@1I2 and only 
Y2:r= - ((7+ 1)112/(7,1(71 = I has the property 
limo~uo 1"((7) = + i. The pathr2 isAIDIAzBzOBIAI' It is 
easy to verify that the assignments of values toJY(r), Eq. 
(2.4) as done in Fig. 9 are correct. 
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By writing Cauchy integrals, one verifies that 

{ 

0, for r in 9)3,9)4' 

n (l)(r) = (1 - (h -: 4?) k)l2r, 

for r 10 9) k' k = 1,2. (FlO) 

The function % I ((7,r), eq. (3.1) is given by (after using on YI.2 
the parameter a' E EHF) 

C)'l" ( ) _ [ I i In((7 - (7')((7' + 2) d ,] 
Jl I (7,r - exp - - ~,2 (7. 

21Ti EHF a'(a' + 1 - r (7 ) 
(FIl) 

This expression may appear obscure at first sight. We illu
minate it as follows: let 1m (7 = 0, (7 > ° and enlarge the inte
gral to one along the line KEHFK; the integral is not done on 
a closed path, because of the cut of the logarithm running 
from (7 to the right [we choose, as in Appendix D, 
1m In((7 + 1) = 0]. We must subtract two contributions: the 
integrals along KE and FK. However, it is important to no
tice that the denominator of the integrands does not vanish 
in Irl< 1, if (7' is confined to EKF. Thus, the corresponding 
factor in % I ((7, r) is a function holomorphic and free of zeros 
in 1(71 < 1 ® Irl < I and which we denote by CE((7,r). The 
integral along the path KEHFK is eval uated as in Example 1, 
by writing it as a sum of the contributions of the cut of the 
logarithm and the poles in 1(7'1 < 1. 

After a careful calculation, one obtains 
%((7,r) = %1((7,r) 

{ 
C E((7,r)(r 2~ - (7 - 1 )I(r - 2), r E 9) 3,4 

= CE ((7,r)(2?(7 - 1 - (~I + 471) d/2(? - 2)' 

rE9)k' 

k = 1,2. (FI2) 
The Cousin function is then the manifestly holomorphic 
expression 

C((7,r) = CE((7,r)(?~ - (7 - 1)/(? - 2) 

= CE((7,r)(?~ - (7 - I). (F13) 

It is easy to verify that 

E((7,r) = - 1/CE ((7,r). (FI4) 

It is instructive, although not very easy, to perform a similar 
calculation starting from the pattern of curves in the (7 plane. 

APPENDIX G: THE PROOF OF LEMMA 4 

To prove Lemma 4 of Sec. IV, we notice first that if, for 
another sequence s~, limn ~ 00 t (s~) = t I =1= to, then tiE Ct' 
Indeed, if t I belonged to Qs' it would follow by continuity 
thatA (so,td = ° and tl would be a simple or multiple zero of 
A (so,t). Let dr be a disk It - til < r, so that A (so,t )=1=0, for 
tEar, ift =l=tl • Consider then the function h (s) = It(s) - til; 
by Lemma I (or 3) it is continuous on (SI'SO)' Sl <so. Since, for 
Sn - so' limn ~ 00 h (sn) = It I - tol = a=l0, it follows that 
h (s) assumes on (SI,sO) all values between E and a - E, for any 
E> 0, an infinite number of times. This implies that a se
quences; -so exists so that limit (s;) - til = rl <r. This 
means that A (so,t ) = ° for t in d r ,t # to, which is impossible. 
Thus, t) E Ct. 

Consider then the continuous function 
I (s) = Re(t (s) - t d. As before, I (s) assumes any value on (to,t d 
as s - so. By the continuity of A (s,t ) in Jt, one concludes 
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that A (so,t) = 0, for t in (to,t I) C Ct. Thus, if 
to =1= t I,A (so,t )==0, a situation which we can discard. 

APPENDIX H: BEHAVIOR OF C(s,t) AT SOME SPECIAL 
POINTS (SEC. V) 

(i) Consider first a point to,to < - 4m2
, where a curve 

r I:t = t I (s) joins a curve r ~ :t = t2(U). In general, there is a 
cusp between r l and r ~ at to (see Fig. 4); this follows from 
the fact that the line s = S2(U), U E Cu , up to which the con
tinuation of the s channel trajectory U = U I(S) can proceed 
(see Lemma 6) intersects in general the line 1m s = 0 under 
an angle different from 0 or 1T, and the mapping 
t (s) = 4m2 - s - u2(s) might have a nonvanishing derivative 
at s = So' Further, to is also a joining point of the curves 
r T:t = t T(s*), r!':t = t !(u*) (see Fig. 4). 

As we argued in Sec. IV, the analytic continuation 
around to of the inverse function s I (t ) corresponding to r l is 
S2(t ), corresponding tor ~. The continuation of Sl (t ) to points 
t,t Et r l, t Etr~,leadstoarootofA (s,t) = OlyinginQt and is 
accounted for by one40 factor s - s I (t ) in the determination of 
Ys(s,t) in the domain D + lying left of r l , r;. We can then 
evaluate using (EI) 

lim (s - Sl(t ))kl(s,t) = (s - sl(tO)jP121T 
I--to 

tED+ 

X exp(- _1_. pi (jJ(~,to,t ') dt ') 
21Tl r,uri t -to 

= lim kl(s,t), (HI) 

tED 

where kl(s,t) is the factor of K (s,t) corresponding to r l and 
r ~,f3 is the opening of the cusp and (jJ(s,to,t') = In(s - Sl(t ')) 
fort' E r l, = In(s + to - S2(t') - t' for t' E r ~;(jJ (s,to,t 'lis 
Holdercontinuousatt' = to, fors E Ds [discontinuities of the 
argument of the logarithm are removed by factors (t - toj) in 
(5.5)]. A similar argument holds for rT, r ~*; this proves 
analyticity of C (s,t) at fixed s at to' Equation (HI) is a holo
morphic expression in s in the open cut plane Qt

o
' and thus 

C (s,t ) is holomorphic in sand t at all points (s,to) in JI. 
(ii) Consider now the case when to is an end point of 

rj:t = tj (s) such that tj (s) --+ to as s --+ 00, e.g., along C s+ ; 

then, by (AS) (i), to is also an end point of r rl:t = t j(u), 
U E C u- , t --+ to as U --+ 00. We have seen in sec. IV that 

there is a cusp of r j u r j at to with opening 1Ta - 2k1T, 
a> 0, with k;;;.O chosen so that 0 < 1Ta - 2k1T < 21T. If k;;d, 

it means that, as s moves on a large circle an angle 1T away 
from C'+ ,(tj(s) - to) performs k complete rotations around 
the origin. Consequently, as in Appendix E, there are k + 1 
roots Sn (t ) of A (s,t ) = 0 for t in D + and k such roots for t in 
D_, with the property that ISn(t)l--+ 00 as t--+ to (D+,D_ 
are the domains lying to the left and right of r j U r j). By 
(AS) (i), they have the property that Sn (t) (t - to)!la --+ 

const, as t --+ to; the lower index indicates the branch (ob
tained after n rotations around to). 

We shall show that the contribution to C (s,t) of the pair 
of curves r j, r j and of the zeros Sj (t ), sj(t ) generated by 
them is a holomorphic function of t at to for s fixed, if one 
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takes into account a factor (t - to)2 as shown in Eq.(5.5). 
To this end, we write for r j U r p*l, using (AS) (i) 

I i In(s - Colt ')/(t ' - toWa) w(t') d ' 
I(s,t) = - - -- t 

21Ti r i t' - t wIt) 

__ 1_ i In'(s + t - t' - Colt ')/(t' - tolV~ I) 

21Ti rr l t' - t 

x W(t')dt'+i w(t')~. 
wIt) rr l wIt) t' - t 

(H2) 

In (H2), we have understood the imaginary part of the loga
rithm in the integral along r jl*1 to be 21T rather than zero, as 
it should be according to the definition of Kou (u,t). We cor
rected this by the third term, which diverges logarithmically 
for t --+ to. The choice of the logarithm in (H2) can be under
stood from the fact that the argument of s - Sj (t ') increases 
by 1T as s' = Sj (t ') moves from Cs to Cu' Multiplying by 
(t' - toW: + I in the logarithms in (H2), we can separate a 
contribution II(s,t) with a Holder continuous integrand at 
t = to, and evaluate it by (E 1), Appendix E and an s indepen
dent term 

1 i In(t' - t )lIa wIt') I (t t ) = _ 0 I -- dt' 
2 , 0 2' , (t) 1Tl r, t -t W 

+ _1_ i In(t' - tolV~ I wIt ') dt'. (H3) 
21Ti r;I.1 t' - t w(t) 

This integral, analogous to (E6) can be evaluated as in (E8): 

exp [/2(t,tO)] 

C(I: (t - to)!la) "'(t,to)!(t - to), tED + 

CUI (t - to)!la) "'INo)!(t - to), tED _, k =1=0 

"'(,t,to)!(t - to), tED _, k = 0 
(H4) 

and ",(t,to) is continuous from all sides as t --+ to. We can now 
estimate the relevant factor C (s,t ) of C (s,t ) in the neighbor
hood of these points: 

k+1 

lim C (s,t ) = lim (t - tof II (s - Co(t) 
I-to 1--10 n= 1 

nk + I (t _ t )lIa 
...;-(t _ to)!lalx n= IOn 

t - to 

X ~ ( - CO(tO))a12 - k - I ",(t,tO)<P (S,tO)) 
t - to 

= ( - CO(toW/2k (to)"'(to,tO)<P (S,tO) 

= lim C (S,t ). 
I-to 

tED 

(H5) 

We have used the factor (t - to)2 present in (5.5), <P (s,to) 
corresponds to theexponentialfactorin (EI) and k (t lI(t - to) 
is the exponential of the third term in (H2). Thus, C (s,t ) is 
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finite at to and, since it is one valued and holomorphic in a 
neighborhood of to, it is holomorphic even at to' The value of 
C (s,t ) at to is holomorphic ins,s E Ds ' and thus, C (s,t ) is holo
morphic at the points (s,to) E AI, as asserted. 

APPENDIX I: COMPLEMENT TO SEC. V 

We wish to refine the estimate (5.25) of I (s,t) so that it 
stays valid even if t lies on one of the curves r;. Consider to 
this end, for t E riO a disk Dr of radius rcentered at t, which 
contains an interval (ta' t b ) of rio The bounds for the inte
grals on r;on regions outside Dr are the same as in Sec. V. 
We establish first an inequality like (5.25) for lsi high 
enough, s E Ds U C'+ U C s- and thus verify condition (5.23). 
The behavior of I (s,t ) for finite s E Cs is discussed at the end. 

Let (tOa' tob ) be an interval of r; containing (to. tb) and 
assume first that s;(t') stays finite inside (tOa ,tob)' We shall 
place an upper bound on 

1/(s,t)1 = /_1_. ('obln(s - s;(t')) wIt ') dt' /. (11) 
2m Jlo. t' - t w(t) 

To this end, let "p(t) be a real positive differentiable function 
defined along r;, with compact support contained in (too ,tob ) 
equal to unity on (ta' tb)' We write then 

I(s,t) = -. , i if!(t')~dt' 1 L'o. In(s - s (t ')) (t ') 

2m '0. t - t w(t) 

+ _1_ i'o. In(s - silt '))( 1 - 1/!{t')) wIt ') dt' 

211'; 'Oa t' - t w(t) 

= I",(s,t) + II ",(s,t ). (12) 

The integrand of 11",~,t) has support outside (ta,tb) and can 
thus be bounded by K (t )lnlsl, as shown in Sec. V. It is then 
enough to consider I ",(s,t) which has, for lsi high enough, 
Holder continuous limiting values for t E (too ,tob )' We notice 
that the function A (s,t,t ')=In(s - s;(t)) -In(s - s;(t')) 
obeys for t,t ' E (tOa ,tob ): 

1..1 (s,t,t ')1 < Is;(t) - s;(t'JI 1 
lsi - max'o.<'<'obls;(t)1 

< ~llt - t'I P
, (I3) 

where P is the Holder index of s;(t) and KI a constant (we 
have used Iln(l - x)/(1 - y))l..; Ix - y 1/(1 - max(lxl, Iylll 
for lxi, Iyl < 1). Then, 

1/",(s,t)l< _1 ('oblA (S,t,t')Iif!(t')lw(t')lldt'l 
211' JlOa It' - t I Iw(t)1 

+ _1_ 11n(s - silt ))I/p ('Ob if!(t ')w(t ') dt' I 
21r Iw(t)1 J,Oa t' - t 

+ ~ Iln(s - silt ))Iif!(t )<K Inlsl . (14) 
2 Iw(tll 

In (14) we have used (I3) and the fact that the principal-value 
integral is finite for all t E (tOa' tOb)' 

Consider now the situation when s;(t) gets infinite on 
r;,ls;(t )1_ ao as t - to' The integral whose modulus must 
be bounded is (H2). We separate out of it (H3) which iss 
independent, as well as the last term in (H2). The remainder 
is further parted into two contributions, from r; and r ;. It is 
sufficient to consider the one from r;; we use again a weight 
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function if!(t ), equal to unity on (to ,to) and to zero outside 
(tOa' to)andletwl(t) = wIt )if!(t). After separating ans indepen
dent bounded term, we are left with the task of bounding 

1
1 (s)1 = I 1 fro WI(t ')In(1 - sls;(t ')) dt' I 

o 21riw(t) 10. t' - to 
'E r. , (IS) 

and a similar integral on r ;. Using (AS) (ii), we transfer the 
integral to s' space: 

1 I ilsl12 121s1 

L"" I/o(s) I .;;; + + wtlt (s')) 
21r1 wIt ) I s,{lo.l Isll2 21s1 

Xln(I-Sls')F(S',to)dS'1 = I/ol(s) +/02(S) + 103(S) I 

(16) 

with 

F(s',to) = (dt;lds')/(t;(s') - to) = 1/s' + O(1/s,1 + E) (17) 

and continuous for s' E (s;(tOa)' ao). The following bounds are 
staightforward: 

const 2 I 11 I const 
1/00(ds)..; Iw(t )1 In Is , 02(S) ..; Iw(t )1' 

1 const 
I O3(S) I ..; Iw(t )1' 

They establish the bound 

I/o(s)l< const In2 1s1 
Iw(t)1 

which is sufficient for the reasoning of Sec. V. 

(IS) 

(19) 

We will have to verify that, even if t lies on riO the 
integrals in the dispersion relation for I (s,t), Eq. (5.14) exist 
and define a function which has the same imaginary part as 
I (s,t). To this end, we must replaceK (s,t) in Eq. (5.21) by the 
limiting value of the Cousin function on riO Eq. (5.7), divided 
by the polynomial containing the zeros of C (s,t ) in Q,. We 
denote by /;(s,t ) the logarithm of the function of s, for t on riO 
defined by the right-hand side of eq. (5.7), divided by F;(s,t). 
Clearly, /;(s,t) is continuous at all s E Cs ' except for those s 
for which s = s;(t). At these points, however, /;(s,t) can be 
written as (s - s;(t)) -aR (s,t), for any 0 < a < 1, and R (s,t) a 
continuous function ats = s;(t) (vanishing there). The differ
ence Al between I; (s,t ) and its dispersion relation may then 
have isolated singularities ats = s;(t), but these are such that 
lims~s,{'1 (s - s;(t)t HA 1 (s) = 0, so that, in fact, Al(s) is ho
lomorphic there. Then the argument of Sec. V, following Eq. 
(5.23) can be repeated, and this finishes the proof. 

APPENDIX J: EXAMPLES TO SEC. V 

We discuss two examples: the first is artificial, but leads 
to a Cousin function in algebraic form: the second one is 
more realistic and we bring the Cousin function to a form 
which is more illuminating than the starting point. We set41

: 

4m2 = 1, u = (1 - S)1/2, 7' = (1 - t )1/2,1] = (1 - u)1/2. The 
Mandelstam domain is then the set of points (u,7', 1]) E (;3 

lying on the complex surface 

~ + r + 1]2 = 2 (11) 
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1m (f:t I 
0, 

03 
N =2 -, -'0 Re{f:t 

FIG. 10. Example I of Appendix J. 

and obeying 

Re u<O, Re r<O, Re 1/ <0. 
I. Consider 

A (u,r,1/) = 2u + 1/ + L 

05 

-0.5 

(J2) 

(13) 

We may ignore the fact that A has no t cut, start from the 
pattern of zero trajectories in D,(D, = Re r < 0) and apply 
the method of Sec. V. The situation is the following (see Fig. 
to): for r on Re r = 0, there are no solutions in 1; for 1/ on 
Re 1/ = 0, there is one solution in JI (generating F ; ) 

(o{1/),r -(1/),1/) 

= ( - (1/; 1) , _ +(7 _ 21/ - 51/2)112'1/) (J4) 

(the root has a positive real part); for u on Re u = 0, there is 
also one solution in 1, generating FI : 

(u,r -luI, 1/(u)) = (u, - (1 - 4u - 5uZ)1I2, - 2u - 1). 
(J5) 

The number of zeros in 1 for r in the regions of D, delimited 
by F I , F; and Re r = 0 is shown in Fig. to. There is a dis
continuity at r = - 1 in the logarithm appearing in Kos (s,t ). 
The exponent of Kos(s,t) is 

1= __ 1_ f In(ui(r') - uZ) w(r) 2r'dr'. (J6) 
21Ti Jr, r'2 - r w(r') 

We choose w(r) = (r - l)(r - 2),u l (r) is the inverse function 
defined on Fl and write I = I J + 12 with 

12 = - _1_ f In(ui(r') - uZ) w(r) dr'. (J7) 
21Ti Jr, r' + r w(r') 

12(u,r) is a holomorphic function of u,r in 
Re u < 0 ® Re r < 0 and generates thus a factor C £ (u, r) of 
C (u, r) which is nonvanishing in Re u < 0 ® Re r < 0 and 
consequently in JI. The remaining integral can be comput
ed as in Appendix F by going over to the u' -plane. The choice 
of branches of the logarithm indicated in the text is realized 
if, for u real, one lays the cut from lui to the left. In complete 
analogy to Appendix F one obtains 

(J8) 

where 
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(J9) 

are the roots of the function in the numerator, the square 
root has a positive real part and CE(u,r) is the product of 
C £ (u,r) with other factors, nonvanishing in 
Re u < 0 ® Re r < 0, coming from the weight w(r'). We can 
regard Kos(s,t) as the function %, Eq. (3.1), for the ampli
tude 5uZ + 4u + r - I (holomorphic in a direct product 
domain) except for the replacement in the denominator of 
u _ (r) - u by the difference of squares. Similarly, 

{ 

CE(1/,r) 51/2 + 21/ + 4r - 7 7 E fiJ 1,g) 2 

1/2 - 1/2_ (r) 
Kou (u,t ) = _ 5 2 + 2 + 4r - 7 

CE(1/,r) 1/ 1/ rEg) 3 

(1/2 - 1/2_ (r))(1/2 - 1/2+ (r)) 
(JlO) 

where 1/ _, 1/ + are the roots of the polynomial in the numera
tor. Notice 

1/2+ (r) + uZ_ (r) + r = 1/2_ (1') + uZ+ (7) + r = 2. (JIl) 

One obtains 

Cl(U,7) = C(u,1')CE(u,r)-ICd1/,1')-1 

{ 

_ (U+(7) - u)(1/ -1/+(r)) 
_ (u _(7) + u)(1/ + 1/ _(1')) 
- (u +(r) - u)(u _(1') - u) 

(1/ + 1/+(r))(1/ + 1/_(r)) 

(JI2) 

Using (JIl), we verify that Cl(u,r) is actually one and the 
same function, namely 

Cl(u,r) = 5uZ + 4u - 1 + r . 
51/2 - 21/ + 4r - 7 

Further, using (JI) we obtain 

C( ) __ 2u+1/+ 1 
I u,1' - , 

2u+1/-1 
where the denominator is nonvanishing in Re u 
<O® Re 1/ <0. 

II. Consider 

A (u,r,1/) = 2u + l' + 1/ + 2. 

(J13) 

(Jl4) 

(JI5) 

The pattern of trajectories in the t plane is shown in Fig. 4. 
The situation is the following: for l' on Re 7 = 0, there is a 
trajectory 

( () ( )) 
_ ( - 2(r + 2) + (6 - 6r - 4r)1/2 

u+ l' ,r,1/- r - , 1', 
5 

- (r + 2) - 2(~ - 6r - 41')1/2) 

(J 16) 

on the physical sheet for small \ r 1; it disappears through the s 
cut at l' = ± 2i(2/5)1/2. For u on Re u = 0, there are two 
trajectories near u = 0, crossing at this point 

( () ( )) 
_ ( - 2(u + 1) ± (- 6uZ - 8U)1/2 

u,r=F u,1/± u - u, 2 ' 

- 2(u + 1)) =+= t; 6uZ - 8 U)1/2) 

(n7) 
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One of the trajectories disappears through the t cut, the other 
through the u cut, at the same value of a = ± i(2/5)1/2; their 
images are the curves r l , r 2 in Fig. 4; the functions 
l' ± (a),1] + (a) satisfy a relation analogous to (111). For 1] on 
Re 1] = 0, there is one trajectory obtained from (116) by in
terchanging 1] with 1'; it generates r i in Fig. 4 and disap
pears through the s cut at 1] = ± 2i(2/5) I 12. The number of 
zeros of A (a,l',1]) in JI, for l' in the various domains of D, is 
shown in Fig. 4. There are two closed circuits i\,F2 required 
to return the inverse functions to their original values: 
l\-r l u 0 - iE, ~ + iE), 1'2 = r 2 uri· 

U sing the experience of Example 1, we build C (s,t,u )(up 
to factors which do not vanish in Re a < 0 ® Re l' < 0 or 
Re 1] < 0 ® Re l' < 0) from the functions %, Eq. (3.1) needed 

I 

in the Cousin functions of the amplitudes FI(a,1'),F2(1],1') ob
tained by eliminating in tum 1] and a between Eqs. (11) and 
(115). There is a difference with respect to example 1: the 
pattern of trajectories of A (s,t,u) in D, is only a part of the 
superposition of the patterns obtained from FI(a,1').F2(1],1'): 
the dotted lines r 4 , r; in Fig. 4 are missing in the former. 

F I(a,l') = 5~ + 4a(2 + 1') + 2(1' + 1)2 

= 5(a - a + (l'))(a - a _(1')) 

F2(1],1') = 51]2 + 21](2 + 1') + 5r + 41' - 4 

= 5(1] -1]-(1'))(1] -1]+(1')) (118) 

Up to factors that do not vanish in Re a < 0 ® Re l' < 0, 
Re 1] < 0 ® Re l' < 0 and using 

_I, ( )_/' () [1 lln(~- (1") - ~) d'] [1 lln(1]2 - 1]2+ (1")) d ,] 'f'1 a,l' 'f'2 1],1' = exp -. , l' exp -. , l' 
2m r. l' - l' 2m r; l' - l' 

we obtain [in analogy to (112)] 
(119) 

{

_(a - a +(1'))(1] -1] +(1')) (1' + 2)-/' (a 1')-/' ('l? 1') l' E.Pfl .Pfl .Pfl 
( ( )( ( )) 

'f'1' 'f'2'p , I' 2' 3+ 
C( )

_ a+a_l' 1]+1]_1' 
a,l' -

(a - a + (l'))(a - a _(1')) (1' + 2)¢J!a,1')¢2(1],1'), l' E.Pfl4 
(1] + 1] -(1'))(1] + 1] +(1')) 

(I20) 

In the last equation, we can replace the fraction by the ratio FI (a, 1')/ F2( - 1],1'). Using Eq. (111) one can verify that the two lines 
in Eq. (120) are in fact the same function. The notation .Pfl3 + means the part of .Pfl3 lying on the left of the curve r4 • The 
expressions (120) have discontinuities along r 4 , r;, but are otherwise holomorphic in.Pfl3+ ® Re a < 0 n .Pfl 3 + ® Re 1] < O. 
The analytic continuation of (120) to all of D, gives 

{ 

FI(a,l')(1] - 1] +(1')) (1' + 2)¢I(a,1')¢2(1],1'), l' E .Pfli + 
C(a,l') = 1] + 1]_(1') 

F I(a,1')F2(1],1')(1' + 2)¢I(a,1')¢2(1],1'), l' E .Pfl 3 -
(121) 

where the notation .Pfli + , .Pfl3 _ is given in Fig. 4. The factor (1' + 2) removes a pole at l' = - 2, due to the discontinuity of the 
logarithm. 
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moment, interacting with an external magnetic field 
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A unitary transformation is performed on a Hamiltonian which is built from two independent 
Dirac matrices with noncommuting coefficient operators. A simple symmetric and exactly 
diagonalizable expression is obtained for the Hamiltonian of a Dirac particle, including the effect 
of an external magnetic field on an anomalous moment; a nonrelativistic approximation comes 
readily, which allows high magnetic fields. 

PACS numbers: 12.20. - m 

I. INTRODUCTION 

The transformation of Foldy and Wouthuysen (FW)I is 
a well-known method for reducing the free Dirac particle 
Hamiltonian to an even form; the consequence is a diagonal 
form and the possible definition of particle states with two
component spinors. When the particle is interacting with an 
external field, the FW transformation does not generally en
able an exact diagonalization; several approximate methods 
have been used,I-5 with equivalent results up to a given or
der. 

As first shown by Case,6 a closed form does exist for the 
diagonalizing transformation in the case of an odd interact
ing term, provided some conditions of commutation are sat
isfied; the method runs on an electron in a homogeneous 
magnetic field. In some other cases of interaction, exact di
agonal expressions have been given for the transformed Ha
miltonian; an extension of the theorem of Case6 is used, 
which has been stated by Cohen7 and by Johnson and 
Chang,8 and which involves the same conditions of commu
tation. 

Eriksen2 uses its method on a neutral Dirac particle 
with anomalous electric moment, in a constant electric field. 

Tsae works on a charged Dirac particle with anoma
lous magnetic moment, in a constant homogeneous magnet
ic field. He first carries out a Melosh-type transformation, 
and then gets the eigenvalues of the energy after squaring the 
transformed Hamiltonian. 

On the same case, Weaver lO has shown that the two 
steps can be reversed. He also uses other ways, consisting 
either of a projection (giving a two-component equation) fol
lowed with a Melosh-type transformation or of two succes
sive Melosh-type transformations; the diagonalization is 
bound to a diagonal realization of the Dirac matrix a 3• 

We elsewhere I I gave a method, derived from the trans
formation of Baktavatsalou, 12 which brings a given Dirac 
Hamiltonian to a parametered form; a correct choice of the 
parameters gives diagonalizable expressions. 

We first briefly develop the method. An application is 
then performed on the case of a Dirac charged particle with 
anomalous moment, interacting with a constant magnetic 
field. It is a one-step and closed form transformation, the 
result is different from those ofTsai9 and Weaver lO

; it agrees 
with Case's result6 for a vanishing anomalous moment. Dif
ferent approximations can be derived, whatever the intensity 

of the magnetic field may be, showing particularly the inter
est of the method in high constant inhomogeneous field. 

II. AN OUTLINE OF THE METHOD 

Just like Baktavatsalou, 12 we define a unitary transfor
mation U as the Cayley transform of a Hermitian operator 
A: 

(1) 

The transformation is applied on a time-independent Dirac 
Hamiltonian H: 

H'= UHU- I
• (2) 

From this expression and definition (1), the following equa
tion holds: 

A (H -H'jA + i[A, (H +H')] _ + (H -H') =0. (3) 

It can be cast into an equivalent form: 

[(H -H'jA +i(H +H'W 

- 2i(H 2 _ H '2jA + 2(H 2 + H '2) = o. (4) 

With given expressions for H andH', the Hermitian operator 
A is theoretically derived as a solution of Eq. (4). Such a 
general solution, however, looks out of reach. 

A solution has been derived II with the following con
straint assumed on the expression of the transformed Hamil
tonianH': 

Let us notice here that the most general expression for a 
Dirac particle Hamiltonian reads 

H =/3M + Y5P+/3Y5N + Q. 

(5) 

(6) 

Moreover, we want the transformed Hamiltonian to be dia
gonaiizable, and so it has to include only one of the Dirac 
matrices. 

Thus, as it can be verified, expression (5) only holds 
being given the two following conditions: 

(i) the Hamiltonian H is homogeneous (Q = 0); 
(ii) one term among the three ones, M, N, P, must com

mute with the two other ones. 
Then, Eq. (4) can be simplified: 

[(H-H'jA +i(H+H'JY= -4H2. 

Let .sf be a Hermitian operator such that 

H2 =.sf2 = H'2. 

(7) 

(8) 

2087 J. Math. Phys. 25 (6), June 1984 0022-2488/84/062087-03$02.50 @ 1984 American Institute of Physics 2087 



                                                                                                                                    

Equation (7) gives 

(H - H')A + i(H + H') = ± 2i.sf. 

One then gets 

A =i(H-H')-I[±2.sf -(H+H')], 

with the following Hamiltonian: 

H' = .sf- 1H.sf. 

(9) 

(10) 

(11) 

A solution is thus obtained for the Hermitian operator A and 
the unitary transformation: 

A = i[.sf,H] = II ± 2H2 - [.sf, H] + ), (12) 

u= (H - .sf)-I( ±H -H- 1.sfH). (13) 

III. APPLICATION ON A GIVEN FORM OF THE 
HAMILTONIAN 

Let H be with only two terms: 

H=/3M +rsP. (14) 

Operators P and M generally do not commute with each 
other. 
Operator .sf reads, as the most general expression, 

.sf = A + iB/3rs + C/3 - iDrs. (15) 

It follows from condition (8) thatA, B, Care Hermitian oper
ators and D is an anti-Hermitian one. 

To proceed with the solution, let 

A +B=X, A -B=X, 

C+D= Y, C-D= Y, 

R = p 2 + M2 + i[P,M] _ , 

R =p 2+M2_i[P,M]_. 

(16) 

Using (16) in (15), and (14) and (15) in (11), the transformed 
Hamiltonian H I then reads 

H' = ! I R - 1 [X (M + iP)y + Y (M - iP)X] + R -1 [X (M - iP) Y + Y (M + iP)X ]J 
+! i/3rslR -1[X(M + iP)y + Y(M - iP)X] -R -1[X(M - iP)Y + Y(M + iP)X]J 

+!/3 IR -1[X(M + iP)X + Y(M - iP)y] + R -1[X(M - iP)X + Y(M + iP)Y]J 

+!irsIR -1[X(M + iP)X + Y(M - iP)y] -R -1[X(M - iP)X + Y(M + iP)YlJ. (17) 

The particular case with M = m (rest mass of the particle) can be solved with 

Y=kP, 

where k is a Hermitian operator, acting as a function of m and P. 
In the general case, let us suppose, as an extension, 

Y=h(M +iP). (18) 

h is a Hermitian operator, a function of M and P, which commutes with the product (M + iP)(M - iP). The transformed 
Hamiltonian (17) can be diagonalized only provided that it is axial '3; this means that, among the three terms including the 
Dirac matrices /3, r s' and /3r s, two ones are vanishing. From the symmetry of the expression, the /3 and r s terms are to vanish. 
Operator h in (18) is then derived, and H' has a simple expression: 

H ' = ± [!(RI/2_RI/Z)+!i/3rs(RI/Z+RI/Zl]. (19) 

IV. THE CASE OF A DIRAC PARTICLE WITH 
ANOMALOUS MOMENT, INTERACTING WITH A 
CONSTANT MAGNETIC FIELD 

Now, operators P and M respectively read 

P = 0' • (p - eA), 

M = m + /LaO" B; 
(20) 

/La is the anomalous moment. Substitution of these expres
sions in (16) gives 

R = mZ + /L~ BZ + (p - eA)Z - eO' • B 

+ 2/LaO" [mB + BX(p - eA)], 

(21) 

R = mZ + /L~ B Z + (p - eAf - eO' • B 

+ 2/LaO" [mB - BX(p - eA)]. 

Positive signs have been chosen in expression (19). A nonre
lativistic approximation is readily derived up to first order in 
(11m): 

H~r=(;.talm)O'· [Bx(p-eA)] 

2088 

+ i/3rsl m + (1I2m)[(p - eA)Z - eO" B + /L~BZ] J. 
(22) 
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In the subspace of two-component spinors representing 
particle states, with a diagonal realization for matrix i/3rs, 
the approximate expression of the transformed Hamiltonian 
1S 

H~r""""-'m + (1I2m)(p - eA)2 

-0" [eB-(;.ta1m)BX(p-eA)] +/L~B2. (23) 

The classical Pauli Hamiltonian is recovered with a vanish
ing anomalous moment. 

V. DISCUSSION AND CONCLUSION 

The method here described differs from those of Tsai 
and Weaver, since we get a diagonalizable Hamiltonian for a 
spin-! particle by means of a one-step transformation. It is 
more general, since the case of a nonhomogeneous magnetic 
field can be considered. 

The transformed Hamiltonian (19) has a simple sym
metric expression; with the matrix i/3r s diagonal, the particle 
(resp. antiparticle) states are described by means of the Ha
miltonian: 

H" =R liZ (resp. H" = _RIIZ). 

Although the expressions are simple, the occurrence of 
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square roots involves approximations in effective develop
ments. 

As a counterpart to the simplicity of the Hamiltonian, 
the expression for the unitary transformation U is not expli
citly known, and we thus cannot give expressions for other 
transformed operators and observables, which is a lack in 
view of interpretation. 

The method should run on a spin-l particle with anom
alous moment, since the Sakata-Takentani14 equation in
cludes two matrices which follow the same algebra as the 
Dirac matrices p, Y5' and iPY5' The general case of higher 
spins has not yet been considered. 

The results are of interest as they allow a description of 
quasiuncoupled particle/antiparticle states in high magnetic 
fields, such as those occurring in the vicinity of fast rotating 
stars. 
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The exact combination of internal and of geometrical symmetries in curved space-times is 
discussed. It is seen that it is possible to define locally a Lie group S containing two noninvariant 
subgroups E and G, such that in the flat limit of the space-time, S decomposes in the product ofthe 
Poincare group resulting from a contraction of E and an internal group with point dependent 
parameters resulting fom G. Furthermore, E does not have necessarily a nilpotent action on S 
except in the flat limit. An explicit squared mass-splitting expression for S is derived and its 
behavior in a local gravitational field and in the flat limit of the space-time is analyzed. 

PACS numbers: 12.25. + e, 11.30.Ly, 02.20.Rt 

1. INTRODUCTION 

It has been known for some time that an exact combina
tion of the Poincare group with an internal symmetry group 
produces a mass spectra for particle multiplets which is ei
ther continuous or it consists of a single point. An analysis of 
the various pertinent theorems shows that this happens be
cause the Lie algebra of the Poincare group acts nilpotently 
on that of the combined symmetry. 1-5 This nilpotent action 
can be avoided if the combined symmetry is not a Lie group 
as, for example, in some infinite Lie group combinations and 
in some supersymmetric combinations. 6 On the other hand 
the mentioned theorems also indicate that the nilpotent ac
tion is a consequence of the peculiar structure of the Poin
care group, which has a mass operator constructed with op
erators belonging to an Abelian invariant subgroup. In this 
context Segal proposed that the mass-splitting problem 
could also be solved if the Poincare group P is replaced by a 
more general space-time symmetry E such that it contracts 
into P and that the nilpotent action of E on a combined sym
metry occurs only after that contraction. 7 

The replacement of the Poincare group by another 
space-time symmetry, notably by the de Sitter cosmological 
symmetry, has been considered by several authors. 8

-
12 Be

cause the de Sitter group SO(4, 1) [or the anti de Sitter group 
SO(3,2)] is semisimple and produces the Poincare group by 
contraction, the nilpotent action of this group on a combined 
symmetry group would occur only in the flat limit of the de 
Sitter universe. Interestingly enough, the presence of a gravi
tational field even at the weak cosmological scale of strength 
is sufficient to produce a nonzero mass splitting. The result
ing masses and mass splitting are admittedly small [of the 
order of 10-50 (MeV)2] and although these masses could in 
principle be rescaled, the result suggests that a local gravita
tional field, like the one existing at the surface of the Earth, 
could produce a more pronounced mass difference. 

The purpose of this note is to investigate a possible im
plementation of Segal's proposal for a curved space-time V 
of general relativity so that a local gravitational field is con
sidered in the evaluation of the masses of particles. 

In Sec. 2 a local space-time group E is constructed in a 
natural way such that, in the flat limit of V, E contracts into 
the Poincare group. In general a space-time V does not admit 
Killing vector fields. Therefore, E cannot be identified with 

the group of isometries of V. However, at any point of Va 
local space can be constructed such that the group of isome
tries of that space generate the group of isometries of V if 
any. Here this local space is taken to be the local isometric 
minimal-embedding space M (m,n) of V. The isometric-em
bedding condition says that the metric of Vis induced by that 
of M (m,n). This means that instead of the group ofisometries 
of V, the group of isometries of M (m,n) can be considered in 
the definition of the group E. 

Since the concept of internal symmetry is usually de
fined in Minkowski space, that is in conjunction with the 
Poincare group, then in the presence of the gravitational 
field the internal group does not necessarily decouple from 
the space-time symmetry E. Therefore, a combined symme
try S containing E as a subgroup has to be considered. It 
happens that in some cases the group of isometries of the 
embedding space is sufficiently large to accommodate not 
only Ebut another subgroup G locally defined on V. G and E 
are noninvariant subgroups of S but in the flat limit of V, E 
contracts into P while G becomes completely disconnected 
from E (that is, P) so that G can be regarded as an internal 
group. In Sec. 3 the mass-splitting problem, is investigated 
for the combined symmetry S. The mass operator is taken to 
be the second-order Casimir operator of S, reproducing the 
Poincare mass operator in the flat limit condition. A general 
squared mass-splitting expression is derived, showing its de
pendence on the local curvature radius of the space-time. In 
the flat limit of V the mass splitting vanishes as expected. 

Some estimates of the order of magnitude of the masses 
for the Schwarzschild space-time at the surface of the Earth 
is given at the end of that section. 

2. THE EMBEDDING SYMMETRY 

In order to guarantee a maximal group of isometries, 
the isometric local-embedding space M (m,n) is assumed to 
be flat (although in principle a constant curvature embed
ding space could also be considered). The dimension of 
M(m,n) isp ( = m + n) and its metric signature is m + 
( - n). Since M(m,n) is flat, Cartesian coordinates ZI-' 
(I-l = 1, ... , p) may be used throughout. On the other hand, 
the use of a Gaussian coordinate system x a (a = 1, ... , p) 
based on V may be more convenient for dealing with objects 
which are space-time defined. This Gaussian system can be 
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constructed with the four space-time coordinates Xi (i = 1, ... , 
4) and with p - 4 coordinates .xA (A = 5, ... , pi, defined on 
p - 4 unit directions TJA (Xi) orthogonal to Vand to each oth
er with respect to the metric of M(m,n). Thus 
{xa} = {xi,.xA }. The transformation between these two co
ordinate systems is given by 

Z I'(Xi,x4 ) = X I'(Xi) + ~TJ~ (Xi), (1) 

where X I'(Xi) are the Cartesian coordinates of a point in V 
and TJ'~ are the Cartesian components of TJ A • 

The index convention will be as follows: Greek indices 
run from 1 top. Small case Latin indices run from 1 to 4 and 
capital Latin indices run from 5 to p. Summation applies 
automatically to all cases of repeated upper and lower in
dices. 

From (1) it follows that the definition of Vas a hypersur
face of M(m,n) is given simply by.xA = O. If f1 (xa

) is a geo
metrical object defined in M (m,n), its space-time "projec
tion" is defined by restriction to V 

n (xa) I v = n (xa) I x< = o· 

For example, if TJI'V denotes the Cartesian components of the 
metric tensor of M(m,n), its Gaussian components are 

gaP = Z~aZpTJl'v' (2) 

Therefore, its space-time projections are 

I -XI'XV --gij V - ,i JTJI-'V - gij' 

gjA I v = 0, (3) 

gAB I v = ~OAB' 
whereg ij denotes the metric tensor of Vin the coordinates Xi. 
Notice that the last equation follows from the assumed 
orthogonality ofthe TJ A fields 

rfATJ"aTJI-'V = ~OAB' 
where ~ = ± 1 are the signature numbers of the subspace 
orthongonal to V. 

The Christoffel symbols r apy of the metric affine con
nection VM of M(m,n) in the Gaussian system are, as usual 

(4) 

Then it follows that r ijk I v = r ijk (the Christoffel symbols of 
gij)' The Gauss-Codazzi-Ricci equations which are the inte
·grability conditions for the embedding are obtained from the 
independent equations resulting from R a Pyo I v = 0 which 
expresses the flatness of M(m,n) as seen from V.I3,14 

Now consider an infinitesimal displacement dx i in V 
and from (1) calculate the corresponding variation on Z I-' 

L1ZI-' = (Xj +~rfA,i)dxi. 

If the direction dx i is such that the above variation vanishes 
then that point Z I-' is a center of curvature and dXi defines a 
principal direction in V. Thus.LiZ I' = 0 gives after contrac
tion with X:; TJ I-'V 

(gij + ~bijA )dXi = 0, 

where 

bijA = TJ~,iXJTJI-'V = FijA Iv· 
The above equation has a nontrivial solution dx i when 
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(5) 

The solutions .xA = p~) of this equation define the radius of 
curvature of V, corresponding to the principal direction dxi 

and to the normal direction TJA. These quantities express the 
curvature of V in an extrinsic form. Considering all possible 
principal directions dxi, each normal TJA has a curvature ra
dius component defined by 

pA = ~jP~IP~' (6) 

Then each 1/ pA tends to zero in the flat limit of S and they 
can be used as contracting factors for the group E with re
spect to the Lorentz group of the tangent space. 

The group of symmetries of the local isometric embed
ding is SO(m,n) whose Lie algebra in the Cartesian frame is 
given by 

[Ll'v,Lpu] = TJl'pLvu + TJvuLI'P - TJl'uL,'P - TJvpLl'u' 

In the Gaussian frame the Lie algebra operators are 

LaP = Z ~Z pLl-'v 

so that 

(7) 

[Laf3,Lyo] = gayLpo + gpo Lay - gaoLpy - gpyLao· 
(8) 

Projecting this Lie algebra on V and denoting lij = Lij I V> 

liA = LiA I v' lAB = LAB I v and using (3), the projected Lie al
gebra reads 

[li),lkl] = gikljl + gjJik - gjfljk - gjJjf, 

[li),/kA] = gikljA - gjk1iA' 

[lij,/AB] = 0, 

[1;A ,ljB] = guiAB + gAB lij , 

[l;A '/BC ] = gACliB - gABliC' 

(9) 

[IAB'/cD] = gAclBD + gBDIAc - gADlBC - gBcIAD · 

Now change the basis of this Lie algebra by introducing the 
operators (a linear combination of liA at each point) 

1 
11'; = f pA I;A . 

The resulting Lie algebra is 

[Iij'/kd =gikljl +gjll;k -gi/ljk -g;kli/' 

[lij,11'k] =gik11'j -gjk11'P 

(10) 

1 1 
[11';,11'j] = I gAB A B lij' (11) 

P p 
1 1 

[11';'/BC] = I A gAC/;B - I A gABlic, 
P P 

[lAB'/CD] = gAclBD + gBDIAC - gADIBC - gBCIAD' 

The group S is the Lie group corresponding to the above Lie 
algebra. It is in essence the projected group SO(m,n) in an 
appropriate basis. It contains two noninvariant subgroups: 
The 10-parameter subgroup E generated by Ii) and 11'i and the 
(P - 4)(P - 5)12-parameter subgroup G generated by lAB 

[E,E] = E, [E,G ]ES, [G,G ] = G. 

The action of E and G on V can be best analyzed from the 
associated infinitesimal transformations. The infinitesimal 
transformations ofSO(m,n) are 
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x'r=xr + t r 

with 

t r = (Ja(3La(3(xr), 

where (Ja(3 are the infinitesimal parameters ofSO(m,n) and 
since this is the homogeneous group of isometries of M (m,n) 

t 1a;(3I(VM) = 0 (fixed origin). (12) 

The infinitesimal transformations of the projected group S 
are 

x'a =xa + t a 

with Killing's equation evaluated at V 

t 1a;(3I(VM)lv = O. 

Separating the different indices it follows that 

t1iil)(VM)1 v = (gk(it J\ + g'<(ir-2,kt m)1 v 

+ gk1irjkt A Iv = 0 

(13) 

or, denoting til v = ¢ i,t A I v = tA and using the definition 
rPr = ~{jr(3r{j it follows that r~k I v = - glbklA so that 

¢ (iii) = gkltgJllbklAtA (14) 

where now the covariant derivative is calculated with gij' 
The equation for mixed indices i,A gives 

(ti.A)lv = -gAMtm(tM,m +gMNAmNBtB), (15) 

whereA mNB = r mNB Iv· 
Finally the equation for the indices A,B gives 

tIA;BI(VM)lv = (gCiAtBI,c + gCiAr~1tD)1 v = O. 

However, r~D I v = 0 so that this equation reduces to 

tIA.B1Iv=0. (16) 

As it can be seen these infinitesimal transformations are not 
independent and this is a consequence of the fact that the 
subgroups E,G are not invariant. The particular transforma
tions which send space-time points to space-time points re
quire that t A = 0 (so that ~ = O::::>X'A = 0). From (14) it fol
lows that these transformations are the isometries of V. 
Therefore, the group of isometries of V is the subgroup of E 
characterized by the condition t A = t A I v = O. Notice that 
in general this condition imposes constraints on the param
eters of E so that the resulting group of isometries has in 
general less than 10 parameters, the exception occurring 
when V has constant curvature. In the general case (i.e., 
without the condition t A = 0) the equations (16) which cor
respond to the subgroup G can be easily solved giving 

tA = (JAj(Xi)xj + (JAB(Xi)xC, 

where 

(J IA.BI(xi) = gBla(J A la I v = O. 

(17) 

Therefore, G consists of pseudorotations in the subspace of 
M (m,n) orthogonal to V together with the transformations 
with parameters (JAj(xl These last transformations are 
again consequence of the fact that G and E are not invariant 
subgroups of S. Therefore, while the subgroup E has to do 
with space-time transformations, the subgroup G behaves 
like a local internal (or gauge) group. In the general situation 
they cannot be separated. 
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To see that E satisfies the first condition of Segal consid
er now the fiat limit of V. Under this limit the Lie algebra of 
S,( 11), becomes 

[lij,lkd = gik1jl + gjllik - guljk - gjk1i/, 

[iij,1Td =gik 1Tj -gjk 1Ti' 

[;i';j] = 0, 

[;i,lBC] = 0, 

( 18) 

[IAB,lcD] =gAcIBD +gBDIAc -gADlBC -gBClAD' 

where" '" is used to indicate that these operators are calcu
lated in Minkowski space-time. It follows that E Iflat is an 
invariant subgroup of S Iflat isomorphic to the full Poincare 
group. The subgroup G Iflat = G is now completely discon
nected fromE Iflat ;::::;P and it contains (P - 4)(P - 5)/2 para
meters. Therefore the vanishing of the gravitational field 
breaks the projected embedding symmetry S into P X G, 

[P,P] = P, [P,G] = 0, [G,G ] = G. 
It is a known fact that the number of dimensions of the em
bedding space increases as the space-time geometry becomes 
less symmetric. The dimension p = 10 corresponds to the 
minimum theoretical limit for analytic embeddings (the Ja
net-Cartan theorem). On the other hand for a differentiable 
embedding this limit increases to 14 dimensions. 15 Confining 
the attention to the physically relevant cases, it follows that 
G can be SO(6) for p = 10 and SO(lO) for p = 14. 

3. MASS AND MASS SPLITTING 

The verification of the second Segal condition requires 
an appropriate definition of the mass operator. Such an oper
ator must be capable of providing an adequate mass spec
trum and it must reduce to the Poincare mass operator when 
E contracts into P. Since E is not an invariant subgroup of S, 
the invariant operator to be considered as the mass operator 
should belong to the universal enveloping algebra of S (and 
not of E). The most obvious candidate is the second-order 
Casimir operator of S (as it is the case of the Poincare mass 
operator). It has also been suggested that the mass formula 
for mesons can be derived from the second-order Casimir 
operator of some group containing a noninvariant subgroup 
contractible into P. 16 Therefore, the mass operator can be 
defined as 

M2=(k~)r'a(3,a(3, p2=IgABPApB, (19) 

where k (p) is a mass scaling factor such that 

lim k (p) = Ko = const. To analyze the behavior of (19) un-
{>-->oo 

der the fiat limit it can be written as 

M2 = (; )\lJij + 2liAIiA + lABlAB) 

= (.!!:...)\lij + k21Ti-rf + k 2 I (+( I liBliB)) 
p P PA B,eA 

- k 2 I ~A liAC~A;/iB)) + (; ylABlAB 

so that in the fiat limit of V 

M 21 K21T" ~ flat = 0 (II 
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which is the Poincare mass operator. The constant Ko is re
quired for expressing the appropriate values of mass in a 
given mass dimension. 

Now consider a representation of S such that it is com
pletely reducible with respect to E and such that M 2 is Her
mitian as an operator acting on the representation space H. 
Then H is a direct sum of the representation spaces H", for E 
and under these conditions the spectrum of M 2 may have a 
mass-like structure [that is, continuous but with isolated 
points (Ref. 7)]. 

Let I be an operator of S such that it contains at least 
one eigenstate Ib ) of M2 in its domain. To obtain a nonzero 
transition probability (all Ib ) between distinct representa
tion spaces of E the operator I should belong to G. Then I is a 
linear combination of lAB' 

1= aABIAB . 

Taking two distinct representations a,b of E, the difference 
between the eigenvalues of M 2 is 

m~ - m~ = (aIM2Ia) - (b IM2Ib) = (a[(~;';b]~b). (20) 

The mass operator (19) can also be written as 

M2 = (; r(g"YgPlJ/apIYIJ)1v 

( 
k)2 -'/=01 -if...AB ...AB CDI I = P [g' g !ikl + 2g's lu IjB + S g AC BD] 

so that 

2 (k)2 EF[_o/=ol ylJ { } [M ,I] = p a g'gCijEF IYIJ,lkl 

+ 2~jgtBCl1EF{lylJ,ljB} 

+gtBgCDC~~EF{lylJ,IBD} ] 

where I , 1 denotes the anticommutator and C~pylJ are the 
structure constants of the group S in the basis lij,/u ,lAB [so 
that these constants are obtainable from (9)]. Replacing in 
(20) and noting that (alE Ib) = 0 for a#b 

X(Ia +Ib )] (allylllb) 
BD BD (alllb) ' 

where 

5%1 = (allklla), 

PJB = (alljB la), 

I~D = (allBD la) 

(21) 

are terms which correspond to spin, momentum, and inter
nal parameters, respectively. 

The expression (21) can be further simplified. Since 
laP = Z ~aZ 'flLl'v I V then C ;~EF (where /-l, v are Cartesian in
dices) may be defined by 

cylJ - ZI' zv Cyll apEF - .a • .11 I'"EF' 
then 
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m~ - mi = (; r [(fI'P + h I'P)(f"<7 + h "a)] I v( (allpu la) 

+ (b II Ib »)aEF C;~EF(allYlllb) 
pu (all Ib ) , 

where 

I I''' =g'°kZP: Z" hI''' = ...ABZI' Z" . 
. ' .k' S.A.B 

Now since la), Ib ) belong to distinct representations of E, 
(allij Ib) = 0 and (a IliA Ib) = 0 for a#b. Thus 

<alaEFC;~EFlylJ Ib) (al [LI''',1] Ib) 

(all Ib ) (all Ib ) 

= <aILI'"la) - (b ILI'"lb). 

Therefore, denoting 

U I'+" - (a,b) = !(aILI''' la) ± (b ILl''' Ib») (22) 

and noting that 

(fl''' + hI''') I v = 7f", 
expression (21) reduces to 

m! - m~ = (;r7fPl1"<7U p~(a,b)U ;,.(a,b). (23) 

Notice that by evaluating the product of U ;~(a,b)U I'~(a,b) 
the initial expression (20) is recovered. 

The most interesting aspect of expression (23) is that its 
space-time dependence rests only on the curvature radius p. 
In fact the functions U I'+" - (a,b) are functions only of the 
representations of the group SO(m,n). It follows that in the 
flat limit of V (p- 00), the mass splitting vanishes at the 
same time that E contracts into P, in accordance with O'Rai
feartaigh's theorem. On the other hand for large (but finite) 
values of p, the group contraction is not completed, that is, 
[1T,,1Tj] ;:::0 but [1Ti,IBc ] #0 so that even for weak gravita
tional fields the mass splitting (21) does not vanish. In fact, 
the expression (21) generalizes a mass splitting previously 
derived for the de Sitter space-time with the group SO(4, 1) 
regarded as a cosmological symmetry. In this case the inter
nal group is postulated and for p = R = 10-28 cm the mass 
splitting has been estimated to be of the order of 10- 50 

(MeV)2.8.9 
In the case of local gravitational fields with P > 5; the 

internal group emerges from the embedding. It is possible to 
interpret the group SO(m,n) as a combination of various 10= 
cal de Sitter groups to produce a combined internal and 
space-time symmetry. 11.12 However, in the present context 
such geometrical interpretation is irrelevant. 

The order of magnitude of the mass splitting depend on 
the function k (p). The resulting values must be comparable 
to the experimental data. Let Ko be the constant so that the 
eigenvalues of the Poincare mass operator are expressed in 
(MeVf 

M~ =K61rJr'. 
Since the contraction of (19) must reproduce M~, it follows 
that k ( 00 ) = Ko, suggesting that k (p) may be represented by 
an asymptotic expansion 

00 c 
k(p)=L~' 

o pn (24) 
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truncated to some finite interger s. This representation of 
k (p) is accurate for large values ofp, for a relatively smalls. 
The coefficients Cn in (24) may be determined from the ex
perimental data. Assuming that the practically-constant 
particle masses as measured at the surface of the Earth 
(p = P e ) is in accordance with (19) and (24), then the coeffi
cients of the asymptotic expansion may be determined from 
the conditions 

d r 

Mlpe)=Mp , -M(p)lp =0, r=I, ... ,s. 
dpr $ 

Observe that the identification M Ip e ) = M p is numerical 
only. In terms of k (p) these conditions read 

k lp e ) = p @ Ko, k 'Ip @ ) = Ko, k (rllp @ ) = 0 r = 2, ... , s, 

so that the s coefficients Cn ,Co = Ko, in (24) can be deter
mined. For any value of s the mass of the particles at the 
surface of the Earth is 

M2(p@) =K~laplaP 

so that all the masses are multiples of Ko, and Ko is the mass 
corresponding to laP I ap = 1. As a numerical example, take 
the spin-zero pion as the particle corresponding to 
laP I ap z 1. Then 

M lp '" )1To zKo = m 1To 

= (0.134 962 59 ± 0.000 0039)103 MeV. 

For other values of p the expression (24) has to be evalu
ated with the curvature radius for the Schwarzschild solu
tion given by Ref. 17 

p=~, 
where r is the radial coordinate and 2m the Schwarzschild 
radius. Thus taking the Earth's average radius 
r@ = 6.371 X 108 cm, it follows that 
P @ = 1. 708 6208 X 1013 cm. It is interesting to notice that 
for s = 3, the value of M (P)1To for different values of r re
mains within the limits of exact measurement of m 7To in the 
near vicinity of the Earth. To find the exact values of the 
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masses, specific representations ofSO(m,nj have to be calcu
lated. It is also possible to increase the number of terms in the 
expansion of k ( p) so as to meet the accuracy of the experi
mental verification. For small values of p, a high-order 
asymptotic expansion has to be considered, thus producing 
particles with large masses associated with strong gravita
tional fields. 

In conclusion, by use of an asymptotic representation of 
k ( p) it is always possible to adjust the scale ofthe mass opera
tor (19) so as to compare with the experimental results. Since 
in the flat limit of V the Poincare masses are recovered but 
not the mass splitting, it appears that the gravitational field 
plays a significant role in the particle multiplet composition. 
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Nonperturbative confinement in quantum chromodynamics.llI. Improved 
gluon propagator 
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An ansatz is introduced for the three-gluon vertex that is consistent with the Slavnov-Taylor 
identity in Landau gauge. It is shown that the gluon has a confining infrared singularity; but there 
is also a tachyon, indicating an insufficiency either of quarkless QCD or at least of our 
approximation to it. 

PACS numbers: 12.35.Cn 

I. INTRODUCTION 

It is an attractive hypothesis that a severe infrared sin
gularity is a signal of confinement in quarkless quantum 
chromodynamics (QCD).1.2 Although the gluon self-energy 
is gauge-dependent, the gauge-invariant Wilson loop can be 
constructed from it; and it has been shown that a sufficiently 
singular propagator leads to an area law in leading order. 3 A 
proper study of such singularities entails a nonperturbative 
approximation. As an alternative to the lattice approach, 
with attendant uncertainties concerning the continuum lim
it, one may study truncated continuum Dyson-Schwinger 
(DS) equations, using either covariant or axial gauges. The 
DS equation for the gluon propagator may be truncated 
through use of Slav nov-Taylor (ST) identities, parametriz
ing longitudinal parts of vertex-functions. 

In an axial gauge, the gluon field decouples from the 
ghost field, so that the DS equations and the ST identities 
have a simple form. If one makes the ad hoc assumption that 
the full propagator has the same tensor structure as the bare 
propagator, then the scalar function that multiplies it may be 
obtained as the solution of the scalar equation obtained by 
projection ofthe DS equation onto the direction of the axial 
vector n. This equation does not contain the four-gluon ver
tex. A disadvantage is that the equation involves the unphy
sical, gauge-dependent parameter (pn)2, where p is the mo
mentum variable. Furthermore, since the ST identity 
involves projection onto p, rather than n, there is a certain 
arbitrariness in the projected DS equation. 4 

In the Landau gauge, the DS equation for the gluon 
propagator involves a single tensor structure, and hence re
duces to a scalar equation. However, both the DS equations 
and the ST identities involve ghost couplings. We do not 
expect the ghost fields themselves to produce infrared singu
larities, so we replace the ghost propagator and ghost
ghost-gluon vertex by bare values. The four-gluon vertex 
does appear in the scalar equation, but we drop it in the 
interest of simplicity, not expecting cancellations between 
three- and four-gluon couplings. 

The approximation of MandelstamS in Landau gauge 
involved the replacement of one internal gluon line and of 

')Permanent address: Institute for Theoretical Physics, University ofGro
ningen, P.O. Box 800, 9700 AV Groningen, The Netherlands. 

b) Permanent address: Illinois Institute of Technology, Chicago, IL 60616. 
c) Permanent address: Institute for Theoretical Physics, University of Kai

serslautem, D-6750 Kaiserslautem, Germany. 

the three-gluon vertex by free values. Such a replacement is 
motivated by the form of the ST identity, but is not strictly 
consistent with it. In our analysis of Mandelstam's equation 
in Refs. 1 and 2, we confirm that the gluon propagator is of 
order p-4 at small spacelike momenta. However, there are 
first-sheet branch points in the variable p2, which accumu
late at p2 = 0 in the timelike direction. These singularities 
are presumably unphysical, and in any event they invalidate 
the Wick rotation to Euclidean momenta. 

In this paper we propose an ansatz for the vertex func
tion that has the same tensor structure as the corresponding 
bare vertex. The multiplicative scalar function can be chosen 
so that the ST identity in the external leg is automatically 
satisfied. The resultant scalar equation, which is generally 
similar to that obtained in Mandelstam's approach, with, 
however, a somewhat more intricate structure, is derived in 
Sec. II. We analyze this equation in Sec. III, and show by 
methods similar to those of Refs. I and 2 that there is a 
solution which is free from complex branch points. This so
lution has the infrared asymptote p-4, uniformly in the cut 
p2-plane, and is therefore suggestive of confinement. 

The resultant gluon propagator also has a simple pole at 
a real, spacelike momentum. Such a pole does not spoil the 
Wick rotation, but would imply the existence of an unstable 
tachyon, if it were taken seriously. Recall that in perturba
tive QED there is a tachyon (Landau ghost), which would 
not be expected in perturbative QCD because of the opposite 
sign in the self-energy. Our nonperturbative tachyon might 
conceivably be an indication of the insufficiency of quarkless 
QCD; unless it is merely a deficiency of our approximation 
scheme. It may be that neglect of the four-gluon vertex has 
produced an instability of the type familiar in a scalar theory 
with t/J 3 interaction. 

II. ANSATZ FOR VERTEX FUNCTION 

We shall use a consistent notation, in which primes dis
tinguish full from bare propagators and vertex functions. We 
suppress all color indices, since they only yield a trivial mul
tiplicative factor in the final equation. The full propagator is 

D ~v(q) = F( - q2)D/.tv(q) = - q-2F( - q2).J/w(q) , 

where 

~I'v(q) = gl'v - ql'qjq2 • 

(2.1) 

(2.2) 
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The object is to obtain an equation for the scalar function 
F( _q2). 

The Slavnov-Taylor identity relating the full three
gluon vertex, r I, to the propagator6 is 

pAr ~ftv (p,q,rjD IftC7(qjD IV1'(r) 

= G ( - p2)D IftC7(q).:j V1'(r)F ~v(p,r:q) (2.3) 

- G ( - p2).1 ft C7(q)D IV1'(r)F ~v (p,q:r) . 

Here F ~v is the full ghost-ghost-gluon vertex, and the ghost 
propagator is - p - 2G ( - p2). As discussed in the Introduc
tion, we replace the ghost functions by their bare values, 
F ~v -gftV and G-l. With use of (2.1), we then obtain 

pAr ~ftv(p,q,r)D IftC7(q)D IV1'(r) 

= [F( - r)lr - F( - q2)1q2] .1 ft C7(q).:j V1'(r)gftv ' (2.4) 

Our basic ansatz 7 is to suppose that 

r ~ILV( p,q,r)D IftC7(q)D IV1'(r) 

= I( p,q,rjFAftV (p,q,rjD ftC7(q)D V1'(r) , (2.5) 

where lis some scalar function that is to be related to Fby 
requiring that the Slavnov-Taylor identity (2.4) is satisfied. 
Since the bare version of (2.4) is obtained by removing the 
primes and setting F equal to unity, we find, by contracting 
both sides of (2.5) against pA, 

F( - r) _ F( - q2) =/( r) (~ _ ~) (2.6) 
r q2 p,q, r q2' 

so that 

I(p,q,r) = [rF( - q2) _ q2F( - r)]I(r _ q2), (2.7) 

which can be inserted into (2.5). For comparison, the Man
delstam ansatz, in which the three-gluon vertex and one, but 
not both, of the gluon propagators are replaced by their bare 
values, is of the form (2.5), with the function 1(P,q,r) equal to 
F ( - q2). It must be emphasized that this form, unlike (2.7), 
in inconsistent with the Slavnov-Taylor identity (2.4). 

The Dyson-Schwinger equation for the gluon propaga
tor, in which only the three-gluon vertex contribution is re
tained, with the ansatz (2.5), takes the form 

D ~p(p) =DAp(p) = DAft (p)II ftV(p)D~p(p), 

where the self-energy is 

II ftV(p) = (~~4 f d 4ql(p,q,r)r ftC71'(p,q,r) 

Xr Vp"'(p,q,r)D"p(q)D1'",(r) . 

(2.S) 

(2.9) 

Contracting both sides of (2.S) by g'-P and dividing through
out by F( - p2), we find 

lIF( - p2) = 1 + (lIp2)II( - p2), (2.10) 

where 

with 
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x.1 n ,,(r)r VpW(p,q,r) . 

J. Math. Phys., Vol. 25, No.6. June 1984 

(2.11) 

(2.12) 

We next make a Wick rotation to Euclidean space: 
- p2 -p~ucJ ==x. The angular integrations can be performed 

and we obtain 

_1_= 1-~ (00 dy F(y) _ 9 r" dy F(y) 
F~ 4 k y k x 

_ x
2 

("" d-; F(y) + (" dy [~(1 _~) 
SLy Jo x 2 y 

7 (X2 Y ) 1 y2 1 x3] +- --- - --:; + -- F(y) 
4y2 X 4x- Sy3 

+ (X/4 dy (6 + ~ ~ _ 
Jo x 2 y 

( )

112 

X 1 - 4 ~ F(y). (2.13) 

Here the coupling constant and other multiplicative factors 
have been scaled away, as in Ref. 1. This form is similar in its 
general shape to the Mandelstam equation, except for the 
last term, involving the square root. This comes from princi
pal-value integrals that are engendered by the quotient (2.7). 

The infrared analysis of (2.13) is a little more involved 
than that in Refs. 1 and 2. We replace the unknown function 
F by ¢ according to 

F(x) = A Ix + Bx + x 3¢ (x). (2.14) 

The coefficient of the incipient pole on the rhs of(2.13) is zero 
if 

A = - 0.34561"" dyF(y), 

while the constant term vanishes if 

1 = 6.25 (00 dy F(y). 
Jo y 

(2.15) 

(2.16) 

Finally, in order to match the linear term on the lhs of(2.14), 
xl A, we require 

B=rIA , 

where 

r= 0.616 97. 

(2.17) 

(2.1S) 

These requirements are formal, in the sense that the integrals 
(2.15) and (2.16) are actually divergent. However, it is worth 
stressing that the absence of logarithms when the first two 
terms of (2.14) are inserted into (2.13) is a result of delicate 
cancellations. 

After these manipulations, (2.13) can be cast into the 
form 

1 + rx2 + X4¢ (x) 

= - ~ LX? ( 1 - ~ r ¢ (y)P (~ ) 

++ f/4;(1 - ~r/2 ¢(Y)Q(~), 
where 

P (z) = 1 + lOz + Z2 , 

Q (z) = 1 + 20z + 12z2 . 
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No divergences are left, and we propose to study this nonlin
ear equation for the unknown function l/J (x). 

III. ANALYSIS OF EQUATION 

In the following, we shall for simplicity replace the 
polynomials P and Q of (2.20) and (2.21) by constants, in such 
a way that the threshold value (x-o) of each integral is un
changed. The averaged equation reads 

r +x2l/J (x) 

1 + rx2 + x4l/J (x) 

= _ ~ r dY(1 _ L)3l/J(Y) 
30 Jo x x 

+ ~ r l4 
dy (1 _ 4y )3/2l/J (y). 

168 Jo x x 
(3.1) 

Our previous experience l .2leads us to expect that this aver
aging procedure will only have minor quantitative, but not 
qualitative effects on the solution. 

To examine the nature of the infrared singularity of 
l/J (x), we linearize the Ihs of (3.1), retaining the terms 
r - TX2 + x2l/J (x) only. Even with this linearization, we 
have been unable to give a complete analysis; but there are 
reasons for expecting the second integral on the rhs of(3.1) to 
be nondominant in the infrared (see the Appendix). Accord
ingly, we shall study the linear equation 

r - Tx2 + x2l/J (x) = - ~ (" dy (1 - L)3 l/J (P) . 
30 Jo x x 

(3.2) 

The corresponding homogeneous equation 

x6 4/1(x) = - - dy(x - y)34/1(y) 23 L" 
30 0 

(3.3) 

has solutions expressible in terms of Bessel and Neumann 
functions. The four independent solutions of the corre
sponding differential equation have the small-x asymptotic 
behavior 

(3.4) 

where Zi are the four fourth roots of - 1. These functions 
may be used to solve the inhomogeneous Eq. (3.2), using 
variation of parameters on the corresponding differential 
equation. Each of the homogeneous solutions 4/li becomes 
unbounded in certain sectors of the plane, cut along 
- 00 < x < 0, as x tends to zero. However, we find that there 

is one (and only one) function l/J (x) which satisfies the integral 
Eq' (3.2) in the cut x-plane. That function has the following 
asymptotic behavior as x approaches zero within the cut 
plane: 

4 

l/J (x)_rx-15/4 L Zi exp (KX- 1/2 Zi) 
i= I 

xr( - ¥,KX- 1/2 Zi)' (3.5) 

where K is a positive number and the incomplete gamma 
function is given by 

r(a,w) =100 dyya-Ie-y. (3.6) 

It follows from a standard asymptotic expression for r (a,w) 
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that l/J (x) approaches a constant value as x tends to zero 
throughout the cut plane. 

We wish to emphasize that uniform boundedness of l/J at 
small x is a significant improvement over the corresponding 
infrared behavior obtained for solutions of Mandel starn's 
equation. In the latter case, we obtained asymptotic behavior 
X- 7 / 2 for the corresponding function as x tends to zero on 
the left-hand cut. In the present case, the linear approxima
tion (3.2) remains under control at small x, even on the left
hand cut. As a consequence, we expect that the solutions of 
the nonlinear equation will be analytic in the cut plane, at 
least in the infrared. In the case of Mandelstam's equation, 
the linear approximation was out of control near the left
hand cut, and manifestation of this was the accumulation of 
first-sheet branch points of the full nonlinear equation. 

We have done an extensive numerical study ofEq. (3.1), 
with the second integral omitted. One may obtain an asymp
totic power series for l/J (x) at small x directly from the nonlin
ear integral equation, which is used for computation of l/J at 
small real x. The solution is then obtained at larger values of 
x by Runge-Kutta integration of the differential equation 

[x4G (x)] iv = - ¥ l/J (x), (3.7) 

where 

G (x) = [r + x 2l/J (x)]! [ 1 + rx2 + x4l/J (x)] . (3.8) 

Using the techniques of Refs. 1 and 2, we have contin
ued l/J (x) into the complex plane, and have not found any 
branch points on the first Riemann sheet, except at the in
frared point, x = O. On penetrating the cut along the time
like axis, - 00 < x < 0, however, we have picked up two 
branch points at - 0.3782 - 0.2239i and 
- 0.0241 - 0.0783i. It is a reasonable guess that more exist, 

probably accumulating at the origin on the second or higher 
Riemann sheets. The fact that the complex branch points, 
which were on the first sheet in the Mandelstam approxima
tion, are now on secondary sheets, where they cause no trou
ble, is a definite improvement. The function F(x) [cf. Eq. 
(2.14)] does indeed have the infrared asymptote 

F(x) -A Ix + Bx + ex3 , (3.9) 

as x-o in any direction on the first sheet. 
When we make an analytic continuation of l/J to larger x, 

we find a pole on the real axis atx = 2.1853. The pole inl/J (x) 
may be located directly as a zero of the function 1 - x 2G (x). 
Fortunately, the pole does not interfere with the Wick rota
tion to the Euclidean region, in contrast to the complex sin
gularities found in Refs. I and 2. The pole occurs some dis
tance from the infrared, where our approximation scheme is 
no longer necessarily good. Further details of the numerical 
work may be found in Ref. 8. 

ACKNOWLEDGMENTS 

Two of us (D. A. and P.W. J.) would like to thank A. 
White for the hospitality accorded to them in the High Ener
gy Physics division of Argonne National Laboratory, where 
this paper was completed. 

W. J. Schoenmaker and K. Starn have carried out this 
work as scientific members of the Stichting F.O.M. (Founda
tion for Fundamental Research of Matter), which is finan-

Atkinson et al. 2097 



                                                                                                                                    

cially supported by Z.W.O. (Netherlands Organization for 
Pure Scientific Research). This work was supported by Na
tional Science Foundation Grant No. PHY-83-05283; and 
was performed under the auspices ofthe United States De
partment of Energy under Contract No. W-3l-109-ENG-
38. 

APPENDIX: TECHNICAL DETAIL 

We shall justify neglecting the second term on the right 
side of Eq. (3.1). The first remark is that, in the asymptotic 
power series expansion of that equation, the contribution 
from the first term to the coefficient of x2n dominates that of 
the second, except at the first few values of n. As a conse
quence, the asymptotic series ifJ (x) is, in effect, controlled by 
the first term. 

Let us consider the linearized, homogeneous version of 
that equation, 

x 6 1J1(x) = - - dy(x - y)31J1(y) 23 LX 
30 0 

+_x3 dy 1 - 1 lJI(y). 53 iX/4 
( 4 )3/2 

168 0 x 
(AI) 

We substitute the solutions IJIj(x) [Eq. (3.4)] into (AI), and 
note that, for x small within a sector of boundedness, the 
second term in (A 1) is asymptotically small compared with 
the first. Consequently, these functions IJIj(x) are asymptotic 
solutions ofEq. (AI) at smallx. 

Let us consider an extreme situation in which the first 
term in (AI) is dropped, and let us replace the "fractional~
power derivative" on the right by lJI(z)lr 12, to obtain 

x2 1J1(x) = AIJI(x/4). (A2) 

The solution to the difference Eq. (A2), 

[ 
1 2 ( InA lJI(x)=exp ---In x+ ---

21n2 21n2 
l)lnx], 

(A3) 
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decreases more rapidly than any power of x at small x, al
though less rapidly than the functions IJIj(x) [Eq. (3.4)}. The 
asymptotic solution of (A 1) with the first term dropped is 
essentially identical to (A3). In particular, it is analytic and 
uniformly small throughout the cut plane at small x, so that 
its infrared behavior is less quixotic than that of IJIj(x). 

In terms of the Mellin transform, 

W(p) = f" dx IJI(X}xP-l, 

Eq. (A. 1 ) becomes an algebraic difference equation 

W(p + 2) = [-E..B( -p + 1,4) 
30 

(A4) 

(A5) 

where B ( , ) is the beta function. We have not been able to 
solve (A5), subject to the requirement that W (p) be analytic in 
a vertical strip of width at least 2. However, we can prove 
that solutions exist, and that they behave as IJIj (x) at small x. 

The above arguments make it clear that the first inte
gral in (A 1) dominates the second in the infrared. Away from 
x = 0, however, the latter integral is not necessarily small. 
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Binding limit in the Hartree approximation 
Mary Beth Ruskaia ) and Frank H. Stillinger 
Bell Laboratories, Murray Hill, New Jersey 07974 

(Received 8 November 1983; accepted for publication 23 December 1983) 

We show that the Hartree approximation cannot predict that H- has a bound state, i.e., the 
Hartree energy is greater than - 0.5. We also show that the Hartree approximation cannot 
predict binding for the Coulomb model of a two-electron atom unless the nuclear charge Z is 
greater than 1.03 and we compute accurate upper and lower bounds to the Hartree energy for H
and He. 

PACS numbers: 31.10. + z 

I. INTRODUCTION 

It is well known'-4 that H- has a single bound state of 
even spatial parity, i.e., the Hamiltonian (in reduced units) 

lIZ Z 1 
H(Z)= --..:1,--..:12 ----+- (1.1) 

2 2 r, rz r12 

has exactly one eigenvalue below -! when Z = 1. Al
though it is easy to produce trial functions which establish 
that H (1) < -!, we are not aware of any such functions 
which have the form of a single-determinant Hartree-Fock 
function. In this paper we show that, in fact, one cannot 
predict binding in H- by using a spin-restricted form of the 
Hartree-Fock approximation which, for two electrons, is 
equivalent to the Hartree approximation. 

Because confusion regarding terminology exists in the 
literature, we find it prudent to review some elementary defi
nitions, so that we can state our results unambiguously. In 
the Hartree-Fock (HF) approximation, the exact ground 
state function IJI for an N-particle Hamiltonian H N is re
placed by a trial function IJIHF consisting of a single Slater 
determinant, i.e., an antisymmetrized product of N single
particle functions, 1 tPj }j"~ , . The Hartree-Fock energy is 
then given by 

E
' . f (IJI HF ,H N IJI HF ) 
HF = In , 

"'HF ( IJI HF' IJI HF ) 

(1.2) 

which leads to a set of equations for 1 tPj }, In practice, the 
minimization in (1.2) is carried out using only a finite and 
restricted set of 1 tPj }. One common restriction, particularly 
when N = 2n is even, which we shall call the spin-restricted 
HF (SRHF) approximation, is to require that 

tPZk-' = udr)a; tP2k = uk(r}/3 (1.3) 

(where a,/3 are the usual spin eigenfunctions) and to choose 
1 Uj }j~, so as to minimize (1.2). If N = 2, IJISRHF has the 
exceedingly simple form (a/3 - /3a)Xu(r,)u(rz). The equa
tion for u obtained from minimizing (1.2) is equivalent to 
that obtained from the so-called Hartree approximation, 
which we discuss below. Therefore, our results on the Har
tree approximation for two-electron Hamiltonians of the 
form (1.1), also apply to the SRHF approximation. 

In principle, no restrictions on the {tPj J are necessary. 
Indeed tPj need not even have the form (space function) 

a) On leave from Department of Mathematics, University of Lowell, Lowell, 
MA 01854. Present address: The Bunting Institute, Radcliffe College, 
Cambridge, MA 02138. 

X (spin function), but could conceivably be something like tPj 
=.t;(r)a + gj(r}/3. When the restrictions (1.3) are dropped, 
one sometimes emphasizes this by applying the term unres
tricted HF (UHF) approximation. For two electrons one can 
make EUHF (Z ) arbitrarily close to - ~Z Z by choosing 
tP, = I,(r)a; tP2 = In (r}/3, wherelk is any hydrogenic function 
satisfying ( - !L1 - Z I rlfk = - (Z Z 12k Zlfk' and making n 
large. Therefore, either the UHF approximation predicts 
binding for H- or EUHF = -! exactly. No approximate 
lower bound procedure can prove absence of binding for H
in the UHF approximation. However, we know of no trial 
function which actually demonstrates that EUHF (1) < -!. 

Because single determinants, particularly those which 
minimize (1.2), need not be eigenfunctions of spin or orbital 
angular momentum operators, the HF approximation is 
sometimes generalized5 to allow IJI to be a linear combina
tion of the minimal number of Slater determinants needed to 
make IJI an eigenfunction of some specified set of angular 
momentum operators. An example for two electrons is the 
function 

IJI = [f(rdg(rz) + g(r,lf(rz)] [a(l}/3 (2) - /3 (1)a(2)]. 

It has been shown that functions ofthis form do predict 
binding in H - .4.6 If one takes I = e - ar, g = e - br with 
a = 1.03925, b = 0.2831 one finds that 
H(l).;;; - 0.5133 < - 0.5. Although this "spatial perma
nent" is reminiscent of a HF function, the I and g do not 
satisfy the HF equations and IJI is not a single Slater determi
nant; it is actually a linear combination of two Slater deter
minants, one from tP, = I(r)a, tP2 = g(r}/3 and the other from 
tP3 = g(r)a, tP4 = l(r}/3. 

In this paper we study the Hartree, or equivalently the 
SRHF, approximation for two-electron Hamiltonians of the 
form (1.1). The Hartree energy is given by 

EH (Z) = 2 inf cf> (u), 
lIuli ~, 

(1.4) 

where 

(1.5) 

It is well-known that the continuous spectrum for 
H(Z) = [- Z ZI2, 00 )(see Ref. 7). We will say that the Har
tree approximation predicts binding if EH (Z ) < - Z 2/2. We 
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will show that the Hartree approximation does not predict 
binding for H- or for any H (Z) with Z< 1.0268. We define 
ZH by EH (ZH ) = - Z ~ /2 and show that 

1.0268 < ZH < 1.0312. 

The analogous quantity for the exact ground state energy, 
Eo(Z) of H(Z) is defined by - Z~/2 = - Eo(Ze). Stil
linger6

•
8 calculatedZe :::::;0.9112. Both the exact and the Har

tree problems have the unusual feature that they have solu
tions at the crossing point, i.e., H (Z) does have a 
square-integrable ground state for Z = Ze,9 and (1.5) has a 
minimizing u for Z = ZH . 10 

The question of whether or not the infimum in (1.4) is 
actually a minimum has been studied extensively. 10-17 By 
making the transformation 

p(x) = [u(X/Z)/Z2]2, 

one can consider the Hartree functional <I> (u) to be a special 
case of the Thomas-Fermi-von Weizsacker (TFW) func
tional for which the constant r is 0 in the term 
rfp5/3 = rfu lO/3. Then one can use results of Benguria and 
Lieb 18.19 to show that there is a Z M satisfying (1) for Z < Z M' 

(1.4) has no minimizing u and EH(Z) = - Z 3A for some 
A> 0; (2) for Z-~ZM' (1.4) has a minimizing u and EH(Z) 
;;;, - Z 3A with equality only for Z = ZM; and (3)! <ZM < 1. 
Recently Baumgartner20 has shown that ZM :::::;0.828. It is 
interesting to note that, since Z M < 1 < 1.0268 < ZH' there is 
a nontrivial range of Z, i.e., (ZM' ZH)' within which the Har
tree functional <I> (u) has a minimizing u yet the Hartree ener
gy lies in the continuum for H (Z). The region (Z M' ZH) in
cludes the physically interesting case ofH- for which Z = 1. 

Figure 1 schematically indicates the behavior of the en
ergy curves Eo(Z) and EH (Z), with approximate placement 
of the distinguished points ZM' Ze, and ZH' 

We compute lower bounds to both EH (Z ) and ZH by 
using a modification of the Bazley and Seydel method21 as 
described in Sec. II. Excellent upper bounds to both EH (Z) 

>
(!) 
cr 
w 
z 
w 

Zc 

NUCLEAR CHARGE-

FIG. I. Schematic diagram of Z-dependent energies for the two-electron 
problem. 
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and ZH were obtained by approximating the Hartree trial 
function u by a linear combination of simple exponentials; 
this is discussed in Sec. III. In Sec. IV, we summarize our 
results for H- (Z = 1) and He (Z = 2) which are generally 
better than results reported previously in the literature. 

II. LOWER BOUNDS 

To obtain a lower bound to EH (Z), we use the method 
of Bazley and Seydefl which is based upon the inequality 

II 
u2(r)u2(s) d 3

r 
d 3

S 
Ir - sl 

;;;'2II u
2
(r)w2(s) d 3r d 3S - II w2(r)w2(s) d 3r d 3

S
• 

Ir - sl Ir - sl 
(2.1) 

Substituting (2.1) into (1.5) one finds 

<I> (u);;;,kwu - ~ II w2(r)w2(s) d 3r d 3S , (2.2) 
2 Ir - sl 

where 

kw = -!.::i -Z/r+qw(r), 

and 

qw(r) = I W2(S) d 3s. 
Ir-sl 

(2.3) 

(2.4) 

(2.5) 

where A is a lower bound to kw' In previous applications of 
the Bazley-Seydel method,22 attention was restricted to w 
for which qw could be calculated from w by doing the inte
gration in (2.4) exactly, after which one was still faced with 
the problem of finding a good lower bound to kw' 

Therefore, instead of selecting a trial w, we will choose 
qw so that the lowest eigenvalue to kw can be determined 
exactly; this eigenvalue will then serve as our lower bound A 
in (2.5). We then use the electrostatic equality 

II 
w2(r)w2(s) d 3rd 3s = -l-IIVqw 12 d 3r 

Ir - sl 41T 
to conclude that 

EH(Z);;;'U --1-IIVqwI2d3r. 
41T 

We now choose qw as follows. Let 
N 

'" A - ak
r 

U = £.. ke , 
k~1 

whereA k >0, ak + 1 >ak >0, and 

Let 

M. B. Ruskai and F. H. Stillinger 

(2.6) 

(2.7) 

(2.8) 

(2.9) 
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Then kw U = AU with A = - a7v 12. The constraint A k > 0 
insures23 that u(r) is strictly positive so that A is the lowest 
eigenvalue of kw' and q w has no singularities, except possibly 
at r = O. Condition (2.8) guarantees that u satisfies the nu
clear cusp condition24 and consequently that qw has no pole 
at r = O. Although we need not compute w explicitly, it can 

be verified that w = ~ - ..1qw is square-integrable, so that qw 
can be obtained from an acceptable Hartree trial function. 
Since qw is spherically symmetric, 

EH(Z» -a7v - i"'r1q;.,(rWdr. 

If one now makes the substitutions 

r=yIEZ, 

ak = Z (1 - YkE) (k = 1...N), 

(2.10) 

and lets Y I = - 1 so that a I = Z (1 + E) defines E, one finds 

EZ
2 

(EU" A, E A') = -A - -- - u + - u + const, 
u 2 y 

where u(y) = ~kAkeYkY. Then 

i '" i'" 1 rlq'(rW dr = EZ 3 ~ [ES(y) + yT(y)f dy, 
o 0 u (y) 

(2.11) 

where 

T(y) = (U')2 - UU" 

and 

Sty) + T(y) = L (uu'" _ u'u") _ uu' 
2 y 

-" "A A (rfy ( ) YI) (n+Y,)Y - L L k I - YI - Yk - - e . 
k I 2 Y 

Thus EH(Z»F(Z), where 

F(Z)= -(I-YNEfZ2-EZ3(Ac+BE+C), 

A = (OO( Sty) )2 dy 
Jo u2(y) , 

B = ('" yS(y)T(y) dy 
Jo u4(y) , 

C= i"'( y;~) r dy. (2.12) 

The quantity F (Z ) gives a lower bound to EH (Z) for all 
choices ofAI,,·AN_ I' E, and Y2'''YN' [HereAN is determined 
by (2.8) and YI = 1.] SinceF(Z) is independent of norma liz a
tion, we can set A I = 1 without loss of generality. We now 
search for values of the remaining parameters which opti
mize F(Z). For each fixed choice of A2,,·AN _ I' and 
Y2"'YN _ l' the optimal E must satisfy 

- 2YN + 2r7.,E + Z(3Ac + 2BE + C) = O. (2.13) 

It can be shown that only one of the roots of(2.13) is positive 
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and this positive root maximizes F (Z). A simple linear vari
ation of A2·"AN _ I and Y2"'YN _ I can then be used to maxi
mizeF (Z ) to obtain the best possible lower bound of the form 
(2.7) for fixed Nand Z. 

Although one could bound ZH by comparing F (Z ) with 
- Z 2/2, we used the following direct approach. Suppose 

F (Z) = - Z 2/2 then EH (Z» - Z 2/2, which implies 
Z < ZH' To find Z we note that 

+ 1- (1 - YNE)2 = ZE(Ac + BE + C). (2.14) 

One can eliminate Z from (2.13) and (2.14) to see that the 
optimal E for Z must satisfy the quartic equation 

r7.,AE4 - 4yNAc 

+ (3A 12 - 2YNB - r7.,C)c + BE + C 12 = O. (2.15) 

Although (2.15) can have four roots, we found that, in prac
tice, it has only one real root in the acceptable range 1> YNE 
> I - 1Iv1 > 0.29 [where the second inequality follows 
from the condition - Z 2/2 < F (Z) < - (I - Y NE)Z 2]. Once 
E is fixed, Z can be found from either (2.13) or (2.14). A 
simple variation of A 2,,·A N _ I and Y 2"'Y N _ I can then be 
used to maximize Z. 

Our results are summarized in Table I. Three exponen
tials suffice to show that ZH > 1.0 which implies that the 
Hartree approximation cannot predict binding in H-. Four 
exponentials give ZH > 1.02683 which is remarkably close to 
the upper bound (next section) of 1.031 18. In calculating Z, 
no attempt was made to estimate numerical errors during 
the variation process itself. Instead, a double precision lower 
bound was computed for EH (1.026831) with careful error 
estimates. These results, namely EH > - 0.527 190 945 
> - 0.527 190 951 = - (1.026 831)2/2, verify that ZH 
> 1.026 831 is indeed a valid bound. 

III. UPPER BOUNDS 

To obtain upper bounds to EH , we again approximate u 
by a finite linear combination of exponentials. Thus EH 
<.2<P (u) with u given by (2.7) except that theA k are required 
to satisfy the normalization condition, ~k~/AkAJ(ak 
+ a If = I, rather than the cusp condition (2.8). If we make 

the substitutions t = air, aj = yja l (j = 1,,·N) and let a de
note ai' then 2<P (u) can be written in the form 

2<P(u) = G(a,Z) =a2p_ 2aZQ+aR. (3.1) 

Here P, Q, and R are elementary integrals of exponentials 
which can be evaluated exactly as algebraic combinations of 
theAk's and Yk'S. For fixed Z, G(a,Z) has its minimum at 
a = (ZQ - R 12)1P, so that 

EH <. G (am in ,Z ) 
= - (ZQ - R 12)2IP. (3.2) 

A linear variation of A2",AN, and Y2"'YN was used to opti
mize (3.2). Results are summarized in Table II. The quantity 
C = 2 kakAk/(Z 2kAk) was calculated as a measure of how 
closely the cusp condition (2.8) was satisfied. 

An upper bound, Z ~, to ZH can be obtained from the 
condition 

- (Z~f/2 = - (Z~Q - R 12)2IP. (3.3) 

This has solutions 
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TABLE I. Bounds on Z H . 

N Type ZH EH(ZH) Cusp 

up 1.066942 - 0.569182 0.707 
I" 10 0.0 0.0 1.0 

2 up 1.031403 - 0.531896 0.970 
2 10 0.951550 - 0.452 724 1.0 

3 up 1.031 178 - 0.531664 1.006 
3 10 1.016472 - 0.516 608 1.0 

4 up 1.031 178 - 0.531664 1.008 
4 10 1.026831 -0.527191 1.0 

"Lower bounds with N = 1 are included here and in Tables II and IV for 
comparison purposes only. The methods of Sec. II are not strictly valid, 
since formal application of (2.7) to (2.10) implies w = 0 when N = I. 

Z:'! = R /(2Q + .[iP). 
However, the smaller solution gives a negative expression for 
am in which corresponds to a non-square-integrable u. There
fore, we conclude that 

ZH <,R /(2Q + .[iP). 
Our results are summarized in Table I. A single expo

nential has no parameters except a and gives the remarkably 
good resultZH < i(1 + IN1) < 1.067. This approximation to 
ZH was then used as the first value of Z in the cycle of two
exponential calculations, and the predicted value for ZH was 
used for each subsequent variation. This procedure rapidly 
converged to the bound ZH < 1.031 178. When combined 
with our previous lower bound results, we can state with 
confidence that ZH = 1.03 to three significant figures and 
1.0268<,ZH < 1.0312. 

IV.H- AND He 

Upper and lower bounds on the Hartree energy for 
H-(Z = 1), and He(Z = 2), were carried out using the proce
dures described in Secs. II and III. The results are summar
ized in Table II. We find - 0.489 651 <,EH (1)<, - 0.487 929 

TABLE II. Bounds on Hartree energy for H - and He. 

Z 

1.0 
1.0 

1.0 
1.0 

1.0 
1.0 

1.0 
1.0 

2.0 
2.0 

2.0 
2.0 

2.0 
2.0 

2.0 
2.0 

2102 

N Type 

2 
2 

3 
3 

4 
4 

2 
2 

3 
3 

4 
4 

up 
10 

up 
10 

up 
10 

up 
10 

up 
10 

up 
10 

up 
10 

up 
10 

Energy 

- 0.472 656 0.687 
- 1.0 1.0 0.3194 

- 0.487824 0.966 
- 0.517 203 1.0 0.0759 

- 0.487 929 3 1.005 
- 0.493 691 1.0 0.0213 

- 0.487 929 6 1.007 
- 0.489 651 1.0 0.0067 

- 2.847 656 0.375 
0.1467 -4.0 1.0 

- 2.861672 1.002 
0.0130 - 2.904 016 1.0 

- 2.861679 1.006 
- 2.870400 1.0 0.0027 

- 2.861679 
- 2.864 674 1.0 0.0007 
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Overlap 

0.949003 

0.997 116 

0.999773 

0.999978 

0.989246 

0.999915 

0.999996 

0.9999997 

for H-, and - 2.864 674<,EH(2)<, - 2.861679 for He. 
When compared with previously published bounds, 

these results are quite gratifying. The difference between the 
upper and lower bounds for both H- and He is less than 
0.003. We attribute this agreement to the unusually good 
lower bounds we obtain by circumventing the need to find 
first a lower bound to kw' which was constructed instead to 
be exactly solvable. Our lower bound for He represents an 
improvement of over 0.018 from the value of - 2.882 356 
reported by Behling et al. 22 We are surprised at the apparent 
accuracy of upper bounds obtained from a simple linear 
combination of exponentials. Using only three exponentials 
we were able to obtain a better upper bound on the Hartree 
energy for H- than Froese-Fischer25 obtained using a linear 
combination of 11 hydrogenic orbitals. Our upper bound for 
He is also in remarkably close (10- 6

) agreement to that re
ported by Froese-Fischer. 25 A comparison of our bounds to 
those reported previously is summarized in Table III. 

A few comments about the optimizing functions are in 
order. A list of parameters for the various optimizing func
tions is given in Table IV. Although the optimal coefficients 
for the upper and lower bound functions for fixed Z and 
given N seem rather different, plots of the actual functions 
indicate that they are pointwise quite close, at least for 
N = 4. A comparison of the norm of the difference between 
the upper- and lower-bound functions shows that they are 
very close for N>3. When comparing the upper- and lower
bound functions, it should be kept in mind that one is doing 
an apples versus oranges type of comparison. The upper 
bound function is an approximation to the function which 
minimizes (1.5) and therefore solves the Hartree eigenvalue 
problem; the lower bound function solves a different, but 
related, eigenvalue problem, namely kwu = (a;"/2)u. How
ever, since both approximations can be expected to converge 
to the exact Hartree minimizing function, the observed 
agreement is to be expected. 

Our variational procedure found the energy surface to 
be quite flat; substantial changes in the variation parameters 
produced insignificant changes in the energy. We attribute 
this primarily to the fact that first-order changes in the pa
rameters will, in general, produce second- or higher-order 

TABLE III. Comparison with other energy bounds. 

Hartree upper bounds 
3-exponential 
4-exponential 
Froese-Fischer" 
Behling et al. b 

Hartree lower bounds 
3-exponential 
4-exponential 
Behling et al. b 

Precise correlated (not HF) 
PekerisC 

"Reference 25. 
b Reference 22. 
c Reference 3. 

Z=1 

- 0.487 929 3 
- 0.487 929 6 
- 0.487 927 

- 0.493691 
- 0.489 651 

- 0.527751 

Z=2 

- 2.861679 
- 2.861679 
- 2.861680 
- 2.86158 

- 2.870400 
- 2.864674 
- 2.882 356 

- 2.903 724 
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TABLE IV. Summary of optimizing parameters. 

UnnormaIized coefficients 

Z N Type Al A2 A, 

1.0699 up 1.0 
0.0 10 1.0 
1.031403 2 up 1.0 0.529438 
0.951550 2 10 1.0 0.368683 
1.031 178 3 up 1.0 1.052094 0.421745 
1.016472 3 10 1.0 0.652611 0.160 813 
1.031 178 4 up 1.0 3.384017 3.415354 
1.026831 4 10 1.0 0.779303 0.242388 

1.0 2 up 1.0 0.492644 
1.0 2 10 1.0 0.401462 
1.0 3 up 1.0 1.034584 0.374117 
1.0 3 10 1.0 0.650161 0.149785 
1.0 4 up 1.0 1.117301 0.508448 
1.0 4 10 1.0 0.780810 0.228671 

2.0 2 up 1.0 1.640 902 
2.0 2 10 1.0 1.224015 
2.0 3 up 1.0 0.730100 1.419830 
2.0 3 10 1.0 0.774050 0.988864 
2.0 4 up 1.0 0.299382 0.875678 
2.0 4 10 1.0 0.761538 0.544 252 

"=Z -li. 
b =Z. 

changes in the energy. The parameters we report should 
probably be regarded as sufficient to prove our results rather 
than optimal. It is curious to note that the cusp factor wor
sens rather than improves as one increases the number of 
exponentials. Presumably this illustrates the principle that 
one expects to obtain a lower approximating energy if one 
does not impose unnecessary constraints on approximating 
functions, even when the exact solution is known to satisfy 
these constraints. 
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Exponents 

A. a l a2 a, a. 

0.6875" 
LOb 
1.268812 0.493360 
1.165260 0.371 892 
1.555878 0.793467 0.413478 
1.384725 0.617704 0.344 805 

1.392050 1.879396 1.358213 0.736340 0.404 855 
0.068309 1.460 684 0.717 123 0.418579 0.342300 

1.214425 0.462200 
1.235018 0.414595 
1.499283 0.753 114 0.380748 
1.360 014 0.601520 0.326114 
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A Lagrangian is defined that governs the dynamics of a classical electron with spin, moving under 
the influence of electromagnetic forces. The Euler-Lagrange equations associated with this 
Lagrangian for space-time position x a provide a generalization of the Lorentz force law. The 
remaining Euler-Lagrange equations lead directly to the (generalized) Frenkel-Thomas-BMT 
equations. 

PACS numbers: 41.70. + t, 03.20. + i 

I. INTRODUCTION 

There are many formalisms for defining the dynamics 
of a classical electron, modeled as a point particle with 
spin. 1-9 One of the most intuitive approaches is to assume 
that, in addition to position x a in Minkowski space-time, an 
orthogonal tetrad of vectors transported along the world line 
xa = xa(s) of the electron comprise an (incomplete) set of 
classical dynamical variables (observables) for the elec
tron.6

•
7

•
1O

,1I In order to provide a satisfactory description of 
the electron's motion, one must set down the law of trans
port for the tetrad in the presence of electromagnetic fields. 

This paper contains an epigenesis of an idea put forward 
by Proca.4 Proca suggested that the four-velocity of the elec
tron be constructed from ("classical") Dirac spinors. He de
fined equations of motion for these spinors from which one 
could deduce the law of transport for the four-velocity. 

The ansatz adopted in this paper is to build an orthogo-

nal tetrad from a real eight component 0(3,3) spinor (de
noted by tP). A Poincare-invariant parameter-invariant La
grangian is constructed from tP, ip, xa, and external fields. 
The Euler-Lagrange equations associated with this Lagran
gian provide equations of motion for tP and xa, which, in 
tum, determine in a straightforward manner evolution equa
tions for the tetrad. We find that the law of transport for the 
three spacelike members of the tetrad is given by a general
ization of the Frenkel-Thomas-Bargmann-Michel-Telegdi 
equations. 1,2,12 The timelike member of the tetrad is parallel 
to the four-velocity, whose dynamical evolution is governed 
by a generalized Lorentz force law. 

In this model of the classical electron, the Frenkel con
dition I is satisfied, so that, as is observed in nature, the elec
tron's electric dipole moment is zero in a rest frame. How
ever, as is shown below, the incorporation of this feature into 
this model necessarily forces the equations of motion for x a 

to be nondeterministic for all but one value of fz, which is a 
Lagrange multiplier in this formalism. This particular value 
for fz is fz = 0, but this value is not required by anything 
(other than our own desire for determinism) in the formal
ism. This fact appears to be a major flaw within the model. 

II. LAGRANGIAN FORMALISM 

The fundamental dynamical variables that characterize 
a classical electron with spin are the particle's position co
ordinates x a relative to external field sources, the four-veloc-

ity xa = dxa / dw (where w is an arbitrary parameter up to the 
constraint dw/ ds> 0, with ds2 = - ga{3 dxa dxf3 > 0 for dxa 

timelike), and a tetrad of vectors E~) transported along its 
world line. The intrinsic spin tensor .I af3 of the electron 
might, at first glance, be added to this list. However, when 
the Frenkel condition .I pxf3 = 0, is satisfied, the spin tensor 
.I af3 becomes a simple bilinear function of the E~) [see Eq. 
(28)]. We desire to determine the transport law for this tet
rad, in addition to equations of motion for xa. In accordance 
with the idea put forward by Proca, instead of attempting to 
directly generate dynamical equations for the observables 
E~), we shall introduce the "potentials" tP (which are not 
directly observable) and determine equations of motion for 
them. In order to generate the law of transport for the E~), 
one differentiates the definitions of the E~) in terms of tP with 
respect to proper time s, and then substitutes for ip. 

Since the construction of the tetrad from tP is known, 
and not of primary interest, the reader may desire only a 
statement of the construction. Details can be found in Refs. 
13 and 14. We use the notation and conventions of Ref. 15. 

Let tP denote a real eight component 0(3,3) spinor, 
where tP is assumed to be dimensionless. Put 

where A and S are real four component spinors, and the tilde 
denotes transpose. The S transforms inversely to A under 

SO(3,3), and the restriction of SO(3,3) to a SO(3,1) sub
group. Let Y' a, /3,00' = 1,2,3,4 be a real 4 X 4 irreducible re
presentation of the Dirac matrices, where 

Y'tft + tftY' = 2yo ~f3, (1) 

~f3 = gaf3 = diag(l, 1, 1, - 1), (2) 

and 

Yo = diag(I,I,I,I). (3) 

Define 

r= _yly~y4, (4) 

E= - y4, (5) 

and 

sa{3= -HY',tft]. (6) 

One finds that 
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yaE= -eyz, 
where the tilde denotes transpose; 

TE= EYs, 
saPE = _ ES aP, 

and 

[saP, r,,] = 8: yf3 - ~~. 
A tetrad may be defined as follows: 

E 0) =~5'~rA; 
E~) =~5'~A; 

na=~E~A 

(future-pointing lightlike vector); 

m a = -5'~clt 

(future-pointing lightlike vector); 

M=!5'A; 

N= - !5'rA; 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

na and ma are linearly independent whenever M2 + N 2=1=O. 
Under this assumption, one may define 

E~) = Alma - na), 

and 

E~) = lIma + na). 

The Er::) satisfy13,14 

E~)E/,p)a = 11{f<)/,p)(M2 + N 2), 

where 

11{f<)/,p) = diag(I,I,I, - 1). 

One also finds that 13,14 

mana = - 8(M2 + N 2). 

(17) 

(18) 

(19) 

(20) 

(21) 

Equations (19) and (21) may be derived in a straightforward 
manner using the identities listed in the Appendix. Lastly, let 
us define the spin tensor of the electron to be 

~aP = 5'saPA. (22) 

With the use ofEqs. (AI)-(A3) of the Appendix, one may 
show thae 3

•
14 

and 

~p nP = Mna, 

~p mP = - Mma, 

.~p nP = - Nna, 

·~pmP=Nma, 

where 

(23) 

(24) 

(25) 

(26) 

(27) 

On physical grounds it is clear that E~) must be parallel 
to xa in order for the tetrad to be a legitimate set of dynami
cal variables. For xaxa = - 1, consider the kinematical 
constraint E-It = - rr a AXa

. With 5' so determined, one 
finds that M = 0 (because ~Er~ A = 0, due to the skew 
symmetry of Er~), N = -! na xa> 0 for "'=1=0, and ma 

= - ( - X"~Er" r) ~( - rrp AxP) = 4Nxa - na. Substi-
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tuting this result into Eq. (18) yields E~) = Nxa
, as desired. 

Moreover, one sees from Eqs. (23) and (24) that M = 0 im
plies that ~ p xP = 0 (Frenkel condition) when one identifies 
N -IE~) with xa. Having M = 0 also guarantees that 

~aP = N- I(E 0) Eg) - E~) E~)), (28) 

a result that follows from expanding ~ ap in terms of 
E~) E~). Equation (28) in turn implies that E~), which is 
proportional to EaP"P E~)E~)E14), is therefore proportional 
to ! ~p"p ~p"xP' i.e., N -IE~) is the normalized Pauli-Lu
banski spin vector. 

In order to put the kinematical constraint into a mani
festly covariant form, it is convenient to define 8 X 8 matrix 
analogs of Dirac's r matrices. Let 

r a - ( 0 
- -E~r 

r~E-I) 
o ' (29) 

r 5= (~E C
I

) 

o ' (30) 

and 

r 6= C~ r E-
I
) o . (31) 

One finds that (A,B, ... = 1, ... ,6) 

rAr B + rBr A = 2gABI gxg , (32) 

where 

gAB = diag(I,I,I, - 1, - 1, - 1), (33) 

and IgX g = diag(I, 1, 1, 1, 1, 1, 1, 1). Expressed covariantly, the 
relationships ( - xaxa )112 E-It = - rraAXa and 
(-xaxa)1/2A = -XararE-lt (anelementaryconse
quence ofthe first relationship) are given by 

(ra xa + ~ _xaxa r7) '" = 0, 

where 

r 7 = rlr2r3r4r5r6. 

Here r 7 satisfies 

r 7r A + r Ar 7 = 0, 

(r7)2 = I gXg ' 

(34) 

(35) 

(36) 

(37) 

and, in the particular representation of the r A given above, 
IS 

(38) 

We shall ensure that", satisfies Eq. (34) by incorporating this 
constraint into the Lagrangian via Lagrange multipliers. 

Before writing down the Lagrangian one comment is in 
order.AsshowninRef.I4,E~1 (j= I,2,3),~aP,andN 
transform as pseudotensors under spatial reflection (and as 
absolute tensors otherwise), whereas E~) transforms as a 
pseudovector under time reversal (and as an absolute vector 
otherwise). This means that N -I E ~1' [ - det( g"p)] 1/2 

N -I E~), and N -I ~ ap transform as absolute tensors un
der all 0(3,1) transformations. However, it substantially 
complicates the equations of motion for'" if one constructs 
the Lagrangian out of these latter quantities. In order to 
construct a Lagrangian that is invariant under the reflec-
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tions contained in the full Poincare group, we shall introduce 
a "quasiscalar" factor that multiplies every expression qua
dratic in 1/1 that appears in the Lagrangian. This quasiscalar 
is to transform as a scalar under proper Lorentz and time 
reversal transformations, but a scalar density under spatial 
reflections. Denoting this quasiscalar by fi, this transforma
tion law may be stated covariantly as 

fi-+fi' = (sgnL !)-I(det L p) fi, (39) 

where L p denotes the Lorentz matrix. Thus, fU a{3 is an 
absolute type (2,0) tensor; fIE 01 and fi [ - det( g/LV)] 1/2 E~) 
are absolute vectors. Let us agree to give fi the dimensions of 
angular momentum in order that fU a{3 may have dimen
sions of angular momentum (1/1 is dimensionless). 

We shall bring fi into the formalism as a Lagrange mul
tiplier. Its transformation properties are not to be given a 
priori, but are to be determined from the requirements of 
Poincare invariance of the Lagrangian. That is to say, one 
demands that fi transform according to Eq. (39) so that the 
Lagrangian is invariant under the full Poincare group. 

The Lagrangian postulated to govern the classical dy
namics of a massive point electron with spin, possessing 
charge e = - lei, is 

if = - M ~ - xa xa - (fi/2) 1f;nip + eAaxa 

+ Mn (Faxa + ~ - xa Xa r7) 1/1. (40) 

Here = d I dw, where w is an arbitrary parameter up to the 
requirement that dwl ds > O. The 8 X 8 matrix n, appearing 

for the first time in Eq. (40), is a SO(3,3) invariant symplec
tic form defined by 

rAn = nrA, 

which implies that 

r 7n = _ nr7. 

A particular representation of n is given by 

n=r 1r 2r 3 = (0 Yo) 
-Yo 0 . 

(41) 

(42) 

(43) 

Here A is a column matrix of eight Lagrange multipliers; A 

transforms as 1/1 under SO(3,I). 
The quantity Aa is the vector potential of the (total) 

electromagnetic field tensor Fa{3 = A{3,a - Aa, {3' which de
scribes all external fields plus that due to the electron. 

Here, M denotes the effective mass of the electron, and 
it is postulated to be given by 

M = m [1 - (geli/2m2) ~ a{3 Fa{3] 1/2, (44) 

where m is a constant parameter with dimensions of mass. In 
the weak field limit, Fa{3 -+ 0, this definition of effective 
mass M reduces to the definition of 
mass = m - (geli/4m) ~ aPFa{3 used by, for example, Cor
ben9 and Barut.6 However, one must use the definition of 
mass given by Eq. (44) in order to ensure that the effective 
mass enters into the Euler-Lagrange equations for both XU 

and 1/1 in a consistent manner. 
In Eq. (44), g = 2 + 8g is a dimensionless parameter, 

where 8g is arbitrary. The fact that g is assumed to be a scalar 
is a reflection of the implicit assumption that the intrinsic 
electromagnetic dipole moment tesnor /.laP of the point elec-
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tron is given by /.la{3 = (const) ~ a{3. 
It is straightforward to generalize the electromagnetic 

interaction appearing in Eq. (40) to a general Yang-Mills 
interaction. However, the classical approach, which does 
not allow for the experimentally observed phenomena of 
particle creation and annihilation, presumably has little va
lidity, even as a limiting form of dynamics, at energies high 
enough to produce W ± 's and Z's. A classical approach to 
dynamics only makes sense in the presence of weak fields 
such as the electromagnetic and gravitational fields. 

The Euler-Lagrange equations for A and fi imply that 
(putting w = s after performing the differentiations, so that 
- xa xa = 1) 

(45) 

and 

1f;nip = (geI2M) ~ a{3Fa{3' (46) 

along a dynamical trajectory. The canonical momenta are 
given by 

(47) 

and 

Pa = Jif = MXa + eAa + Mn (Fa - Xar7) 1/1 (48) 
Jxa 

= MXa + eAa + (~ + Xa xP) Mnrp1/1, (49) 

where we have again put w = s after differentiation, and used 
Eq. (45) to replace r 71/1 in Eq. (48) by - rfJ1/1xP, which yields 
Eq. (49). 

Before evaluating the Euler-Lagrange equations for 1/1, 
we must make one last definition. [A summary of SO(3,3) 
definitions and relationships is given in the Appendix.] Let 

MAB = _ HrA,r B]. 

One finds that 

and 

[MAB,rR ] = 8~ r B - 8~rA, 

[M AB,r 7
] = 0, 

(50) 

(51) 

(52) 

MABn = _ nMAB. (53) 

The Euler-Lagrange equations for if; are (w = s) 

fiip + ~';'1/1 = - (geli/4M) Ma{3if;Fap - fi(raxa - r7) A, 
(54) 

where we have used ~u{3 = -! 1f;nM a{3if;, which follows 
from Eqs. (29), (43), and (50). Upon mUltiplying this expres
sion from the left with r", ,XIL + r 7, and using Eqs. (45) and 
(51) along with (Faxa + r7) ip = - ra ¢Xa, and then solv
ing for (Fa XU - r 7) A, one finds that 

(Fa xa - r 7) A =! r 7 r a if;b u, 

= Mu{31/1xub{3, 

where 

b a = xa - (ge/2M) Fp xP. 

(55) 

(56) 

(57) 

To get Eq. (56) from Eq. (55), we have used Eq. (45) and the 
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fact that ba xa = 0 when w = s. Using Eq. (56) we may re
write Eq. (54) as 

Iiip+~fnp= -waPt/t[(geI4M)FaP +xa bp]' (58) 

Upon differentiating the definitions ofEqs. (11)-(22) 
with respect tos, and then substituting according to Eq. (58), 
one finds that 

d .1<Va gefl Fa EP ·a.1<EP b 
-TlLU, = - P (J) +x Tl (j) p, 
ds 2M 

for j = 1,2,3; also 

d 
-fzN=O 
ds ' 

and 

!!..-IU ap = gefl (Fal',I p _ FPI',I a) 
ds 2M f' I' 

(59) 

(60) 

+flbl'(,Iaf'XP_,IPf'xa). (61) 

Substituting for ba from Eq. (57) into Eq. (59) yields a gener
alization of the Frenkel, 1 Thomas,2 and BMT12 equations [it 
is the BMT equation when x a = (elM) rp xP). These equa
tions were introduced to describe the evolution of the Pauli
Lubanski pseudovector in a classical context. Here it is seen 
to govern the evolution of the entire spacelike triad. Fren
kel-Thomas-BMT transport preserves both the orthogona
lity and normalization of the tetrad, as does Eq. (59). 

In order to display the Euler-Lagrange equations for 
xa, the last term in Eq. (49) must be evaluated, and dM Ids 
calculated. The (~ + xa xtt) Anrpt/t may be found as fol
lows. Equation (55) implies that (r 7r p xtt - 1) A 

= ~r P t/tb P, so that 

ipnra(F7rp xtt - 1) A = ~ ipnrarpt/tb P 

- P =! t/tn(gaP - 2Map) t/tb 

= - ipnMapt/tb P = U ap bP, 

since ,Iap = - ~ipnMapt/t. This result combined with the 
alternative evaluation 

ipnr a (F 7 r P xtt - 1) A 

= - ipnraA + ipnrar 7r p AxP 

= Anra t/t - Anr7( - rarp + 2gap ) t/txtt 

= Anrat/t -Anr7r ar 7t/t + lia Anrpt/txtt 

= 2(~ + Xa xtt) Anrpt/t 

yields 

(~ + xa xtt) Anrpt/t = ,Iap b P. (62) 

Upon substituting this result into Eq. (49), one finds that Pa 
is given by 

Pa = MXa + eAa + lUap b /3. (63) 

Next, let us consider 

dM = _ ~!!..-IU a/3F = _ gefl ,I aPF xf' 
ds 4M ds a/3 4M aP. f' 

- ~F !!..-lUap 
4M ap ds . 

Multiplying Eq. (58) from the left with ipn gives 
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~ iiipnt/t 
= - ~ ijipnip 
= -flipnM a/3t/t[(geI4M)Fap +Xa bp] 

= lit aP [( gel4M) Fap + xabp ]. 

From Eq. (46) [or Eq. (58)), ipnip = (geI2M),IaPFaP ; sub
stituting this into the previous expression yields 

~F !!..-lUap= -litaQxab P = -X"'!!..-IU"Qb P• 
4M ap ds I' ds ~I' 

Thus 

dM 

ds 

The Euler-Lagrange equations for x a are (w = s) 

d A ,'.8 gefl ~f'VF 
-Pa =e /3a r + -., f'va' ds . 4M . 

(65) 

Substituting for Pa from Eq. (63) and using Eq. (60) gives 

Mxa = eFa P xtt + (~I' + x a xf') 

x(gefl ,I PI. F -!!..- (IU b P)). (66) 
4M Pl.. I' ds !-l.8 

III. DISCUSSION 

Equations (61) and (66) are coupled nonlinear equa
tions. They are further complicated by the fact that xa terms 
arise in the coupled equations. For example, the expression 
,Ip xP appears explicitly in Eq. (66) when one performs the 
indicated differentiation. Moreover, this cannot be solved 
forxa since, along a dynamical trajectory, det(,I aP) = 0 [this 
is a consequence ofEq. (28)]. However, these equations are 
almost identical in form to those given by Corben,9 whose 
method of derivation is completely different from the vari
ational approach adopted here. Corben's derivation is essen
tially algebraic, and his results possess a general applicability 
commensurate with the validity of his definitions. 

Corben discusses some applications and peculiarities of 
dynamical equations of the form ofEqs. (61) and (66) in his 
book.9 However, he, as well as Barut6 and other authors, 
uses the definition of mass = m - (geflI4m),I aPFap . For 
small spin-field interaction energies the definition of (effec
tive) mass M used in this paper reduces to Corben's, and 
presumably the approximation of the square root in this case 
does not greatly alter the nature of the solutions to the equa
tions of motion [compare with the approximation 
E = m( 1 - v2

) -1/
2

::::: m + ! mv2
]. The appearance of the 

square root in the Lagrangian of Eq. (40) does influence the 
nature of the electromagnetic field due to the electron, and 
will introduce a nonlinearity in the classical field equations 
for the electromagnetic field in the presence of classical 
sources with spin. 

The term - (geflI2m),I aPFap , representing the spin
field interaction energy, modifies the e = 0 mass of the elec
tron. Here Fa/3 should be understood as representing both 
the external electromagnetic field and the self-field of the 
electron. Unphysical solutions to the equations of motion 
will occur if the self-field effects are entirely neglected. 
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In ending, it should be emphasized that the introduc
tion of "classical" spinors to the canonical formalism gener
ates sufficient additional degrees offreedom so that the prop
erties of a classical point particle possessing intrinsic spin 
can be modeled utilizing a variational formalism. Hereto
fore, various approaches incorporating a tetrad as a set of 
fundamental variables have not been completely satisfac
tory. For example, nowhere in Ref. 7 is the complete Lagran
gian actually defined; all results are purely formal. 
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APPENDIX: SOME MATRIX ALGEBRA 

A basic identity satisfied by Dirac's y matrices isIS 

X - yXy + €-IX€ - y€-IX€y = Yo tr X - Y tr yX, 
(AI) 

where X denotes an arbitrary 4 X 4 matrix that transforms in 

the same way as A5 under SO(3, 1). Another useful identity 
iSIS 

From this identity one may derive Eq. (23), for example, by 
considering :u p nf3 = 5 2S af3 Al€y f3A 
= 5 ( gL'f3 - ~yf3) Al€y f3A = 2M na, since yf3 Alq f3 A = 0, 

owing to the identity 

(A3) 

Equation (A3) follows trivially from Eq. (A2) upon setting 
5 = 110 in Eq. (A2), and remembering that 10 and lOy are both 
skew-symmetric matrices, so that lEA = ° = lEY A. 

A summary of definitions relevant to the pseudo-Clif
ford algebra C6 and the Lie algebra SO(3,3) follows. 

Let r A A,B, ... = 1, ... ,6 denote six real 8 X 8 matrices 
that verify 

(A4) 

where 

gAB = gAB = diag(I,I,I, - 1, - 1, - 1). (AS) 

The generators of SO(3,3) are 
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(A6) 

The M AB verify 

[MAB, MRS] =gARM BS _gASMBR _gBRMAS +gBSMAR, 

(A7) 

and 

(A8) 

A SO(3,3) invariant symplectic form n may be defined on 
the vector space "A +5" by requiring that 

rAn = nrA. (A9) 

Since ii = - n, each nrA is skew symmetric. Equations 
(A6) and (A9) imply that 

MABn= _nMAB, 

hence each nM AB is symmetric. 
Define 

r? = r Ir2r3r4r5r6; 

whence, 

r 7r A + rAr? = 0, 

(r7)2 =Isxs, 

(AlO) 

(All) 

(A12) 

(AI3) 

(AI4) 

so that nr 7 is symmetric. In fact, nr 7 is an 0(3,3) invar

iant, covariant rank two, 0(3,3) spinor on the eight-dimen
sional vector space of which '" is an element. 
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Inverse scattering problems: A study in terms of the zeros of entire functions 
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The study of the zeros off unctions of several complex variables recently reported is applied to 
scalar scattered wavefields. First, an analysis of the role of the zeros of the scattering amplitude 
leads to an interpretation of the nonuniqueness of inverse source and scattering problems. 
Secondly, the analytic character of the scattered wavefunction outside the scattering volume and 
its zero description, as well as its role for information transmission, is discussed. 

PACS numbers: 42.1D.Hc, 03.65.Sq, 02.30.Dk, 02.30.Jr 

1. INTRODUCTION 

The analyticity and unique continuation of solutions to 
partial differential equations has been discussed in several 
contexts in physics (see, e.g., Ref. 1). One of the applications 
has been, among others, the description of scalar scattered 
wavefields in the far zone, i.e., when the scattered field ulsl(r), 
(r = (x,y,z)) and the spectral amplitude A (kos 1 ), 

[koS = kO(SI,s2,s3)' ko = 217'/2, ands being a unit vectorin the 
direction of observation. kOSl = kO(S,,s2) is the projection of 
the 3-D wavevector koS onto theXY-plane so that ISl12 + s~ 
= l,s3 = + ,jT=S;2 and IkoSll<lkosl = ko]areconnected 

by the asymptotic expression2 

ikor 

u(s)(r) = - 217'ikoS~ (koS1) _e_. (1) 
r 

So far these discussions have been first restricted to 
functions A (s) of one scalar variable s (Refs. 3-5) and, within 
this limitation, they have addressed the ambiguity in object 
reconstruction from far-zone intensity data (phase problem) 
and put forward methods of solution based on the localiza
tion of the zeros of A (s) in the complex plane s = s + is'. 5-8 

Analytic Fourier Optics, as this analysis of A (s) was coined,9 
also provides a means of encoding information, which is al
ternative to the Shannon description of sampling and inter
polation of band limited functions. Recently, some general
izations of the study of the above ambiguity have been done 
by means of the theory of entire functions of two and more 
complex variables. 10-12 

The purpose of this paper is twofold. We shall see that 
the angular spectrum A (K"K2) is the restriction of the 3-D 
Fourier transform F (K I,K2,K3) of the source function to val
ues of K3 = q satisfying IKI2 + q2 = k~, K = (K1.K2), for 
any real value of IKI. Thus, based on the theory of Fourier 
transforms in several complex variables we shall discuss first 
in Sec. 2 how the study of the analytic continuation of Finto 
three complex variables allows an interpretation of the non
uniqueness of the inverse source and scattering prob-
1 13 14 . h' h f k ems, . WIt 10 t e ramewor of the theory of entire func-
tions. Specifically, we shall base our discussion on the recent 
paper by Manolitsakis l2 on two-dimensional scattered 
fields, which are given by a Fourier transform, considered as 
functions of two-complex variables. As such, we shall use its 

-, Temporary address: The Institute of Optics, The University of Rochester 
Rochester, New York 14627. ' 

description in terms of "zero lines" of a function of several 
complex variables [where a "zero line" in the n-dimensional 
complex space means an (n - I )-dimensional surface in 
which the function vanishes]. We shall not present in detail 
these mathematical essentials as they are presented in depth 
in Ref. 12. We will instead concentrate on some conse
quences extracted from that theory. In Rarticular, a descrip
tion of the source Fourier transforms F (K 1$2$3) in terms of 
the zero lines of its analytic continuation into the 6-D com-

A A A 

plex space (K,.K2,K3 ) justifies, by virtue ofa theorem due to 
Osgood, the existence of identically zero scattering ampli
tudes given as data of a single or a discrete number of scatter
ing experiments. 14.15 

Secondly, in Sec. 3 we shall address the study of the 
analyticity of the scattered field without the approximations 
introduced for studying its far-zone behavior. We shall see 
that between this region and the scattering object, and more 
specifically, outside the scattering volume and its boundary, 
the field may be described in its free propagation by an ana
lytic function of the spatial complex variables (x,y.z). The 
kind of analyticity may be even more specified in those re
gions in which the scattered field admits a representation in 
terms of the angular spectrum of plane waves. As a matter of 
fact, given a certain level of noise this field may be approxi
mated at optical frequencies by an entire function of expo
nential type at those points where evanescent waves from a 

y 
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certain spatial frequency K = ~ K i + K ~ > ko onwards are 
not detected and thus may be neglected. The characteriza
tion of this scattered field by "zero lines" is a difficult one in 
several complex variables. 12 However, in those problems ex
hibiting cylindrical symmetry, the scattered field may be de
scribed at each distance z from the object by an entire func
tion of exponential type UISI(x) of a single variable; as such, its 
propagation may be described by means of its zero trajector
ies giving a zero distribution with a certain density at each 
complex plane associated with a given distance z, which de
creases, as this distance increases, up to the limit marked by 
the evanescent waves. The reconstruction of the field in the 
process reversal to that of propagation from the object poses, 
therefore, the problem of reproducing higher zero densities 
as one gets closer to the scattering volume. 

2. ANALYTIC PROPERTIES OF THE 3-~ SOURCE 
FOURIER TRANSFORM 

Let u(r) represent a scalar monochromatic wavefield in 
the presence of a scattering medium that occupies a finite 
volume v in the strip 0 < z < L (Fig. 1). u(r) satisfies at any 
point r = (x,y,z) of the space the inhomogeneous Helmholtz 
equation 

(V2 + k~)u(t) = V(r)u(r), (2) 

where the scattering potential is given in terms of the refrac
tive index n(r) of the scattering medium by 

VIr) = - k ~ [n2(r) - 1], rEV, 

VIr) = 0, rEtv, 
(3) 

ko = 2fT/ J.. being the wavenumber in free space. 
In order to write the integral equations describing the 

propagation of the field u(r) we shall follow a procedure al
ready employed by Wolf. 15 

Let r> and r < denote respectively the position vectors 
of a point exterior and interior to the scattering volume v, 
then the application of Green's theorem yields for the exteri
or field 16: 

(i) In terms of the field u(r') inside the volume v: 

u(r> ) = ulil(r> ) - _1_ (d 3r ' G (r > ,r')V(r')u(r'). (4) 
4fT Jv 

(ii) As a function of the values of the field and its normal 
derivative on the surface S which constitutes the boundary of 
v: 

. 1 i [ aG(r>,r') u(r> ) = ulll(r> ) + - ds u(r') ----
4fT s an 

_ G ( ') aU(r')] r> ,r . 
an 

(5) 

In Eqs. (4) and (5) ul"(r) denotes the incident field, and 
the integral of the second term represents the scattered field 
ulsl(r). G (r,r') is the outgoing free space Green's function: 

, eikolr - r'l 

G(r,r)= , 
Ir - r/l 

(6) 

which is the solution of the equation 

(V2 + k~)G(r,r') = - 4m5(r - r'). (7) 

G(r,r') admits the decomposition (Weyl)15 
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G(r,r') = _1_' If'" d
2
K ei[K'IR-R'I+q1z-z'll, (8) 

2fT - '" q 
where r = (R,z) and r' = (R' ,z') (R and R' being vectors in a 
plane perpendicular to OZ). Also 

q = + ~k~ - K2 when IKI<ko, (9a) 

q= +i~K2-k~ when IKI>ko. (9b) 

Denoting by R l+landR I-I, respectively, thehalf-spacesz < 0 
and z > L (Fig. 1), the absolute value Iz - z'l may be written 
as 

Iz - z'l = + (z - z'), when rER 1+) and r'Ev + S, 
(lOa) 

Iz-z'l = -(z-z'), when rER I -) and r'Ev. (lOb) 

By substituting Eq. (8) into Eqs. (4) and (5), making use of 
Eqs. (10) and changing the order of integration, we obtain for 
the scattered field 17: 

uIS)(r»= I I~", d 2K A ±(K)eiIK.R> HZ,), (11) 

where the angular spectrum, or scattering amplitUde, 
A I ± )(K) may be written either as a volume integral [cf. Eq. 
(4)] 

A I ± '(K) = - i J.. ( d 3r V(r)u(r')e - iIK·R' ± qz'l (12) 
8r q Jv 

or as a surface integral [cf. Eq. (5)] 

A I ± '(K) = _1_' J.. ( ds[U(r') ~(e - iIK·R' ± qz'l) 
8r q Js an 

_e-ilK-R'Hz') ::]. (13) 

But one has 

~ [e - iIK·R' ± qz'l] = _ in.(K, ± q)e - iIK·R' ± qz'l (14) 
an 

That is 

A I ± I(K) = 8-:r~ Is dS[ino(K, ± q)u(r/) 

+ aU(r')]e-iIK.R'±qZ') (15) 
an 

which reduces to the usual expression for the angular spec
trum in terms of u(R' ,L ) when the surface S is taken as the 
plane z = L [cf. Eq. (2.4) of Ref. 18] and one chooses Som
merfeld's Green's function. 19 

The upper ( + ) and lower ( - ) signs in Eqs. (12)-( 15) 
are taken according to whether the point r> belongs either 
to R 1+) or R I-I. 

As is well known, those components of the scattered 
field, Eq. (1), for which Eq. (9a) holds, represent homogen
eous waves and those components satisfying Eq. (9b) are 
evanescent waves, whose contribution may be significant at 
points r> near the boundary S; and certainly, if the dimen
sions of the scattering volume are of the order of, or smaller 
than, the wavelength J.. of the incident field (or if the scale of 
inhomogeneity of the scattering medium is of the order of, or 
smaller than J.. ), then, the contribution of the evanescent 
waves in the expression (11) may be important. 20-22 
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Considering the representation (12) for A I ± I(K), we 
shall introduce 

fir') = V(r')u(r') (16) 

which is sometimes called the object wave or source func
tion4

•13 and it is such that, due to Eqs. (3), becomes zero 
outside the volume v; i.e.,J(r') is a function of finite support v. 
As a consequence, its three-dimensional Fourier transform 
F(k): 

F (k) = ~ J"" d 3 r' f(r')e - k.r', 

(21T) - "" 
(17) 

k = (KI ,K2,K3), 

is, by virtue of the Plancherel-Polya theorem,23 the bound
ary value for real values ofk of an entirefunction of exponen
tial type in the k comnlex space of the three complex varia-

... A A A -;Ii:., A 

bles k = (KI,K2,K3 ) (KI = KI + iK;, K z = K2 + iK ~, 
K3 = K3 + iK; ), i.e., such that F (k) always satisfies the ine
quality 

IF (KI.K2,K3)I ..;CeaIIK,1 + IK,I + IK,n, (18) 

where C and a are positive constants, 
Comparing Eqs. (11) and (16) we obtain 

A I±I(K) = ~ F(kl±I), 
lq 

kl ± 1= (KI ,K2, ± q), 

i.e., Eq. (19) allows us to express the angular spectrum 

(19) 

A (± I(k) in terms of the 3-D Fourier transform F(k) of the 
source function restricted to the conditions (9). It has been 
already noted24 that for values Ikl >Ko, q is imaginary and 
A I ± I(k) represents the value ofF (k) along the "line" given by 
Eq. (9b). 

So far only real values ofK have been considered in the 
path of integration corresponding to Eq. (8). If we make a 
transformation to cylindrical coordinates 

KI = ~ cos a, K2 = ~ sin a, (20a) 

then Eq. (7) may be written 

G (r,r') = i1"" d~ ~ Jo(~ IR - R'l)e
iv'k 5- n z-z'l. 

° Jk~ _~2 
The above integral may be extended to negative values of ~ 
by expressing the zero order Bessel function Jo in terms of 
the Hankel function of the first kind and order zero H 6 

Jo(z) = ! [ H 6 (z) - H 6 ( - z) ] 

so that 

The path of integration in (20b) may be modified in the 
complex ~-plane by choosing any other path with ends 
( - 00,(0) providing one avoids to cross the cuts ~ ==Re 
[; J = Re [Ako J, ; , =Im [; [ ~O arising from the two branch 
points at; = ± ko. The choice of such a path with complex 
values; would imply a decomposition of the exterior scat
tered field uISI(r> ), Eq. (4), into inhomogeneous waves, alter-
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native to the representation (11) in terms of homogeneous 
and evanescent components. 

Following now the analysis of Ref. 12 and returning to 
Eq. (17), a central result of the theory of functions of several 

A ,... ,... 

complex variables is that a function F(KI,K2,K3) that is an 
entire function of exponential type in the k-space has no 
isolated zero points23

; i.e., their zeros are always continuous 
lines [here "line"means of course a 4-dimensional variety of 
the 6-D complex k-space given by a functional dependence 

,... ,... A 

between the three complex variables (KI,K2,K3)]. An entire 
function of exponential type has an infinite number of zero 
lines. 12 

A ,... A 

The set of zeros of F (K I,K 2,K 3) is called a red ucible ana-
lytic set if it can be deconwosed into a union of subsets. The 
entire function F(KI.K2,K3) is called globally reducible if it 
may be written as the product of two entire functions. Other
wise it is called globally irreducible. (Global irreducibility 
does not imply that F is irreducible everywhere.) 

The main fundamental theorem that is required in or
der to characterize an entire function of several complex var
iables is the following due to Osgoodlse~ a groofin Ref. 25): 

Theorem: An entire functionF (K I,K Z,K3) that has zeros 
and does not vanish identically can be l'tliquely decomposed 
into a finite or infinite product of globah. ,rreducible factors 
in the form: 

(21) 

where F m (k) are globally irreducible entire functions, exp 
[ r m (klJ are convergence factors with r m (k) being polynomi
als in k and the exponents 1m are integers. 

Let us compare the decomposition given by Eq.(21) 
with that corresponding to an entire function of one complex 
variable K 5: 

F(K)=CKl'eaK .J1",,(I- J)/IKn, (22) 

where C,f.-l, anda are constants andKn are the zero points of 
F(K). 

The main difference between (21) and (22) is that each 

factor F m (k)eY 
ml

K I is not known and depends entirely on the 
zero set of F (k). Also, each factor ofEq. (21) may contain not 
only one, but a certain number (finite or infinite) of zero lines 
with their possible branches or pseudobranches that cannot 
be separated. 12 While in the case of functions of a single 
complex variable all the information about the function is 
contained in the position of its zeros Kn. For functions of 
several complex variables, however, it is necessary to know 
not only the position but also the relationship between zero 
lines and its combination in each irreducible factor. The uni
queness of irreducible zero sets ensures that each irreducible 
factor determines in an unique manner the function 
F(KI ,K2,K3 ). The uniqueness of the product ensures that 

A A A 

each function F(KI,K2 ,K3) is uniquely determined by the 
zero lines. 

The asymptotic behavior of F(KI ,Kz,K3) is defined by 
the shape ofthe support off(r),i.e., by the shape of the volume 
v. For example, a function/(r) contained in a spherical vol
ume will yield a 3-D Fourier transform that behaves asymp-
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totically as (11k 2)[sin ak - ak cos ak ], 

k=~K~ +K~ + K~ which is the 3-D Fourier transform 
of a sphere of radius a. Its zeros are given by the lines k = ko, 
wher~ ko ar:e the values that are solutions of the equation 
tanak = ak. 

Th existence of an infinity' of zero lines of an entire func-
A " A 

tion of exponential type F (K I,K 2,K3 ) allows an interpretation 
of nonuniqueness of object wave reconstruction from the 
value of A I ± I(K) obtained from a single experiment. 14 In 
fact, there may exist an object wavefo(r) such that..Jora given 
incident field, its 3 -D Fourier transform F (K I,K2,K 3) given by 
Eq. (16) has one of its zero lines given by Eq. (8), i.e., such that 
Ao ± (k) is zero. Then, due to Eq. (11) the corresponding scat
tered field u~l(r > ) would be zero in R (+ I or R I-I. Also since 
the object wave, Eq. (16), is a function localized within v then 
the angular spectrum 

A 'I±I(K) =A b±I(K) +A I ±I(K) (23) 

would be equal to A I ± I(K) and thus the corresponding scat
tered field 

(24) 

would be equal to uISI(r> ) in R (+1 or R (-I. 
Moreover, as was noted in Ref. 19, from Eqs. (12) and 

(23) it is evident that within v one has 

V'(r) = V(r)u(r) + fo(r) . (25) 
u(r) + uo(r) 

For a given incident field ulil(r) = exp(lklil.r), 

k l11 - (K 111 K 111 K Iii) k 2 - K lil2 + K lil2 + ql11
2 

and within the 
- I' 2' 3' 0- 1 2 , 

domain of validity of the first Born approximation the angu-
lar spectrum A ~± '(X) is given by 

A ~±I(X) = ~ F(xl±l) 
lq 

with the transfer vector 

(26) 

xl ± I = (X,x~± ') = (KI - K ~l,K2 - K ~1, ± q - qlil) lying on 
the surface 

(27) 

For a discrete number of incident wave vectors klil, one 
may have a discrete number of lines (27) being zeros of 
F (il ± I) and, thus, allowing to express F (il ± I) by means of a 
product of irreducible factors of the form ofEq. (21). Thus, 
as it was already noted 14 it follows as above that a discrete 
number of experiments, each with an incident plane wave of 
wave vector kl11 does not allow, within the first Born approxi
mation, to uniquely determine the object wave from the an
gular spectrum A ~± '(X)· 

3. ANALYTICITY OF THE SCATTERED FIELD 

In order to assess the analytic characteristics of the 
scattered field uISI(r), we shall recall the Cauchy-Kowalewski 
theorem of the theory of partial differential equations (see 
Ref. 1 for a proof and detailed discussion): 

Theorem: There is exactly one analytic solution of the 
partial differential equation 

(
au au) V2u(x,z) = g x,z,U, - , -
ax az 

(28) 
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that satisfies the Cauchy boundary conditions on a smooth 
boundary C of a bounded simply connected domain D: 
¢ = u(x,z)le, tP = au(x,z)/anle, g being an analyticfunction 
of its five arguments and u(x,z) being twice continuously dif
ferentiable in a real neighborhood of x = 0, Z = O. 

Besides (see Refs. 1,26, and 27), u(x,z) may be analyti
cally continued to complex values x = x + ix', Z = z + iz', 
so that u(x,z) satisfies the Cauchy-Riemann equations with 
respect to each complex variable, and reduces for x' = z' = 0 
to the function u(x,z). 

These results established for two variables x,z may be 
also obtained for more independent variables (cf. Ref. I and 
references therein). 

Equation (1) does not satisfy the conditions of the above 
theorem since the source functionf(r) is discontinuous across 
the boundary S. However the Helmholtz equation holds the 
above conditions in the domain exterior to the scattering 
volume v and its boundary S where fIr > )=0. This implies 
that uISI(r) fails to be analytic inside the volume v or on its 
boundary S. In fact the scattered field uISI(r) must have singu
larities associated to the scattering sources somewhere in vor 
on its boundary S since if it were analytic everywhere it 
would be identically zero. 26 Wave functions analytic in the 
whole space are the incident field ulil(r) and any other source
free field that satisfies the equation (V2 + k ~ )u(r) = 0 every
where. 28 Also, from the representations (4) or (5) for u(r> ) 
one can see that since G (r > ,r') depends analytically on r> 
and r' then uISI(r> ) is an analytic function r> provided that 
Ir> - r'l #0 and it may be analytically continued to com
plex values (x> ,j> ,z> ).27 According to Refs. 28 and 30 a 
sufficient condition for this is that r> be outside the circum
scribed sphere C to S (Fig. 1).30 This is certainly true when 
r> is either inR (-lorR (+1 which is also when the representa
tion (10) by means of the angular spectrum converges.30 If 
moreover, the boundary S is analytic, then the values ulSi(r > ) 
may be analytically continued up to S (Refs. 29 and 31); this 
is also a necessary, although not sufficient, condition, for the 
validity of the angular spectrum representation (1) between S 
and z = 0 and z = L; this, or even the validity of (1) between 
Sand C is the Rayleigh hypothesis.29.3o A necessary and 
sufficient condition for this hypothesis to hold is that uISI(r) 
may be analytically continued up to the inscribed sphere C " 
i.e., its singularities lie inside that sphere C,.29.30 

Having seen that the scattered field uISI(r) is an analytic 
function at least in the exterior domain and providing that 
Ir> - r'l #O,(r'Ev), it remains to see with more detail what 
sort of analyticity may characterize uISI(r). 

From either Eq. (12) or (13) one can see that 

IA I±I(K)I <My±I(K) (29) 

for some constant M, where 

y(+I(K) = e + IqIL, 

y-I(K) = 1. 

(30a) 

(30b) 

Thus, at points r> where the angular spectrum representa
tion Eq. (11), is valid, one has that the spatial frequency spec
trum A (± i(K)e ± iqz> is bounded by 

IA(+I(K)eiqZ'I<Me-lqllz>-Li for z>ER(+), (31a) 
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IA<-I(K)e-iqZ>I<Me-lqlz> for z>ER<-I. (31b) 

For optical frequencies, given a certain level of noise, 
and at a distance z> large enough it would be impossible to 
distinguish from zero the bound given by Eqs. (31) for 

IKI>Nko' (N)I) (32) 

so that under those conditions the spectrum A < + I(K)e ± iqz> is 
effectively bandlimited to a finite range given by Eq. (32) (see 
also Ref. 18). Thus, in practice, u(r> ) may be approximately 
characterized by a function to which the Plancherel-Polya 
theorem23 may be applied for constant z> ' i.e., the function 
u(r> ) may be considered as the limitfor real values x > ,y> of 
an entire function of exponential type in the space of complex 
variables x> = x> + ix' >' z> = z> + iz' > . [When u(r> ) 
is source-free then A i ± IlK) = a for IKI > ko (Ref. 28) and the 
above will also hold]. This is, of course, an approximation 
taking into account the presence of noise and at 
z> E(R < + I,R < - I) large enough to record the frequency spec
trum as of effective finite support. (Of course in an ideal, 
noise-free situation, the bounds (31) will have a certain value, 
however small, and the above characterization could not be 
made.) 

This scheme is particularly valuable in situations of cy
lindrical symmetry along the OYaxis. Then the scattered 
field uiSi(r > ) = uiSi(x> ,z> ) may be extended as an entire func
tion of exponential type into the complex plane of the single 
complex variable x > = x> + ix~ at each z > constant. As it 

'R 
(-) x 

2-» scattering 

domain 

z= 0 z= L 

Or 
-> 

ix'~ 

zb/ 
) 

has been already seen, the information of these functions of 
one complex variable (in contrast with those of several com
plex variables) is encoded by the position ofits zerosxn in the 
x> -complex plane by means of the Hadamard product, Eq. 
(22). These zeros lie asymptotically on a line parallel to the 
real axis (see Refs. 4 and 5 for a detailed discussion of in for
mation encoding by zeros), with a spacing given by the Ny
quist rate, or Shannon points l9

; Xn = mrlNko and enables 
one to define a zero density4,5; 

g; = lim n(r) = Nko _ 2N I A I - ,r = x> . 
r~oo r 1T A 

(33) 

As the distance z> varies, the configuration of the zeros xn 
at each complex plane x> associated to the corresponding 
value of z > changes. Therefore, as the scattered field propa
gates in the exterior domain, the information conveyed by 
these zeros propagates along "zero trajectories" in a four
dimensional complex space (Fig. 2). This yields another in
terpretation to Gabor's treatment of information32

; each 
zero encodes a degree of freedom or logon of the scattered 
wavefunction. The propagation of information along zero 
trajectories may be associated to the concept of tubes of in
formation. 32 

As z> increases however, the effective support of 
A i ± i(K)e ± iqz> marked by Eqs. (31) decreases until there is no 
contribution of evanescent waves. This implies that as the 
scattered field propagates, the zero configuration at each 

zero 

trajectories 

z 

FIG. 2. Propagation of zeros of the scattered field along zero trajectories from the configuration in the x > -complex plane 11' 11 associated to the distance rll 
to the positions in the x> -complex plane rl21 associated to the distance r;1 > r;1 . > 
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complex plane associated to the corresponding z> not only 
varies, but also the zero density decreases from the value 2N / 
A until a certain ~~ at which one reaches the limit marked by 
the evanescent waves 

(34) 

and from that value of zi~ onwards the density remains con
stantly equal to !iJ 0 as z> increases. 

This impossibility of recovering higher zero density in 
the reversal process shows the irreversible nature of informa
tion loss as the scattered field propagates. From a zero con
figuration of density !iJ 0 = 2/ A in a complex plane x > asso
ciated with a certain distance z> one can reconstruct the 
zero configurations at all prior complex planes (i.e., at 
smaller z > ) with the same density !iJ 0 = 2/ A; however, from 
a well known theorem of the theory of entire functions33 

(Carlson's theorem), no entire function can have a density of 
zeros larger than T hr, if Tis its bandwidth, unless it is identi
cally zero. Thus, no entire function can have a zero density 
larger than !iJ 0 = 2/ A if evanescent waves are excluded. 
This fact was already noted by Schmidt-Weinmar21 who 
quoted the impossibility of obtaining information about the 
field near the sources from the far field containing only ho
mogeneous waves. 

Thus, as one considers the situation in which the conju
gate wave reproduces in the reversal process the field propa
gation; i.e., as z> tends to a plane z = zo, which is the nearest 
plane to the center of the scattering volume, at which the 
angular spectrum representation (11) converges, the compu
tation of uiSi(x > ,z> ) at z> > zi~ > Zo will yield only a replica 
of uiSi(xo,zo) with lower resolution limited to A /2, i.e., with 
smaller zero density !iJ 0 = 2/ A. This is in agreement with 
the lack of convergence as a simple limit of uisl(x > ,z> ) to 
uisi(xo,zo), but as a limit in the mean, put forward by Sher
man. 28 Only when uiSI(xo,zo) also has a zero density !iJ 0 = 2/ 
A, the convergence will be in the form of an ordinary limit [in 
particular, when uiSi(r) is source-free28

], since then all the 
zeros of uiSi(xo'zo) may be found by following backwards the 
zero trajectories starting from the zero configuration of 
uiSi(x> ,z> ). 

4. SUMMARY AND CONCLUSIONS 

We have generalized and exploited further some 
aspects of the analyticity properties of scattered scalar fields. 

First, performing the analytic continuation of the 3-D 
Fourier transform F of the source function, we have seen 
that a single scattering experiment, or a discrete number of 
them, yields an angular spectrum which is given by the val
ues of F along a line, or lines, on which it may have a zero 
since it is the boundary value on the real axes of an entire 
function of exponential type in a 6-D complex space and, as 
such, it possesses an infinity of zero lines. 

Scattering and diffraction are usually regarded as pro
cesses creating evanescent waves that are added to the usual 
homogeneous components of the scattered field. Changing 
the ;-path of integration we have seen that scattering and 
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diffraction may be equally envisaged as phenomena in which 
only inhomogeneous (leaky) wave are produced (a study of 
these waves at planar interfaces may be found in Ref. 34). 
These inhomogeneous waves correspond to a certain analyt
ic continuation of the scattering amplitude into the complex 
space K avoiding the corresponding branch cuts. [This con
tinuation of A (K) has been already used in order to put for
ward the equivalence between the solutiQ.n to the phase prob
lem and the location of the zeros of A (K). 4 Also the use of 
inhomogeneous wave representations has been employed in 
order to obtain information of subwavelength scattering 
sources35

]. A-

Let us observe that if the source is planar then A (K) is an 
entire function (see also Wolf in Refs. 2 and 21). 

Secondly, the scattered field is described in its free prop
agation outside the scattering volume by an analytic func
tion of the spatial variables. (On the other hand, the general
ized analytic character of this field in 2-D problems in the 
complex variable x + iz leads to integral theorems such as 
the Helmholtz-Kirchhoff formula and the extinction 
theorem36

). The description of the field propagation based on 
Huygens principle is ultimately a consequence of the possibil
ity of performing an analytic continuation of the wave func
tion outside the scattering volume. At optical frequencies, 
when evanescent waves from a certain spatial frequency on
wards may be neglected given a certain level of noise, this 
analyticity is more specific: the field may be approximated 
by an entire function of exponential type. In two-dimension
al problems, at each distance z> from the object the scat
tered wave function is therefore described by its zeros in the 
x> -plane having a certain density 2N / A (N;;.I). As z> in
creases this density decreases until one reaches the region at 
which the evanescent waves may be neglected. This yields a 
density of zeros 2/ A and establishes the impossibility offully 
reconstructing the field with higher zero densities at smaller 
distances from the object in the reversal process; and also 
poses the resolution limit A /2 for the reconstruction of object 
details (subwavelength source reconstruction requires there
fore the localization of zeros with densities above 2/ A ). Only 
in the case of source-free fields, for which the density keeps 
constantly equal to 2/ A in propagation, this reconstruction 
by means of the inverse process is straightforward. 
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overall elastic response of a matrix/inclusion composite 
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A "multiple scattering" formulation for the elastic response of a matrix containing a random 
dis~ribution ofinclus~ons is considered. The "ordinary" quasicrystalline approximation (QCA) is 
revIewed, together wIth a recently proposed "self-consistent" QCA. It is shown that the basic 
"self-consistent" postulate can be implemented without making an extra approximation in 
relation to scattering from the "background" material and that, when this extra approximation is 
dispensed with, the alternative self-consistent prescription that results is capable in principle of 
generating the overall properties exactly. In practice, there is still the need to close a hierarchy by 
making some assumption about interactions between inclusions. When the QCA is adopted, the 
alternative self-consistent prescription yields precisely the same estimates for overall behavior as 
the "ordinary" QCA. The formulation is given explicitly for elastostatics but the conclusions 
depend only upon the algebraic structure of the problem and apply equally well to problems of 
wave propagation. 

PACS numbers: 46.30.Cn, 03.40.Kf, 61.70.Rj 

I. INTRODUCTION 

Attempts to determine the overall response of a medi
um containing a random distribution of inclusions usually 
aim at finding equations which govern the ensemble aver
ages of the fields in question. This is done by selecting some 
particular form of the equations that describe the behavior of 
any realization of the random medium and then taking en
semble averages, conditional upon a certain number ofinclu
sions being fixed. This procedure generates a hierarchy of 
equations which involve a sequence of increasingly more 
complicated conditional expectations. The hierarchy is re
duced to a closed set of equations by performing some kind 
of truncation, which may be achieved either by truncating a 
perturbation series l

•
2 or by adopting some ad hoc closure 

assumption. The truncation of a perturbation series provides 
an approximation whose status is clear enough, but it is not 
useful in practice unless the properties of the medium vary 
only slightly. Approximations based upon a closure assump
tion have no absolute validity (except that in some circum
stances they can be shown to provide bounds) but they do 
yield estimates for overall behavior which are not restricted 
to small variations in local properties. 

One of the most widely used closure assumptions is the 
quasicrystalline approximation (QCA), which states essen
tially that the expected field in one inclusion is insensitive to 
the precise location of any other inclusion. In its basic form, 
it is applied to a formulation in which each inclusion acts as a 
"scatterer," embedded in matrix materiap-5 An extension, 
formulated for elastic waves by Devaney, 6 describes the scat
tering of the inclusions relative to a "background" or "com
parison" medium, which is different from the matrix. A 
"self-consistent" description of overall behavior then fol
lows from the postulate that the mean "scattering" is zero, 
when the "comparison" medium is chosen as the "overall" 
medium; this postulate generates an equation (or set of equa
tions) for the overall properties. In practice, the prescription 
can be implemented only approximately, because the hierar-

chy of equations has to be closed; Devaney proposed for this 
purpose an extension of the QCA, in which (in a sense made 
precise later) the response of the "background" material is 
insensitive to the positions of inclusions. It is shown in this 
work that the basic self-consistent prescription of Devaney 
can be implemented while invoking only the "ordinary" 
QCA, because the response of the "background" medium 
can be determined explicitly in terms of the response of the 
inclusions. When this is done, it emerges that the self-consis
tent scheme in fact generates precisely the same estimates for 
overall response as the "ordinary" QCA, formulated relative 
to the matrix. 

For simplicity, the development is carried out explicitly 
for the elastostatic response of a matrix containing a single 
population of inclusions, but it is pointed out that the conclu
sions remain valid for any matrix/inclusion composite. The 
reasoning is algebraic and the relationships that are dis
played apply to any problem with the same algebraic struc
ture, even though its analytic structure might be different. In 
particular, the relationships remain valid for the problems of 
elastic wave propagation considered by Devaney. 

II. FORMULATION 

An elastic body occupies a domain n and is subjected to 
body force/per unit volume and boundary conditions that 
either displacement or traction components, or some combi
nation of these, are prescribed on the boundary an. Symboli
cally, stress (7 is related to strain e by 

(7= Le; (2.1) 

in components this would read (7ij = Lijkl ekl • Components 
of strain are related to components of displacement by e ij 
= u1i,Jl' the suffixj representing differentiation with respect 

to Xj and the bracket representing symmetrization. The Lijkl 

denote the components of the tensor of elastic moduli. The 
basic problem is to solve the equilibrium equations 

div (7 + /= 0, X E n, (2.2) 
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where u is related to e through (2.1), together with the 
boundary conditions. 

The body to be considered comprises a matrix with ten
sor of moduli L z, in which are embedded inclusions, com
posed of material with tensor of moduli L I' The inclusions 
occupy domains n A' A = 1,2, ... , N, whose locations are de
fined by specifying the position x A of a chosen point, called 
for convenience the center of n A' The body is considered to 
be a random medium in the sense that the points x A are not 
given precisely but are distributed according to some sto
chastic process. The stress, strain, and displacement fields 
depend upon the locations x A of the inclusions and the objec
tive will be to find their ensemble averages, (u), (e), (u). In 
principle, this could be done by finding e(x), etc., for all possi
ble locations x A and then taking the ensemble average. In 
practice, this is not feasible, both because e(x) could not be 
found and because the stochastic process will not be com
pletely known. Instead, only limited statistical information 
will be available, such as the probability density P A = P (x A ) 

for finding an inclusion centered at x A , and the conditional 
density P B IA = P (x B Ix A) for finding an inclusion centered at 
x B' given that an inclusion is centered at x A • Corresponding
ly, approximations to (e) and other mean fields must be 
sought, which make use of this limited information. 

It is convenient to replace the system (2.1) and (2.2) by 
an integral equation, by introducing a "comparison medi
um" with moduli Lo and setting 

u=Loe + T, 

so that 

T= (L -Lo)e, 

(2.3) 

(2.4) 

the tensor Lo at the moment being arbitrary. Then, (2.2) gives 

div(Lo e) + div T + f = 0, (2.5) 

and, if Green's function for the comparison medium is 
known, there follows the representation 

(2.6) 

Here, eo is the solution of the given boundary value problem 
for the comparison medium and ro is an operator related to 
its Green's function Go. Explicitly, ro is an integral operator 
with components 

aZ[Go(x,X')]jk I 
(rO)ijkl = , , 

aX j ax[ (ijllkl) 

(2.7) 

and its singularity is interpreted in the sense of generalized 
functions. Equations (2.4) and (2.6) now generate the opera
tor equation 

(L - LO)-IT + roT = eo' (2.8) 

Now from (2.6) 

(e) = eo - ro(T), (2.9) 

so that the problem is solved once (T) is found. It is conven
ient to use (2.9) to replace (2.8) by 

(L-Lo)-IT+Fo(T-(T»)=(e). (2.10) 

Suppose that this equation has solution 

T = To(e), (2.11) 

so that To is an operator, closely related to Devaney's "tran-
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sition operator." Then, from (2.3), 

(u) =L (e), 
A 

(2.12) 

where L is an "effective modulus operator" defined by 

L =Lo+ (To)· 

Also, from (2.9) and (2.11), 

(e) = (I + ro(To»)-leo. 

(2.13) 

(2.14) 

If, in particular, eo is the strain produced by a delta-function 
body force, with homogeneous boundary conditions, it be
comes the strain Eo associated with the Green's function Go 
for the comparison body, and (e) becomes the strainE asso
ciated with the Green's function G for the "effective" body 
with elastic modulus operator L. In this case, (2.14) implies 

E=(I+ro(To»)-IEo. (2.15) 

Here, Eo satisfies 

div(Lo Eo) + I = 0, 

and, in view of (2.12), E satisfies 

div(LE) +1=0. 

(2.16) 

(2.17) 

This relation also follows from (2.15) and (2.16), since, by its 
definition, ro has the property 

div(Lo roT) =-div T, (2.18) 

for any T. Furthermore, if approximations to Land E are 
generated from (2.13) and (2.15) using an approximate (To), 
then these approximations also satisfy (2.17). 

This section is concluded by noting properties of the 
operator ro that will be useful in the sequel. If (2.4) is substi
tuted into (2.6), there results the equation 

e = eo - rolL - Lo)e. (2.19) 

This equation applies to any boundary value problem, for a 
medium with tensor of elastic moduli L. If, in particular, 
eo = Eo, as above, but L is taken equal to L 2, so that, corre
spondingly, e = E 2, then (2.19) gives 

(2.20) 

It is also possible to apply a system of force dipoles so that the 
strain eo = ro is produced in the comparison material. Then, 
the strain e generated in a material with tensor of moduli L2 
is e = r 2 and, from (2.19), 

(2.21) 

Finally, the roles of Lo and L z can be interchanged to give 
also 

ro = r z - r 2(Lo - L 2)Fo' (2.22) 

Equation (2.19) is the Lipmann-Schwinger equation and the 
relations that follow from it are of course well known.7 

III. THE QUASICRYSTALLINE APPROXIMATION (QCA) 

This section addresses the problem of constructing ap
proximations to (To), by applying various forms of the qua
sicrystalline approximation (QCA). 

A. The ordinary QCA 

If Lo is chosen equal to L2 (so that ro, eo, To become 
r 2, e2, Tz, respectively), then T = 0 throughout the matrix 
and T can be written 
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r(x) = L r A (X), (3.1) 
A 

where r A represents the restriction of r to {} A' Equation 
(2.10) then gives 

(LI - L2)-I~ + r2~ + r2( L ~ - (r») = (e), 
B",A 

XE{lA' (3.2) 

and is both indeterminate and irrelevant when x lies in the 
matrix. Now take the expectation of (3.2), conditional upon 
finding an inclusion centered at x A • This gives 

(LI - L 2)-Ir::: + r 2(r::: - (r)A) + r 2 g = (e), 

(3.3) 

where < r)A represents the restriction of (r) to {l A and 

{f dXB [~A (x)PB IA - ~(X)PB]' x Et {lA' 
g(x) = . 

0, X E {lA 
(3.4) 

Here, r::: represents the expected value of~, conditional 
upon finding an inclusion centered at x A , and ~A is the ex
pected value of ~, conditional upon finding distinct inclu
sins centered at x B and xA • Equation (3.3) cannot be solved 
for r::: because of the presence of ~A in the definition of g(x). 
An approximate equation, which can be solved, will be dis
cussed below. However, r::: depends upon (e) and it is useful 
to write 

(3.5) 

where T~ is an operator, equal to the indicated conditional 
expectation of T2• Then, since r is zero in the matrix, 

(T2) = f dXA T~ PA' 

and, from (2.13), 

(3.6) 

L = L2 + f dXA T~ PA • (3.7) 

The "ordinary" QCA consists of replacing (3.3) by a closed 
equation, by making the approximation 

~A =~. (3.8) 

The solution of the resulting equation yields an ~proxim}
tion to T~ and so by (3.7), to an approximation Lord for L, 
the superscript "ord" being used as a reminder that it is ob
tained from the ordinary QCA. This result can also be ob
tained by substituting simple trial fields into variational 
principles of the Hashin-Shtrikman type, so that Lord also 
has some status as a variational approximation independent 
of the validity or otherwise of the QCA.8 

B. The self-consistent QCA 

The foregoing reasoning can be repeated with an arbi
trary L o, which can even be allowed to be a nonlocal operator 
of the same type as L. Then, in place of (3.1), 

r(x) = L ~ (x) + r"'(x), (3.9) 
A 
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where rm represents the restriction of r to the matrix materi
al. Also, (3.2) is replaced by 

(LI - Lo)-I~ + ro ~ 

+ ro( L ~ + rm - (r») = (e), x E {lA' (3.10) 
B",A 

and, by taking expectations conditional upon X A being pre
scribed, 

(LI-Lo)-Ir::: +ro(r::: - (r)A)+ro(g+f)= (e), 

xE{lA' (3.11) 

where g(x) is defined as in (3.4) and 

fIx) = {r:::A (X)PmIA (x) - r,;: Pm (x), 
0, X E {lA' 

(3.12) 

Here, Pm (x) represents the probability of finding matrix at x 
andpmlA is the corresponding probability, conditional upon 
finding an inclusion centered at x A ; r,;: and r,;:A are defined 
similarly. In (3.10) and (3.11), 

(r)(x) = f dXA r:::(x)PA + r,;: (x)Pm (x), (3.13) 

and, from (2.4), there is the additional relation 

(LI - Lo)-I f dXA r:::(x)PA 

+ (L2 - Lo)-Ir;;:: (x)Pm (x) = (e)(x). (3.14) 

Equation (3.11) is not soluble for r::: because of the presence 
of ~A and r,;:A ; in different notation, Devaney6 proposes the 
approximations 

(3.15) 

as an extension of the QCA. With these approximations, 
(3.11) and (3.14) can be solved for r::: and r,;: for any choice of 
Lo. The "self-consistent" prescription is that the estimate 
obtained for L would be exact, if Lo were identified with L. In 
view of (2.13), this is equivalent to asserting that Lo = L sc 

when it is chosen so that 

(r) = 0. (3.16) 

The prescription generates the approximation L sc rather 
than L, because it depends upon the approximations (3.15). 
However, like the ordinary QCA, the estimate for L outlined 
here can be obtained from variational principles of the Ha
shin-Shtrikman type, even for general Lo and, in this frame
work too, it is possible to postulate that (3.16) holds when 
Lo = L. The self-consistent prescription (3.16) has been dis
cussed from this standpoint by Willis9 for statics and Talbot 
and Willis 10 for dynamics. 

C. An "alternative" self-consistent QCA 

It is, in fact, possible to proceed with a modification of 
the foregoing "self-consistent" scheme, which does not re
quire the second of the assumptions (3.15). The information 
that fixes r,;:A comes from averaging (2.10), conditionally 
upon {l A being fixed, when x lies outside {} A' This gives 

J. A. Willis 2118 



                                                                                                                                    

(LI -LO)-I J dXB ~A(X)PBIA 

+ (L2 - LO)-Ir,;:A (XlPmlA (x) 

+rO(g+/)+rO(r;! - (r)A) = (e), xf!flA, (3.17) 

whereg and/are defined as in (3.4) and (3.12). It may be 
noted that, when x is far from flA' (3.17) implies (3.14) pre
cisely. Subtracting (3.14) from (3.17) gives 

(LI -LO)-lg(X) + (L2 -LO)-I/(X) + ro(g + /) 
(3.18) 

This equation can be solved for f, given g, r:!, and (r)A. In 
fact,f can be represented in the form 

/ = h A - (L2 - L o)F2[ h A + r;! 
- (r)A + (LI -L2)(LI _Lo)-Ig] 

- (L2 - Lo)(LI - LO)-Ig, 

where h A is defined over fl A and satisfies the equation 

(Lo-L2)-lhA+r2[hA+r:! - (r)A 

(3.19) 

+(LI-L2)(LI-Lo)-lg] =0, xEflA. (3.20) 

This result is justified in Appendix A, which also provides 
some motivation for seeking this type of representation. 

Substituting (3.19) for/into (3.11) and using (2.21) gives 
the remarkably simple relation 

(LI-Lo)-Ir:! +(L2-Lo)-lh
A=(e), xEflA. (3.21) 

Eliminating h A between (3.20) and (3.21) now gives 

(LI-Lo)-Ir;! +r2[(LI-L2)(LI-Lo)-I(r:! +g) 

(L2-LO)(e)A-(r)A] = (e), xEflA' (3.22) 

and this can be rearranged, using (3.13) and (3.14), to give 

(LI -L2)-I[(LI -L2)(LI _LO)-Ir;! J 

+r2[(L I -L2)(LI -Lo)-I(r:! 

-(JdXB~PBr+g)] = (e), xEflA· (3.23) 

This equation is identical to (3.3), except that r:! and ~A are 
now multiplied by (L I - L 2)(L I - Lo) - I. Its solution, there
fore, is 

r:! =(LI -Lo)(L I -L2)-1 T~(e). (3.24) 

Now from (3.13), (3.14), and (3.24), 

('I) = (L2 - Lo)(e) + J dXA T~ PA (e). (3.25) 

The self-consistent condition (3.16) implies, this time, that 
Lo = L, as in (3.7). The solution would be exact if T~ were 
known exactly. If T~ is estimated by making the QCA (3.8), 
but no other approximation, then (3.16) generates Lo = Lord 
as an "alternative" self-consistent estimate. 

IV. DISCUSSION 

The principal interest of the "alternative" self-consis
tent scheme is that it replaces the approximation (3.15h by 
the exact relation (3.17); this motivated the writer to describe 
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the "alternative" scheme as an "improved" scheme until this 
terminology was resisted by a referee. It is perhaps worth 
admitting that some brand new estimate for overall moduli 
was initially expected to result from the use of (3.17), and 
that the realization that it had to lead to Lord came only after 
laborious explicit solution of (3.17) in particular cases. It is 
not suggested that the "alternative" scheme is always likely 
to produce better agreement with observation than the "or
dinary" self-consistent scheme, since it is clearly possible 
that the errors in the two approximations (3.15) might tend 
to cancel in particular cases; indeed, Talbot and Willis II 
have expressed a preference for the "ordinary" scheme when 
applied to a suspension of glass spheres in an epoxy matrix. 
There are, however, examples,12 even for static behavior, 
where the self-consistent scheme clearly overestimates the 
effects of interactions: rigid spheres generate infinite overall 
moduli, and spherical cavities generate zero overall moduli, 
at concentration 0.5. The "alternative" scheme, coupled 
with the QCA, has been shown to give the same estimate as 
the "ordinary" QCA, and this tends to underestimate inter
actions (producing lower or upper bounds, respectively, for 
the two extreme cases just quoted). It would appear, there
fore, that systematic improvement could be guaranteed/or 
any composite only by making more detailed allowance for 
interactions between inclusions. 

A similar discussion can be given for a matrix contain
ing any number of different types of inclusion; the only com
plication is in the notation. Section III C of course offers no 
alternative to the usual self-consistent estimate9

,13 for a com
posite such as a polycrystal, which has no clearly defined 
matrix phase. 

Finally, although the discussion has been given for stat
ic problems, it is remarked that the relations that have been 
noted depend only upon the algebraic property (2.21). For 
dynamic problems a four-dimensional formalism can be in
troduced, in which strain e is augmented to strain and veloc
ity (e, Ii), stress is augmented to stress and momentum den
sity (0", pi, and the constitutive relation (2.1) becomes 
augmented by 

p=pli, (4.1) 

wherep represents mass density. Finally, the stress polariza
tion 'I is augmented by momentum polarization 1T, defined 
by5 

1T = (p - Po)li. (4.2) 

Further details are given in Appendix B. Although this for
malism provides no quick route to finding explicit solutions, 
it demonstrates that the dynamic problem has the same alge
braic structure as the static problem, even though its analytic 
structure is different. The relations between the various ap
proximations discussed in Sec. III, being purely algebraic, 
thus apply equally well to the dynamic problem. 

APPENDIX A: A REPRESENTATION FOR THE 
FUNCTION' 

The solution of(3.18) can be expressed in the form 

fIx) =ft(x) - (L2 - Lo)(LI - LO)-lg(X), (AI) 

where/I satisfies the equation 
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(L2 - Lo)-11(x) + (Fo/Il(x) 

+ (Fogl)(X) =0, X EtflA' (A2) 

with 

{
r::-(T)A, XEflA' 

gl(x) = -I 
(LI -L2)(LI -Lo) g(x), X EtflA. 

(A3) 

To motivate the solution of (A2), let 

el = - Foil' (A4) 

Then, by multiplying (A2) through by (L2 - L o), taking the 
divergence and using the property (2.1S), it follows that 

div(L2 el) - div[(L2 - Lo)Fogd = 0, x Et flA. (AS) 

Thus, the strain field el would be produced in an infinite 
medium with moduli L 2, by the body-force distribution indi
cated in (AS) for x Et fl A' and some body-force, as yet un
known, for x E fl A' This motivates writing 

el = -F2[(L2-Lo)FOgl+h A
] 

(A6) 

where h A is zero except over fl A • The second equality in (A6) 
follows from (2.22). Now also, directly from (A2), 

II = - (L2 - LO)F2(h A + gl)' x Et flA. (A7) 

To restrict h A so thatll really does satisfy (A2), it is conven
ient todefinelr by (A7), for allx. Then, by use of(2.2l) and 
(A6), it follows that 

Fo/r = - el -Foh A, 

and so, from (A4), 

Fo(fr + h A - II) = 0. 

This suggests that 

II = h A - (L2 - LO)F2(h A + gIl, 

and, since II = ° when x E flA' 

(AS) 

(A9) 

(A 10) 

(Lo - L 2)-lh A + F 2(h A +gd = 0, x E flA. (All) 

Equation (All) is interesting in that it defines a problem for 
an "inclusion" with moduli Lo occupying fl A' in a matrix 
with moduli L 2 • That (A 10) actually provides the solution to 
(A2) can be checked by direct substitution, using (2.21). 

APPENDIX B: GENERALIZATION TO DYNAMICS 

This appendix gives in slightly more detail the corre
spondence between the static case discussed explicitly in the 
text and its generalization to dynamics. It is relegated to this 
position because it is a rather unattractive hybrid, being 
neither fully three- or four-dimensional. First, if u* is taken 
to denote the set of quantities (u ij' Pi) and e* denotes the set 
(eij' ui ), the relation 

u* = L *e* (Bl) 
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corresponding to (2.1) represents, in components, 

(B2) 

and the equations of motion [which correspond to the equi
librium equation (2.2)] can be written 

div* u* + I = 0, (B3) 

with div* u* representing a three-vector with components 
uij,j - Pi' i = 1,2,3. IfT* represents the set (T;j' 1T;), Eqs. 
(2.3)-(2.S) remain valid with asterisks placed as indicated for 
(B 1), (B3), and, as shown by Willis,5 

(B4) 

where the integral operators Sx' M x, S" M, have kernels 
whose components are 

(s ).. = a2
[ Go(x, x', t - t ')]jk I 

x ukl , 
ax; ax; W)lkl) 

(BS) 

(M ) .. = [a
2
Go(x, x', t - t ')Lk I = (S) .. 

x ljk a a ' klj' 
Xj t Iv) 

(B6) 

a2 [Go(x, x', t - t ')]ij 
(M')ij = at 2 

(B7) 

Equation (B4) can be expressed in the form 

(BS) 

or, still more concisely, as 

e* = e~ - F ~ T*, (B9) 

with the obvious definition of F ~. This equation corre
sponds to (2.6). All of the equations of the main text now 
generalize to the dynamic case by the addition of asterisks. 
The analytic structure is different in the dynamic case, with 
T*, etc., having more components than T and div* represent
ing a different differential operator from div. The algebraic 
structure is all that is used, however, and this is unchanged. 
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